The maximum principles for partially observed risk-sensitive optimal controls of Markov regime-switching jump-diffusion system
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor and Francis Inc.
Abstract
This paper studies partially observed risk-sensitive optimal control problems with correlated noises between the system and the observation. It is assumed that the state process is governed by a continuous-time Markov regime-switching jump-diffusion process and the cost functional is of an exponential-of-integral type. By virtue of a classical spike variational approach, we obtain two general maximum principles for the aforementioned problems. Moreover, under certain convexity assumptions on both the control domain and the Hamiltonian, we give a sufficient condition for the optimality. For illustration, a linear-quadratic risk-sensitive control problem is proposed and solved using the main results. As a natural deduction, a fully observed risk-sensitive maximum principle is also obtained and applied to study a risk-sensitive portfolio optimization problem. Closed-form expressions for both the optimal portfolio and the corresponding optimal cost functional are obtained. © 2018 Taylor & Francis Group, LLC