Structure and diffuseness model of solid-liquid interface for binary alloys
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Results in Physics
Abstract
Using the morphological instability at the solid–liquid interface as a basis by the maximum entropy production
rate principle (MEPR), a model is presented on the morphological structure and diffuseness of the interface
during directional solidification of binary alloys. It is shown that, the independent diffuseness theory of Cahn and
the Jackson roughness criterion can be unified at a limiting condition under this new MEPR solidification model.
The model under the principle of MEPR is applied to describe the evolution of atomistically smooth and rough
interfaces through the evaluation of the size of the solid–liquid interface and the of number atomic layers. The
model is tested with data for binary alloys of aluminium, lead, and tin at varying solute concentrations. The
results showed strong agreement with available data from experimental measurements.
Description
Research Article