Some Carleson measures for the Hilbert–Hardy space of tube domains over symmetric cones

dc.contributor.authorBékollé, D.
dc.contributor.authorSehba, B.F.
dc.date.accessioned2019-05-27T11:29:56Z
dc.date.available2019-05-27T11:29:56Z
dc.date.issued2019-03
dc.description.abstractIn this note, we obtain a full characterization of radial Carleson measures for the Hilbert-Hardy space on tube domains over symmetric cones. For large derivatives, we also obtain a full characterization of the measures for which the corresponding embedding operator is continuous. Restricting to the case of light cones of dimension three, we prove that by freezing one or two variables, the problem of embedding derivatives of the Hilbert-Hardy space into Lebesgue spaces reduces to the characterization of Carleson measures for Hilbert-Bergman spaces of the upper-half plane or the product of two upper-half planes.en_US
dc.identifier.citationBékollé, D. & Sehba, B.F. European Journal of Mathematics (2019) 5: 585. https://doi.org/10.1007/s40879-018-0285-2en_US
dc.identifier.otherVolume 5, Issue 2, pp 585–610
dc.identifier.otherhttps://doi.org/10.1007/s40879-018-0285-2
dc.identifier.urihttp://ugspace.ug.edu.gh/handle/123456789/30326
dc.language.isoenen_US
dc.publisherEuropean Journal of Mathematicsen_US
dc.titleSome Carleson measures for the Hilbert–Hardy space of tube domains over symmetric conesen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: