Research Articles
Permanent URI for this communityhttp://197.255.125.131:4000/handle/123456789/22010
A research article reports the results of original research, assesses its contribution to the body of knowledge in a given area, and is published in a peer-reviewed scholarly journal. The faculty publications through published and on-going articles/researches are captured in this community
Browse
34 results
Search Results
Item Haematological parameters and their correlation with the degree of malaria parasitaemia among outpatients attending a polyclinic(Malaria Journal, 2023) Antwi‑Bafour, S.; Mensah, B.T.; Johnson, G.; Armah, D.N.O.; Ali‑Mustapha, S.; Annison, L.Background Malaria is a parasitic disease caused by various species of the blood parasite Plasmodium; of all the para‑ sitic diseases, malaria has the highest prevalence and mortality with an estimated 247 million cases and 619,000 deaths recorded worldwide as of 2021. Malaria causes febrile illness with several changes in blood cell parameters. Some of these changes include leucopenia, thrombocytopenia, and anaemia. If these changes could be correlated with the degree of parasitaemia, it can serve as a guide to physicians when treating malaria. This study was therefore aimed at correlating haematological parameters with levels of parasitaemia during malaria infection. Methods The study was a cross-sectional study involving 89 malaria positive patients. About 5 ml of blood was col‑ lected from each participant who gave his or her informed consent to partake in the study. A full blood count was performed on their samples to determine their haematological parameters using a haematology auto-analyzer. A parasite count was also performed via microscopy to determine the degree of parasitaemia. The data obtained from the study was entered into a database and statistically analysed using Statistical Package for Social Sciences (SPSS) version 23 and Microsoft Excel 2016. Results The study comprised of 89 participants out of which 35 were males and 54 were females with the mean age of 26.15 years. Secondary education participants were the highest with quaternary education the lowest. The highest parasite count recorded was 398,174 parasites/µl of blood, lowest count was 101 with the average being 32,942.32584. There was also a signifcant positive Pearson’s correlation between total WBC and parasitaemia and with the WBC diferentials, neutrophils, lymphocytes and monocytes had positive correlations while eosinophils and basophils had negative correlations. Furthermore, platelets, total RBC’s, haemoglobin, MCH, MCHC and Hct all showed negative correlations. Linear regression also showed a linear relationship between parasite density and the various haematological parameters. Conclusion The linear relationship (correlation) between WBC and MCH were the only signifcant ones at 95% and 99% confdence interval, respectively based on a two-tail t-test. Also, based on the regression analysis, the changes caused by WBC and PLT were the only signifcant changes at 95% confdence level in a two-tailed t-test.Item Plasmodium falciparum infection and naturally acquired immunity to malaria antigens among Ghanaian children in northern Ghana(Parasite Epidemiology and Control, 2023) Seidu, Z.; Lamptey, H.; Whittle, N.O.; et al.Background: The surge in malaria cases and deaths in recent years, particularly in Africa, despite the widespread implementation of malaria-control measures could be due to inefficiencies in malaria control and prevention measures in malaria-endemic communities. In this context, this study provides the malaria situation report among children in three Municipalities in Northern Ghana, where Seasonal Malaria Chemotherapy (SMC) is implemented by Ghana Health Service (GHS). Methods: A cross-sectional household survey was carried out to assess the malaria knowledge, attitudes, and practices (KAP) and malaria prevalence in 394 households in 13 rural communities in the Kumbugu, Nanton and Tolon Municipalities, Northern Region, Ghana. This was followed by screening for P. falciparum infection with anti-HRP2 RDT and PCR among children 1–17 years in the households. Plasma levels of IgG specific for crude P. falciparum antigen (3D7) and four re combinant malaria antigens (CSP, GLURP, MSP3, and Pfs230) were assessed by ELISA. The malaria and parasitaemia data were converted into frequency and subgroup proportions and disaggregated by study sites and demographic information of the participants. The ELISA data was converted to arbitrary units (AU) and similarly compared across study sites and demographic information. Results: The P. falciparum infection rate and frequency of malaria were high in the study areas with significant age-dependent and inter-community differences, which were reflected by differences in plasma levels of P. falciparum-specific IgG. Over 60% of households reported the use of bed nets and indoor insecticide sprays/coils, and 14% mentioned bush clearing around homes (14%) as malaria preventive measures. Community health centres were the preferred place for households (88%) to seek malaria treatment but over-the-counter drug stores were the major source (66%) of their antimalarials. Overall, malaria preventive and treatment practices were sub-optimal. Conclusions: P. falciparum infection and malaria are still high in the studied communities, indi cating that preventive and control measures against the disease in the region remain inadequate. Efforts to ensure high SMC compliance and to improve preventative and treatment practices thus seem cost-beneficial “low-hanging fruits” in the fight against malaria in the Northern Region of Ghana.Item Plasmodium falciparum infection and naturally acquired immunity to malaria antigens among Ghanaian children in northern Ghana(Parasite Epidemiology and Control, 2023) Seidu, Z.; Lamptey, H.; Whittle, N.O.; et al.Background: The surge in malaria cases and deaths in recent years, particularly in Africa, despite the widespread implementation of malaria-control measures could be due to inefficiencies in malaria control and prevention measures in malaria-endemic communities. In this context, this study provides the malaria situation report among children in three Municipalities in Northern Ghana, where Seasonal Malaria Chemotherapy (SMC) is implemented by Ghana Health Service (GHS). Methods: A cross-sectional household survey was carried out to assess the malaria knowledge, attitudes, and practices (KAP) and malaria prevalence in 394 households in 13 rural communities in the Kumbugu, Nanton and Tolon Municipalities, Northern Region, Ghana. This was followed by screening for P. falciparum infection with anti-HRP2 RDT and PCR among children 1–17 years in the households. Plasma levels of IgG specific for crude P. falciparum antigen (3D7) and four re combinant malaria antigens (CSP, GLURP, MSP3, and Pfs230) were assessed by ELISA. The malaria and parasitaemia data were converted into frequency and subgroup proportions and disaggregated by study sites and demographic information of the participants. The ELISA data was converted to arbitrary units (AU) and similarly compared across study sites and demographic information. Results: The P. falciparum infection rate and frequency of malaria were high in the study areas with significant age-dependent and inter-community differences, which were reflected by dif ferences in plasma levels of P. falciparum-specific IgG. Over 60% of households reported the use of bed nets and indoor insecticide sprays/coils, and 14% mentioned bush clearing around homes (14%) as malaria preventive measures. Community health centres were the preferred place for households (88%) to seek malaria treatment but over-the-counter drug stores were the majorItem Stepwise in vitro screening of MMV pathogen box compounds against Plasmodium falciparum to identify potent antimalarial candidates(International Journal for Parasitology: Drugs and Drug Resistance, 2023) Mbye, H.; Bojang, F.; Jaiteh, F.K.; et al.Development of resistance to deployed antimalarial drugs is inevitable and needs prompt and continuous dis covery of novel candidate drugs. Therefore, the antimalarial activity of 125 compounds from the Medicine for Malaria Ventures (MMV) pathogen box was determined. Combining standard IC50 and normalised growth rate inhibition (GR50) analyses, we found 16 and 22 compounds had higher potencies than CQ respectively. Seven compounds with relatively high potencies (low GR50 and IC50) against P. falciparum 3D7 were further analysed. Three of these were tested on 10 natural P. falciparum isolates from The Gambia using our newly developed parasite survival rate assay (PSRA). According to the IC50, GR50 and PSRA analyses, compound MMV667494 was most potent and highly cytotoxic to parasites. MMV010576 was slow acting but more potent than dihydroartemisinin (DHA) 72 h after exposure. MMV634140 was potent against the laboratory-adapted 3D7 isolate, but 4 out of 10 natural Gambian isolates survived and replicated slowly despite 72 h of exposure to the compound, suggesting potential drug tolerance and risk of resistance development. These results emphasise the usefulness of in vitro testing as a starting point for drug discovery. Improved approaches to data analyses and the use of natural isolates will facilitate the prioritisation of compounds for further clinical development.Item Stepwise in vitro screening of MMV pathogen box compounds against Plasmodium falciparum to identify potent antimalarial candidates(Elsevier Ltd, 2023) Mbye, H.; Bojang, F.; Amambua-Ngwa, A.; et al.ABSTRACT Development of resistance to deployed antimalarial drugs is inevitable and needs prompt and continuous dis covery of novel candidate drugs. Therefore, the antimalarial activity of 125 compounds from the Medicine for Malaria Ventures (MMV) pathogen box was determined. Combining standard IC50 and normalised growth rate inhibition (GR50) analyses, we found 16 and 22 compounds had higher potencies than CQ respectively. Seven compounds with relatively high potencies (low GR50 and IC50) against P. falciparum 3D7 were further analysed. Three of these were tested on 10 natural P. falciparum isolates from The Gambia using our newly developed parasite survival rate assay (PSRA). According to the IC50, GR50 and PSRA analyses, compound MMV667494 was most potent and highly cytotoxic to parasites. MMV010576 was slow acting but more potent than dihydroartemisinin (DHA) 72 h after exposure. MMV634140 was potent against the laboratory-adapted 3D7 isolate, but 4 out of 10 natural Gambian isolates survived and replicated slowly despite 72 h of exposure to the compound, suggesting potential drug tolerance and risk of resistance development. These results emphasise the usefulness of in vitro testing as a starting point for drug discovery. Improved approaches to data analyses and the use of natural isolates will facilitate the prioritisation of compounds for further clinical developmentItem Marmesin isolated from Celtis durandii Engl. root bioactive fraction inhibits β-hematin formation and contributes to antiplasmodial activity(Elsevier Ireland Ltd, 2023) Chirawurah, J.D.; Ezenyi, I.C.; Sahal, D.; et al.ABSTRACT Ethnopharmacological relevance: Malaria is a leading cause of death in many developing countries, especially in sub-Saharan Africa. Nigeria is endowed with an abundance of medicinal plants, many of which are used to treat malaria. Celtis durandii Engl. is one such plant used as a traditional antimalarial remedy in southeast Nigeria. However, its antiplasmodial potential is poorly explored. Aim of the study: The study aimed at identifying the antiplasmodial components of C. durandii root extract through antiplasmodial activity-guided fractionation. Materials and methods: Dichloromethane/methanol mixture extract (1:1 v/v) of C. durandii root was prepared and partitioned against water to obtain the organic phase, which was further separated by column chromatography into nine (C1 – C9) fractions. The antiplasmodial activity was evaluated by in vitro screening of the different fractions against drug-sensitive and drug-resistant Plasmodium falciparum strains. Further purification of the active column fractions resulted in a potent anti-Plasmodial compound that was subsequently investigated for its effect on β-hematin formation. Additionally, the isolated compound was characterized and identified as mar mesin using mass spectrometry and nuclear magnetic resonance spectroscopy. Results: Celtis durandii root extract exhibited promising antiplasmodial activity {IC50 (μg/ml) 5.92, 6.04, and 6.92} against PfW2mef, PfINDO, and Pf3D7 respectively. Pooled fractions with good antiplasmodial activity {IC50 (μg/ml) Pf3D7: 3.99; PfINDO: 2.24} and selectivity for the parasites (SI: 21) yielded a compound that was fourteen-fold potent in antiplasmodial activity against Pf3D7(IC50: 0.28 μg/ml). It also inhibited β-hematin formation with an IC50 = 150 μM. Further studies using spectral data, literature, and chemical databases identified the purified compound as marmesin. Conclusion: This work has demonstrated that Celtis durandii root extract has good antiplasmodial activity against drug-sensitive and drug-resistant P. falciparum. The inhibition of β-hematin formation by marmesin accounts in part for this activity.Item Nationwide Surveillance of Pfhrp2 Exon 2 Diversity in Plasmodium falciparum Circulating in Symptomatic Malaria Patients Living in Ghana(The America Journal of Hygiene and Health, 2022) Bredu, D.G.; Ahadzi, G.K.; Donu, D.; et al.Reports of increasing false-negative HRP2-based rapid diagnostic test results across Africa require constant monitoring of factors associated with these false-negative outcomes, as failure of this diagnostic tool will have severe conse quences on malaria treatment and control programs. This study characterized the extent of genetic diversity in the Plasmo dium falciparum histidine-rich protein 2 (Pfhrp2) gene in P. falciparum isolates from symptomatic malaria patients across the regions of Ghana. Exon 2 of Pfhrp2 was amplified from gDNA using polymerase chain reaction. All Pfhrp2-negative samples were subjected to Pf18S rRNA and Pfmsp2 gene amplifications. The amplified Pfhrp2 exon 2 fragments from clonal samples were sent for commercial Sanger sequencing. The type and number