Maximal function and carleson measures in the theory of Békollé–Bonami weights
dc.contributor.author | Kenfack, C.D. | |
dc.contributor.author | Sehba, B.F. | |
dc.date.accessioned | 2019-04-24T14:58:29Z | |
dc.date.available | 2019-04-24T14:58:29Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Let ω be a Békollé–Bonami weight. We give a complete characterization of the positive measures µ such that (Equation presented) where Mω is the weighted Hardy–Littlewood maximal function on the upper half-plane H and 1 ≤ p, q < ∞. © Instytut Matematyczny PAN, 2016. | en_US |
dc.identifier.issn | 101354 | |
dc.identifier.other | vol.142.2. | |
dc.identifier.other | doi.10.4064/cm142-2-4 | |
dc.identifier.uri | http://ugspace.ug.edu.gh/handle/123456789/29530 | |
dc.language.iso | en | en_US |
dc.publisher | Polska Akademia Nauk | en_US |
dc.subject | Békollé–Bonami weight | en_US |
dc.subject | Carleson-type embedding | en_US |
dc.subject | Dyadic grid | en_US |
dc.subject | Maximal function | en_US |
dc.subject | Upper half-plane | en_US |
dc.title | Maximal function and carleson measures in the theory of Békollé–Bonami weights | en_US |
dc.type | Article | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.6 KB
- Format:
- Item-specific license agreed upon to submission
- Description: