Scrambling in Yang-Mills

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Acting on operators with a bare dimension ∆ ∼ N2 the dilatation operator of U(N) N = 4 super Yang-Mills theory defines a 2-local Hamiltonian acting on a graph. Degrees of freedom are associated with the vertices of the graph while edges correspond to terms in the Hamiltonian. The graph has p ∼ N vertices. Using this Hamiltonian, we study scrambling and equilibration in the large N Yang-Mills theory. We characterize the typical graph and thus the typical Hamiltonian. For the typical graph, the dynamics leads to scrambling in a time consistent with the fast scrambling conjecture. Further, the system exhibits a notion of equilibration with a relaxation time, at weak coupling, given by t ∼ p λ with λ the ’t Hooft coupling.

Description

Research Article

Citation

Endorsement

Review

Supplemented By

Referenced By