Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
Abstract
Background
Inappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Lowand middle-income countries (LMICs) are disproportionately burdened by AMR and young
children are especially vulnerable to infections with AMR-bearing pathogens. The impact of
antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes
is insufficiently characterized and understood in children in LMICs. This systematic review
aims to collate and evaluate the available literature describing the impact of antibiotics on
the infant gut microbiome and resistome in LMICs.
Methods and findings
In this systematic review, we searched the online databases MEDLINE (1946 to 28 January
2023), EMBASE (1947 to 28 January 2023), SCOPUS (1945 to 29 January 2023), WHO
Global Index Medicus (searched up to 29 January 2023), and SciELO (searched up to 29
January 2023). A total of 4,369 articles were retrieved across the databases. Duplicates
were removed resulting in 2,748 unique articles. Screening by title and abstract excluded
2,666 articles, 92 articles were assessed based on the full text, and 10 studies met the eligibility criteria that included human studies conducted in LMICs among children below the age
of 2 that reported gut microbiome composition and/or resistome composition (AMR genes)
following antibiotic usage. The included studies were all randomized control trials (RCTs)
and were assessed for risk of bias using the Cochrane risk-of-bias for randomized studies tool. Overall, antibiotics reduced gut microbiome diversity and increased antibiotic-specific
resistance gene abundance in antibiotic treatment groups as compared to the placebo. The
most widely tested antibiotic was azithromycin that decreased the diversity of the gut microbiome and significantly increased macrolide resistance as early as 5 days posttreatment. A
major limitation of this study was paucity of available studies that cover this subject area.
Specifically, the range of antibiotics assessed did not include the most commonly used antibiotics in LMIC populations.
Conclusion
In this study, we observed that antibiotics significantly reduce the diversity and alter the
composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing
methodology in currently available research limit insights into antibiotic impacts on the
microbiome and resistome in children in LMICs. More research is urgently needed to fill this
gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes,
including infections with AMR-bearing pathogens
Description
Research Article
Citation
Luchen CC, Chibuye M, Spijker R, Simuyandi M, Chisenga C, Bosomprah S, et al. (2023) Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review. PLoS Med 20(6): e1004235