Weighted Boundedness of Maximal Functions and Fractional Bergman Operators

dc.contributor.authorSehba, B.F.
dc.date.accessioned2019-07-08T11:35:53Z
dc.date.available2019-07-08T11:35:53Z
dc.date.issued2018-04
dc.description.abstractThe aim of this paper is to study two-weight norm inequalities for fractional maximal functions and fractional Bergman operator defined on the upper-half space. Namely, we characterize those pairs of weights for which these maximal operators satisfy strong and weak type inequalities. Our characterizations are in terms of Sawyer and B\'ekoll\'e-Bonami type conditions. We also obtain a $\Phi$-bump characterization for these maximal functions, where $\Phi$ is a Orlicz function. As a consequence, we obtain two-weight norm inequalities for fractional Bergman operators. Finally, we provide some sharp weighted inequalities for the fractional maximal functions.en_US
dc.identifier.citationSehba, B.F. J Geom Anal (2018) 28: 1635. https://doi.org/10.1007/s12220-017-9881-5en_US
dc.identifier.otherVolume 28, Issue 2, pp 1635–1664
dc.identifier.otherhttps://doi.org/10.1007/s12220-017-9881-5
dc.identifier.urihttp://ugspace.ug.edu.gh/handle/123456789/31313
dc.language.isoenen_US
dc.publisherJournal of Geometric Analysisen_US
dc.subjectBergman operatoren_US
dc.subjectBékollè–Bonami weighten_US
dc.subjectCarleson-type embeddingen_US
dc.subjectDyadic griden_US
dc.subjectMaximal functionen_US
dc.subjectUpper-half planeen_US
dc.titleWeighted Boundedness of Maximal Functions and Fractional Bergman Operatorsen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: