Stock Returns and Long-range Dependence

dc.contributor.authorOdonkor, A.A.
dc.contributor.authorAmoah-Darkwah, E.
dc.contributor.authorAbabio, E.N.
dc.contributor.authorAndoh, R.
dc.date.accessioned2024-05-27T11:36:39Z
dc.date.available2024-05-27T11:36:39Z
dc.date.issued2019
dc.descriptionResearch Articleen_US
dc.description.abstractThis article studies the long-term memory behaviour of stock returns on the Ghana Stock Exchange. The estimates employed are based on the daily closing prices of seven stocks on the Ghana Stock Exchange. The results of the autoregressive fractionally integrated moving average-fractionally integrated generalized autoregressive conditional heteroskedasticity (ARFIMA-FIGARCH) model suggest that the stock returns are characterized by a predictable component; this demonstrates a complete departure from the efficient market hypothesis, suggesting that relevant market information was only partially reflected in the changes in stock prices. This pattern of time dependence in stock returns may allow for past information to be used to improve the predictability of future returns.en_US
dc.identifier.otherDOI: 10.1177/0972150919866966
dc.identifier.urihttp://ugspace.ug.edu.gh:8080/handle/123456789/42017
dc.language.isoenen_US
dc.publisherGlobal Business Reviewen_US
dc.subjectstock returnsen_US
dc.subjectlong memoryen_US
dc.subjectARFIMAen_US
dc.titleStock Returns and Long-range Dependenceen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Stock Returns and Long-range Dependence.pdf
Size:
969.33 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: