Yu, H.Mohammed, F.O.Hamid, M.A.Owusu, E.D.A.Yerlikaya, S.Dittrich, S.Jaeger, S.et al.2023-04-212023-04-212023https://doi.org/10.1186/s12936-023-04446-0http://ugspace.ug.edu.gh:8080/handle/123456789/38882Research ArticleBackground Microscopic examination is commonly used for malaria diagnosis in the feld. However, the lack of well-trained microscopists in malaria-endemic areas impacted the most by the disease is a severe problem. Besides, the examination process is time-consuming and prone to human error. Automated diagnostic systems based on machine learning ofer great potential to overcome these problems. This study aims to evaluate Malaria Screener, a smartphone-based application for malaria diagnosis. Methods A total of 190 patients were recruited at two sites in rural areas near Khartoum, Sudan. The Malaria Screener mobile application was deployed to screen Giemsa-stained blood smears. Both expert microscopy and nested PCR were performed to use as reference standards. First, Malaria Screener was evaluated using the two reference standards. Then, during post-study experiments, the evaluation was repeated for a newly developed algorithm, PlasmodiumVF-Net. Results Malaria Screener reached 74.1% (95% CI 63.5–83.0) accuracy in detecting Plasmodium falciparum malaria using expert microscopy as the reference after a threshold calibration. It reached 71.8% (95% CI 61.0–81.0) accuracy when compared with PCR. The achieved accuracies meet the WHO Level 3 requirement for parasite detection. The processing time for each smear varies from 5 to 15 min, depending on the concentration of white blood cells (WBCs). In the post-study experiment, Malaria Screener reached 91.8% (95% CI 83.8–96.6) accuracy when patient-level results were calculated with a diferent method. This accuracy meets the WHO Level 1 requirement for parasite detection. In addition, PlasmodiumVF-Net, a newly developed algorithm, reached 83.1% (95% CI 77.0–88.1) accuracy when compared with expert microscopy and 81.0% (95% CI 74.6–86.3) accuracy when compared with PCR, reaching the WHO Level 2 requirement for detecting both Plasmodium falciparum and Plasmodium vivax malaria, without using the testing sites data for training or calibration. Results reported for both Malaria Screener and PlasmodiumVF-Net used thick smears for diagnosis. In this paper, both systems were not assessed in species identification and parasite counting, which are still under development.enMalaria microscopyComputer-aided diagnosisAutomated screeningMachine learningField testingSmartphone applicationPatient-level performance evaluation of a smartphone-based malaria diagnostic applicationArticle