A directed topic model applied to call center improvement

dc.contributor.authorAfful‐Dadzie, A.
dc.contributor.authorXiong, H.
dc.contributor.authorAllen, T.T.
dc.date.accessioned2019-02-15T11:10:30Z
dc.date.available2019-02-15T11:10:30Z
dc.date.issued2015
dc.description.abstractWe propose subject matter expert rened topic (SMERT) allocation, a generative probabilistic model applicable to clusteringfreestyle text. SMERT models are three-level hierarchical Bayesian models in which each item is modeled as a nite mixture over aset of topics. In addition to discrete data inputs, we introduce binomial inputs. These ‘high-level’ data inputs permit the ‘boosting’or afrming of terms in the topic denitions and the ‘zapping’ of other terms. We also present a collapsed Gibbs sampler for efcientestimation. The methods are illustrated using real world data from a call center. Also, we compare SMERT with three alternativeapproaches and two criteria.en_US
dc.identifier.otherDOI: 10.1002/asmb.2123
dc.identifier.urihttp://ugspace.ug.edu.gh/handle/123456789/27558
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subjectBayesian modelingen_US
dc.subjectGibbs samplingen_US
dc.subjectlatent Dirichlet allocationen_US
dc.titleA directed topic model applied to call center improvementen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Allen_et_al-2016-Applied_Stochastic_Models_in_Business_and_Industry.pdf
Size:
957.05 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: