Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia

dc.contributor.authorChilyabanyama, O.N.
dc.contributor.authorChilengi, R.
dc.contributor.authorSimuyandi, M.
dc.contributor.authorChisenga, C.C.
dc.contributor.authorChirwa, M.
dc.contributor.authorBosomprah, S.
dc.contributor.authoret al.
dc.date.accessioned2023-03-09T20:13:34Z
dc.date.available2023-03-09T20:13:34Z
dc.date.issued2022
dc.descriptionResearch Articleen_US
dc.description.abstractAbstract: Stunting is a global public health issue. We sought to train and evaluate machine learning (ML) classification algorithms on the Zambia Demographic Health Survey (ZDHS) dataset to predict stunting among children under the age of five in Zambia. We applied Logistic regression (LR), Random Forest (RF), SV classification (SVC), XG Boost (XgB) and Naïve Bayes (NB) algorithms to predict the probability of stunting among children under five years of age, on the 2018 ZDHS dataset. We calibrated predicted probabilities and plotted the calibration curves to compare model performance. We computed accuracy, recall, precision and F1 for each machine learning algorithm. About 2327 (34.2%) children were stunted. Thirteen of fifty-eight features were selected for inclusion in the model using random forest. Calibrating the predicted probabilities improved the performance of machine learning algorithms when evaluated using calibration curves. RF was the most accurate algorithm, with an accuracy score of 79% in the testing and 61.6% in the training data while Naïve Bayesian was the worst performing algorithm for predicting stunting among children under five in Zambia using the 2018 ZDHS dataset. ML models aids quick diagnosis of stunting and the timely development of interventions aimed at preventing stunting.en_US
dc.identifier.citationCitation: Chilyabanyama, O.N.; Chilengi, R.; Simuyandi, M.; Chisenga, C.C.; Chirwa, M.; Hamusonde, K.; Saroj, R.K.; Iqbal, N.T.; Ngaruye, I.; Bosomprah, S. Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia. Children 2022, 9, 1082. https://doi.org/10.3390/ children9071082en_US
dc.identifier.otherhttps://doi.org/10.3390/children9071082
dc.identifier.urihttp://ugspace.ug.edu.gh:8080/handle/123456789/38752
dc.language.isoenen_US
dc.publisherchildrenen_US
dc.subjectstuntingen_US
dc.subjectmachine learningen_US
dc.subjectrandom foresten_US
dc.subjectNaïve Bayesianen_US
dc.subjectZDHSen_US
dc.titlePerformance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambiaen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Performance-of-Machine-Learning-Classifiers-in-Classifying-Stunting-among-UnderFive-Children-in-ZambiaChildren.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: