Inhibiting plasmid mobility: The effect of isothiocyanates on bacterial conjugation
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
International Journal of Antimicrobial Agents
Abstract
Bacterial conjugation is the main mechanism for the transfer of multiple antimicrobial resistance genes among pathogenic micro-organisms. This process may be controlled by compounds that inhibit bacterial conjugation. In this study, the effects of allyl isothiocyanate, l-sulforaphane, benzyl isothiocyanate, phenylethyl isothiocyanate and 4-methoxyphenyl isothiocyanate on the conjugation of broad-host-range plasmids harbouring various antimicrobial resistance genes in Escherichia coli were investigated, namely plasmids pKM101 (IncN), TP114 (IncI2), pUB307 (IncP) and the low-copy-number plasmid R7K (IncW). Benzyl isothiocyanate (32 mg/L) significantly reduced conjugal transfer of pKM101, TP114 and pUB307 to 0.3 ± 0.6%, 10.7 ± 3.3% and 6.5 ± 1.0%, respectively. l-sulforaphane (16 mg/L; transfer frequency 21.5 ± 5.1%) and 4-methoxyphenyl isothiocyanate (100 mg/L; transfer frequency 5.2 ± 2.8%) were the only compounds showing anti-conjugal specificity by actively reducing the transfer of R7K and pUB307, respectively.