Browsing by Author "Kwarko, G.B."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Cheminformatics-Based Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin(MDPI, 2021) Kwofie, S.K.; Broni, E.; Asiedu, S.O.; Kwarko, G.B.; Dankwa, B.; Enninful, K.S.; Tiburu, E.K.; Wilson, M.D.The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome virus 2 (SARS-CoV-2) has impacted negatively on public health and socioeconomic status, globally. Although, there are currently no specific drugs approved, several existing drugs are being repurposed, but their successful outcomes are not guaranteed. Therefore, the search for novel therapeutics remains a priority. We screened for inhibitors of the SARS-CoV-2 main protease and the receptor-binding domain of the spike protein from an integrated library of African natural products, compounds generated from machine learning studies and antiviral drugs using AutoDock Vina. The binding mechanisms between the compounds and the proteins were characterized using LigPlot+ and molecular dynamics simulations techniques. The biological activities of the hit compounds were also predicted using a Bayesian-based approach. Six potential bioactive molecules NANPDB2245, NANPDB2403, fusidic acid, ZINC000095486008, ZINC0000556656943 and ZINC001645993538 were identified, all of which had plausible binding mechanisms with both viral receptors. Molecular dynamics simulations, including molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) computations revealed stable protein-ligand complexes with all the compounds having acceptable free binding energies <−15 kJ/mol with each receptor. NANPDB2245, NANPDB2403 and ZINC000095486008 were predicted as antivirals; ZINC000095486008 as a membrane permeability inhibitor; NANPDB2403 as a cell adhesion inhibitor and RNA-directed RNA polymerase inhibitor; and NANPDB2245 as a membrane integrity antagonist. Therefore, they have the potential to inhibit viral entry and replication. These drug-like molecules were predicted to possess attractive pharmacological profiles with negligible toxicity. Novel critical residues identified for both targets could aid in a better understanding of the binding mechanisms and design of fragment-based de novo inhibitors. The compounds are proposed as worthy of further in vitro assaying and as scaffolds for the development of novel SARS-CoV-2 therapeutic molecules.Item Identification of novel potential inhibitors of varicella-zoster virus thymidine kinase from ethnopharmacologic relevant plants through an in-silico approach(Taylor & Francis Group, 2021) Kwofie, S.K.; Annan, D.G.; Adinortey, C.A.; Boison, D.; Kwarko, G.B.; Abban, R.A.; Adinortey, M.B.Although Varicella or chickenpox infection which is caused by the varicella-zoster virus (VZV) has sig nificantly been managed through vaccination, it remains an infection that poses threats to the nearest future due to therapeutic drawbacks. The focus of this research was geared towards in silico screening for the identification of novel compounds in plants of ethnopharmacological relevance in the treat ment of chicken pox in West Africa. The work evaluated 65 compounds reported to be present in Achillea millefolium, Psidium guajava and Vitex doniana sweet to identify potential inhibitors of thymi dine kinase, the primary drug target of varicella zoster virus. Out of the 65 compounds docked, 42 of these compounds were observed to possess binding energies lower than 7.0 kcal/mol, however only 20 were observed to form hydrogen bond interactions with the protein. These interactions were eluci dated using LigPlotþ and MM-PBSA analysis with residue Ala134 predicted as critical for binding. Pharmacological profiling predicted three potential lead compounds comprising myricetin, apigenin- 4’ -glucoside and Abyssinone V to possess good pharmacodynamics properties and negligibly toxic. The molecules were predicted as antivirals including anti-herpes and involved in mechanisms comprising inhibition of polymerase, ATPase and membrane integrity, which were corroborated previously in other viruses. These drug-like compounds are plausible biotherapeutic moieties for further biochemical and cell-based assaying to discover their potential for use against chickenpox.Item Molecular Structure-Based Screening of the Constituents of Calotropis procera Identifies Potential Inhibitors of Diabetes Mellitus Target Alpha Glucosidase(MDPI, 2022) Adinortey, C.A.; Kwarko, G.B.; Koranteng, R.; Boison, D.; Obuaba, I.; Wilson, M.D.; Kwofie, S.K.Diabetes mellitus is a disorder characterized by higher levels of blood glucose due to impaired insulin mechanisms. Alpha glucosidase is a critical drug target implicated in the mechanisms of diabetes mellitus and its inhibition controls hyperglycemia. Since the existing standard synthetic drugs have therapeutic limitations, it is imperative to identify new potent inhibitors of natural product origin which may slow carbohydrate digestion and absorption via alpha glucosidase. Since plant extracts from Calotropis procera have been extensively used in the treatment of diabetes mellitus, the present study used molecular docking and dynamics simulation techniques to screen its constituents against the receptor alpha glucosidase. Taraxasterol, syriogenin, isorhamnetin-3-O-robinobioside and calotoxin were identified as potential novel lead compounds with plausible binding energies of -40.2, -35.1, -34.3 and -34.3 kJ/mol against alpha glucosidase, respectively. The residues Trp481, Asp518, Leu677, Leu678 and Leu680 were identified as critical for binding and the compounds were predicted as alpha glucosidase inhibitors. Structurally similar compounds with Tanimoto coefficients greater than 0.7 were reported experimentally to be inhibitors of alpha glucosidase or antidiabetic. The structures of the molecules may serve as templates for the design of novel inhibitors and warrant in vitro assaying to corroborate their antidiabetic potential.