Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria

Abstract

Abstract: A long-term, sustainable solution to weed infestation is extremely desirable because weeds have the potential to reduce crop productivity and the aesthetic appeal of the environment. In this study, the impacts of mowing and varying degrees of trampling pressure on the suppression of weeds, alongside wound-induced changes in the allelopathic potential, of the rhizosphere soil and the root exudates of southern crabgrass (Digitaria ciliaris) and Asian flatsedge (Cyperus microiria) were evaluated under both field and greenhouse conditions. The field study results showed that all trampling treatments induced the relative suppression of weed growth. Grass weeds showed higher resistance to trampling than broad-leaved weeds. However, laboratory bioassays showed that light trampling caused a significant increase in the growth-inhibitory effects of southern crabgrass rhizosphere soil on lettuce. Moreover, mowing (9.11% of control) and trampling (16.4% of control) resulted in a marginal increase in the growth-inhibitory effects of root exudates released from southern crabgrass. Furthermore, the growth-inhibitory activities of the Asian flatsedge rhizosphere soil were significantly reduced after heavy trampling pressure. Moreover, mowing and trampling resulted in marginal reductions in the growth-inhibitory activities of root exudates released from Asian flatsedge against lettuce (i.e., 18.7% and 28.5%, respectively). In general, mowing and varying degrees of trampling induced contrasting and integrated impacts on weed suppression as well as the allelopathic potential of both southern crabgrass and Asian flatsedge.

Description

Research Article

Keywords

trampling, weed suppression, Digitaria ciliaris, Cyperus microiria, allelopathy

Citation

Citation: Biramahire, B.; Appiah, K.S.; Tojo, S.; Fujii, Y.; Chosa, T. Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria. Sustainability 2022, 14, 16665. https://doi.org/10.3390/ su142416665