Browsing by Author "Haga, K."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Identification of novel Ghanaian G8P[6] human-bovine reassortant rotavirus strain by next generation sequencing(Public Library of Science, 2014) Dennis, F.E.; Fujii, Y.; Haga, K.; Damanka, S.; Lartey, B.; Agbemabiese, C.A.; Ohta, N.; Armah, G.E.; Katayama, K.Group A rotaviruses (RVAs) are the most important etiological agent of acute gastroenteritis in children <5 years of age worldwide. The monovalent rotavirus vaccine Rotarix was introduced into the national Expanded Programme on Immunization (EPI) in Ghana in May 2012. However, there is a paucity of genetic and phylogenetic data on the complete genomes of human RVAs in circulation pre-vaccine introduction. The common bovine rotavirus VP7 genotype G8 has been sporadically detected in Ghanaian children, usually in combination with the VP4 genotype P[6]. To investigate the genomic constellations and phylogeny of RVA strains in circulation prior to vaccine introduction, the full genomes of two unusual G8P[6] strains, GH018-08 and GH019-08, detected during burden of disease surveillance, were characterized by Illumina MiSeq sequencing. The Ghanaian isolates, GH018-08 and GH019-08, exhibited the unusual, previously unreported genotype constellation G8-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H3. Phylogenetic analyses confirmed that 10 out of the 11 genes of GH018-08 and GH019-08 were identical/nearly identical, with significant variation detected only in their VP1 genes, and clearly established the occurrence of multiple independent interspecies transmission and reassortment events between cocirculating bovine/ovine/caprine rotaviruses and human DS-1-like RVA strains. These findings highlight the contribution of reassortment and interspecies transmission events to the high rotavirus diversity in this region of Africa, and justify the need for simultaneous monitoring of animal and human rotavirus strains.Item Whole Genomic Analysis of Human G12P[6] and G12P[8] Rotavirus Strains that Have Emerged in Myanmar(PLoS ONE, 2015-05) Ide, T.; Komoto, S.; Higo-Moriguchi, K.; Htun, K.W.; Myint, Y.Y.; Myat, T.W.; Thant, Z.K.; Thu, M.H.; Win, M.M.; Naing Oo, H.; Htut, T.; Wakuda, M.; Dennis, E.F.; Haga, K.; Fujii, Y.; Katayama, K.; Rahman, S.; Nguyen, V.S.; Umeda, K.; Oguma, K.; Tsuji, T.; Taniguchi, K.G12 rotaviruses are emerging rotavirus strains causing severe diarrhea in infants and young children worldwide. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed. In this study, we sequenced and characterized the complete genomes of six G12 strains (RVA/Human-tc/MMR/A14/2011/G12P[8], RVA/ Human-tc/MMR/A23/2011/G12P[6], RVA/Human-tc/MMR/A25/2011/G12P[8], RVA/ Human-tc/MMR/P02/2011/G12P[8], RVA/Human-tc/MMR/P39/2011/G12P[8], and RVA/ Human-tc/MMR/P43/2011/G12P[8]) detected in six stool samples from children with acute gastroenteritis in Myanmar. On whole genomic analysis, all six Myanmarese G12 strains were found to have a Wa-like genetic backbone: G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strains A14, A25, P02, P39, and P43, and G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strain A23. Phylogenetic analysis showed that most genes of the six strains examined in this study were genetically related to globally circulating human G1, G3, G9, and G12 strains. Of note is that the NSP4 gene of strain A23 exhibited the closest relationship with the cognate genes of human-like bovine strains as well as human strains, suggesting the occurrence of reassortment between human and bovine strains. Furthermore, strains A14, A25, P02, P39, and P43 were very closely related to one another in all the 11 gene segments, indicating derivation of the five strains from a common origin. On the other hand, strain A23 consistently formed distinct clusters as to all the 11 gene segments, indicating a distinct origin of strain A23 from that of strains A14, A25, P02, P39, and P43. To ourknowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Myanmar. Our observations will provide important insights into the evolutionary dynamics of spreading G12 rotaviruses in Asia.