Ensemble learning prediction of transmittance at different wavenumbers in natural hydroxyapatite

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Scientific African

Abstract

Material engineering-based research has often relied so much on tedious human exper iments for generating specific engineering properties with a major draw-back of high time demand that can span between an hour and days. Hence to deviate from the usual paradigm, we provide an alternative approach which employs artificial intelligence (AI) based ensemble learning methods for predicting the degree of transmittance for a range of wavenumbers of infrared radiation through hydroxyapatite (HAp) samples. The effective samples (transmittance and wavenumber) were passed as input to the predictive systems. For this, we trained two ensemble learning methods: Extreme Gradient Boosting (XGBoost) and Random Forest on variants of HAp (density and time variations), while considering a fixed amount of 10,000 base estimators. The results show that Random Forest marginally outperforms the XGBoost in the testing phase but requires a much longer computing time. However, XGBoost is much faster than the Random Forest. Furthermore, the examined en semble learning models yielded a coefficient of determination (R2 > 0.997): which are in close agreement with experimental data, depicting an excellent generalization capacity. Additionally, the examined ensemble learning models showed a significant ≥ 99.83% de crease in computational complexity relative to the time spent when generating the exper imental data. Overall, the use of ensemble learning models is very important for validating material engineering properties

Description

Research Article

Keywords

Ensemble learning, Transmittance prediction, Hydroxyapatite, Nucleating sites

Citation

Endorsement

Review

Supplemented By

Referenced By