Bayesian latent time joint mixed effect models for multicohort longitudinal data
dc.contributor.author | Li, D. | |
dc.contributor.author | Iddi, S. | |
dc.contributor.author | Thompson, W.K. | |
dc.contributor.author | Donohue, M.C. | |
dc.contributor.author | for the Alzheimer's Disease Neuroimaging Initiative | |
dc.date.accessioned | 2019-05-31T14:44:12Z | |
dc.date.available | 2019-05-31T14:44:12Z | |
dc.date.issued | 2017-11 | |
dc.description.abstract | Characterization of long-term disease dynamics, from disease-free to end-stage, is integral to understanding the course of neurodegenerative diseases such as Parkinson’s and Alzheimer’s, and ultimately, how best to intervene. Natural history studies typically recruit multiple cohorts at different stages of disease and follow them longitudinally for a relatively short period of time. We propose a latent time joint mixed effects model to characterize long-term disease dynamics using this short-term data. Markov chain Monte Carlo methods are proposed for estimation, model selection, and inference. We apply the model to detailed simulation studies and data from the Alzheimer’s Disease Neuroimaging Initiative. | en_US |
dc.identifier.other | https://doi.org/10.1177/0962280217737566 | |
dc.identifier.other | Volume: 28 issue: 3, page(s): 835-845 | |
dc.identifier.uri | http://ugspace.ug.edu.gh/handle/123456789/30454 | |
dc.language.iso | en | en_US |
dc.publisher | Statistical Methods in Medical Research | en_US |
dc.subject | Hierarchical Bayesian models | en_US |
dc.subject | Joint mixed effects models | en_US |
dc.subject | Latent time shift | en_US |
dc.subject | Multicohort longitudinal data | en_US |
dc.title | Bayesian latent time joint mixed effect models for multicohort longitudinal data | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- Bayesian latent time joint mixed effect models for multicohort longitudinal data.pdf
- Size:
- 846.96 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.6 KB
- Format:
- Item-specific license agreed upon to submission
- Description: