Asymptotic Equipartition Properties for simple hierarchical and networked structures

dc.contributor.authorDoku-Amponsah, K.
dc.date.accessioned2013-01-01T10:32:23Z
dc.date.accessioned2017-10-14T12:21:18Z
dc.date.available2013-01-01T10:32:23Z
dc.date.available2017-10-14T12:21:18Z
dc.date.issued2011
dc.description.abstractWe prove asymptotic equipartition properties for simple hierarchical structures (modelled as multitype Galton-Watson trees) and networked structures (modelled as randomly coloured random graphs). For example, for large n, a networked data structure consisting of n units connected by an average number of links of order n / log n can be coded by about H × n bits, where H is an explicitly defined entropy. The main technique in our proofs are large deviation principles for suitably defined empirical measures.en_US
dc.identifier.citationESAIM: Probability and Statistics 2012 16 : pp 114-138en_US
dc.identifier.urihttp://197.255.68.203/handle/123456789/2116
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.subjectAsymptotic equipartition propertyen_US
dc.subjectlarge deviation principleen_US
dc.subjectrelative entropyen_US
dc.subjectrandom graphen_US
dc.subjectmultitype Galton-Watson treeen_US
dc.subjectrandomly coloured random graphen_US
dc.subjecttyped graphen_US
dc.subjecttyped treeen_US
dc.titleAsymptotic Equipartition Properties for simple hierarchical and networked structuresen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description:
Loading...
Thumbnail Image
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: