Browsing by Author "Zwyer, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Back-to-Africa introductions of Mycobacterium tuberculosis as the main cause of tuberculosis in Dar es Salaam, Tanzania(PLOS PATHOGENS, 2023) Zwyer, M.; Yeboah-Manu, D.; et al.In settings with high tuberculosis (TB) endemicity, distinct genotypes of the Mycobacterium tuberculosis complex (MTBC) often differ in prevalence. However, the factors leading to these differences remain poorly understood. Here we studied the MTBC population in Dar es Salaam, Tanzania over a six-year period, using 1,082 unique patient-derived MTBC whole-genome sequences (WGS) and associated clinical data. We show that the TB epidemic in Dar es Salaam is dominated by multiple MTBC genotypes introduced to Tanzania from different parts of the world during the last 300 years. The most common MTBC genotypes deriving from these introductions exhibited differences in transmission rates and in the duration of the infectious period, but little differences in overall fitness, as measured by the effective reproductive number. Moreover, measures of disease severity and bacterial load indicated no differences in virulence between these genotypes during active TB. Instead, the combination of an early introduction and a high transmission rate accounted for the high prevalence of L3.1.1, the most dominant MTBC genotype in this setting. Yet, a longer coexistence with the host population did not always result in a higher transmission rate, suggesting that distinct life-history traits have evolved in the different MTBC genotypes. Taken together, our results point to bacterial factors as important determinants of the TB epidemic in Dar es Salaam.Item Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim[version 1; peer review: 3 approved](F1000Research, 2021) Menardo, F.; Rutaihwa, L.K.; Zwyer, M.; Borrell, S.; Comas, I.; Conceição, E.C.; Coscolla, M.; Cox, H.; Joloba, M.; Dou, H.; Feldmann, J.; Fenner, L.; Fyfe, J.; Gao, Q.; de Viedma, D.G.; Garcia-Basteiro, A.L.; Gygli, S.M.; Hella, J.; Hiza, H.; Jugheli, L.; Kamwela, L.; Kato-Maeda, M.; Liu, Q.; Ley, S.D.; Loiseau, C.; Mahasirimongkol, S.; Malla, B.; Palittapongarnpim, P.; Rakotosamimanana, N.; Rasolofo, V.; Reinhard, M.; Reither, K.; Sasamalo, M.; Duarte, R.S.; Sola, C.; Suffys, P.; Lima, K.V.B.; Yeboah-Manu, D.; Beisel, C.; Brites, D.; Gagneux, S.Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world’s new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics . For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans.