Lung Cancer Classification and Prediction Using Machine Learning and Image Processing

dc.contributor.authorNageswaran, S.
dc.contributor.authorArunkumar, G.
dc.contributor.authorBish, A.K.
dc.contributor.authorMewada, S.
dc.contributor.authorKumar, J.N.V.R.S.
dc.contributor.authorJawarneh, M.
dc.contributor.authorAsenso, E.
dc.date.accessioned2022-09-27T11:47:09Z
dc.date.available2022-09-27T11:47:09Z
dc.date.issued2022
dc.descriptionResearch Articleen_US
dc.description.abstractLung cancer is a potentially lethal illness. Cancer detection continues to be a challenge for medical professionals. The true cause of cancer and its complete treatment have still not been discovered. Cancer that is caught early enough can be treated. Image processing methods such as noise reduction, feature extraction, identification of damaged regions, and maybe a comparison with data on the medical history of lung cancer are used to locate portions of the lung that have been impacted by cancer. This research shows an accurate classification and prediction of lung cancer using technology that is enabled by machine learning and image processing. To begin, photos need to be gathered. In the experimental investigation, 83 CT scans from 70 distinct patients were utilized as the dataset. The geometric mean filter is used during picture preprocessing. As a consequence, image quality is enhanced. The K-means technique is then used to segment the images. The part of the image may be found using this segmentation. Then, classification methods using machine learning are used. For the classification, ANN, KNN, and RF are some of the machine learning techniques that were used. It is found that the ANN model is producing more accurate results for predicting lung cancer.en_US
dc.identifier.urihttp://localhost:8080/handle/123456789/38297
dc.language.isoenen_US
dc.publisherBioMed Research Internationalen_US
dc.subjectLung canceren_US
dc.subjectImage processingen_US
dc.titleLung Cancer Classification and Prediction Using Machine Learning and Image Processingen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lung Cancer Classification and Prediction Using Machine.pdf
Size:
681.88 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: