High energy milling of Cu2O powders

Abstract

Whole Powder Pattern Modelling was employed to investigate the microstructure changes in Cu2O powders milled in a vibrating cup mill. The reduction in the average size of coherently scattering domains - and simultaneous narrowing of the size distribution - occurs in the first minutes. An asymptotic limit of ca. 10 nm is obtained. The size reduction is obtained at the expense of introducing a massive quantity of dislocations in the system, reaching a limit of ca. 4×10-16 m-2. A proper nanocrystalline microstructure can be obtained with an effective milling time of ca. 20 min.

Description

Research Article

Citation

Endorsement

Review

Supplemented By

Referenced By