of PfHRP2 repeats, classified based on repeat types pre viously reported, were estimated from the sequence data and compared among geographical regions. About 81% (2,333/ 2,890) of the original microscopy positive dried blood spot (DBS) samples were available and used in this study. The Pfhrp2 exon 2 amplification was successful in 98.5% (2,297/2,333) of the tested samples, with band size ranging from 400 bp to 1,050 bp. A total of 13 out of the 24 previously reported repeat types were identified among the samples, with three samples lacking both type 2 and type 7 repeat motifs. This study suggested that the genetic diversity of Pfhrp2 exon 2 identified in P. falciparum circulating in symptomatic malaria patients in Ghana is unlikely to influence the sensitivity and specificity of HRP2 RDT-based diagnosis.Item ICAM-1-binding Plasmodium falciparum erythrocyte membrane protein 1 variants elicits opsonic-phagocytosis IgG responses in Beninese children(Nature Research, 2022-12) Suurbaar, J.; Moussiliou, A.; Tahar, R.; Olsen, R.W.; Adams, Y.; Dalgaard, N.; Baafour, E.K.; Adukpo, S.; Hviid, L.; Kusi, K.A.; Alao, J.; Ofori, M.F.Members of the highly polymorphic Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on the surface of infected erythrocytes (IEs) are important virulence factors, which mediate vascular adhesion of IEs via endothelial host receptors and are targets of naturally acquired immunity. The PfEMP1 family can be divided into clinically relevant subgroups, of which some bind intercellular adhesion molecule 1 (ICAM-1). While the acquisition of IgG specific for ICAM-1-binding DBLβ domains is known to differ between PfEMP1 groups, its ability to induce antibody-dependent cellular phagocytosis (ADCP) is unclear. We therefore measured plasma levels of DBLβ-specific IgG, the ability of such IgG to inhibit PfEMP1-binding to ICAM-1, and its ability to opsonize IEs for ADCP, using plasma from Beninese children with severe (SM) or uncomplicated malaria (UM). IgG specific for DBLβ from group A and B ICAM-1-binding PfEMP1 were dominated by IgG1 and IgG3, and were similar in SM and UM. However, levels of plasma IgG inhibiting ICAM-1-binding of group A DBLβ of PFD1235w was significantly higher in children with UM than SM, and acute UM plasma induced a higher ADCP response than acute SM plasma.Item ICAM‑1 Kilifi variant is not associated with cerebral and severe malaria pathogenesis in Beninese children(BMC, 2022) Blankson, S.O.; Dadjé, D.S.; Traikia, N.; Alao, M.J.; Ayivi, S.; Amoussou, A.; Deloron, P.; Ndam, N.T.; Milet, J.; Basco, L.K.; Aniweh, Y.; Tahar, R.Background: Cytoadhesion and sequestration of Plasmodium falciparum infected red blood cells (iRBC) in the microvasculature of vital organs are a major cause of malaria pathology. Several studies have provided evidence on the implication of the human host intercellular adhesion molecule-1 (ICAM-1) as a major receptor for iRBCs binding to P. falciparum erythrocyte membrane protein 1 (PfEMP1) in the development of severe and cerebral malaria. The genetic polymorphism K29M in the immunoglobulin-like domain of ICAM-1, known as ICAM-1Kilifi, has been associated with either increased or decreased risk of developing cerebral malaria. Methods: To provide more conclusive results, the genetic polymorphism of ICAM-1Kilifi was assessed by PCR and sequencing in blood samples from 215 Beninese children who presented with either mild or severe malaria including cerebral malaria. Results and conclusions: The results showed that in this cohort of Beninese children, the ICAM-1kilifi variant is present at the frequencies of 0.27, similar to the frequency observed in other African countries. This ICAM-1kilifi variant was not associated with disease severity in agreement with other findings from the Gambia, Tanzania, Malawi, Gabon, and Thailand, suggesting no evidence of a direct link between this polymorphism and the pathogenesis of severe and cerebral malaria.Item Naturally acquired antibody response to a Plasmodium falciparum chimeric vaccine candidate GMZ2.6c and its components (MSP-3, GLURP, and Pfs48/45) in individuals living in Brazilian malaria-endemic areas(BMC, 2022) Baptista, B.O.; de Souza, A.B.L.; Riccio, E.K.P.; Bianco‑Junior, C.; Totino, P.R.R; da Silva, J.H.M.; Theisen, M.; Singh, S.K.; Amoah, L.E.; Ribeiro‑Alves, M.; Souza, R.M.; Lima‑Junior, J.C.; Daniel‑Ribeiro, C.T.; Pratt‑Riccio, L.R.Background: The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with diferent epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods: This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specifc IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results: The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions: The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine.