See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12299155 DL-Arginine monohydrate at 100 K Article  in  Acta Crystallographica Section C Crystal Structure Communications · November 2000 DOI: 10.1107/S0108270100010325 · Source: PubMed CITATIONS READS 12 15 4 authors, including: Professor Robert Kingsford-Adaboh Birger Dittrich University of Ghana Heinrich-Heine-Universität Düsseldorf 41 PUBLICATIONS   119 CITATIONS    265 PUBLICATIONS   4,685 CITATIONS    SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Organic materials for applications in solar cell technologies. View project Crystal and molecular Structures of Natural Products and their Bioactivities View project All content following this page was uploaded by Professor Robert Kingsford-Adaboh on 14 November 2017. The user has requested enhancement of the downloaded file. organic compounds Acta Crystallographica Section C arginine are known: l-arginine dihydrate at room temperature Crystal Structure from both X-ray (Karle & Karle, 1964) and neutron diffraction Communications (Lehmann et al., 1973), and dl-arginine dihydrate (Suresh et ISSN 0108-2701 al., 1994). An ORTEPIII (Burnett & Johnson, 1996) representation of DL-Arginine monohydrate at 100 K the molecular structure of the title compound with the atomic numbering scheme is shown in Fig. 1. The molecule exists as a zwitterion in the crystal structure, the -carboxylic group is Robert Kingsford-Adaboh,a Manja Grosche,b Birger deprotonated and the proton resides in one of the two amino Dittrichc and Peter Lugerc* groups of the mesomeric guanidinium fragment. This arrangement permits the formation of two direct NÐH  O aDepartment of Chemistry, University of Ghana, Accra, Ghana, bAnorganisch- hydrogen bonds (N3ÐH71  O1iii and N4ÐH81  O2iii) (for Chemisches Institut der Technischen UniversitaÈt MuÈnchen, Lichtenbergstrasse 4, 85747 Garching bei MuÈnchen, Germany, and cInstitut fuÈ r Chemie/Kristallographie, numbering and symmetry codes of hydrogen bonds see Freie UniversitaÈt Berlin, Takustrasse 6, 14195 Berlin, Germany Table 2) between the polar guanidinium and carboxylate Correspondence e-mail: luger@chemie.fu-berlin.de groups. This results in a dimeric unit formed by the reference molecule and one generated by the symmetry operation (iii). Received 26 May 2000 Each dimer is further linked to other dimeric units by their Accepted 27 July 2000 polar ends, forming an in®nite chain of molecules of the same In the title compound, C chirality. On the other hand, dimers are interconnected by6H14N4O2H2O, the -amino group is v i neutral. The molecular side chain including the guanidinium N4ÐH82  O1 and C3ÐH4  O2 . Finally, a pair of these ii group is not fully extended, having a near gauche±gauche chains is bonded directly by N2ÐH10  O1 and indirectly via conformation [3 = 59.0 (1); 4 = 72.8 (1)]. The network of water molecules leading to an in®nite three-dimensional hydrogen bonds stabilizing the crystal lattice includes those lattice. formed between the deprotonated and negatively charged - This arrangement permits the formation of two direct NÐ iii carboxylate groups and the positively charged amino groups H  O hydrogen bonds (N3ÐH71  O1 and N4Ð iii of the guanidinium group of neighbouring molecules. NÐ H81  O2 ; see Fig. 2 and Table 2) between these polar H  O C and water-mediated NÐH  O hydrogen bonds groups. Similar hydrogen-bonding schemes have been link individual molecules to produce pairs of spiral motifs observed in l-arginine dihydrate (Karle & Karle, 1964; laterally connected by NÐH  O and CÐH  O hydrogen Lehmann et al., 1973) and dl-arginine dihydrate (Suresh et al., bonds. 1994) which also have a neutral -amino group. This pattern differs from that previously observed for some arginine Comment complexes [l-arginine phosphate monohydrate (Espinosa et al., 1996), dl-arginine formate dihydrate and l-arginine In conjunction with our work of comparative charge-density formate (Suresh et al., 1994), dl-arginine dl-glutamate studies on different amino acids at low temperature by X-ray monohydrate and dl-arginine dl-aspartate (Soman et al., diffraction methods (Flaig et al., 1999), we crystallized dl- 1990)] and crystalline complexes of some peptides [l-arginine arginine monohydrate, (I), whose structure had not yet been investigated. Arginine is one of the 20 naturally occurring amino acids. It is found in large amounts in protamines and histones. High concentrations of free arginine are also found in many plants including red algae, Cucurbitaceae and coni- fers, where it serves as a nitrogen storage and transport form. For this reason, it is found in particularly high concentrations in seedlings and reserve organs like rat liver. Young rats and chickens require the amino acid and show stunted growth when fed arginine-free diets because they cannot synthesize it in adequate amounts (Scott & Brewer, 1983). Various complexes involving arginine have been investi- gated by X-ray and neutron techniques, with the Cambridge Figure 1 The molecular structure and numbering scheme of the title compound. Structural Database (Allen & Kennard, 1993) containing over Displacement ellipsoids are plotted at the 50% probability level 50 entries. Only two crystalline forms involving hydrated free (ORTEPIII; Burnett & Johnson, 1996 and PLATON; Spek, 1990). 1274 # 2000 International Union of Crystallography  Printed in Great Britain ± all rights reserved Acta Cryst. (2000). C56, 1274±1276 organic compounds l-glutamate (Bhat & Vijayan, 1977)] and -helical peptides Experimental (Karle & Balaram, 1990), where the carboxylate group bonds Crystals of (I) were grown by slow diffusion of ethanol into a satu- to the protonated -amino group and not to the guanidinium rated aqueous solution of the amino acid. This yielded crystals group. The former sequence is described as having head-to-tail suitable for the collection of a low-temperature data set. hydrogen bonding (Karle & Balaram, 1990). Unlike l-arginine dihydrate and dl-arginine dihydrate, where the -amino Crystal data group does not contribute to NÐH  O hydrogen bonding, in C6H14N4O2H2O Mo K radiation Mr = 192.23 Cell parameters from 15 774 (I), one of the H atoms of the -amino group is donor to an O Orthorhombic, Pbca re¯ections atom of a solvent water molecule (N1ÐH2  O1Wi). The a = 11.470 (3) AÊ  = 2.54±26.36 Ê ÿ1 observed lack of hydrogen-bond acceptor atoms for H3 of the b = 9.966 (6) A  = 0.111 mm c = 16.023 (1) AÊ T = 100 (2) K -amino group is not surprising. In l-arginine dihydrate V = 1832 (1) AÊ 3 Plate, colourless (Karle & Karle, 1964; Lehmann et al., 1973) and dl-arginine Z = 8 0.60  0.50  0.20 mm ÿ3 dihydrate (Suresh et al., 1994), neither -amino H atom forms Dx = 1.394 Mg m a hydrogen bond. Another difference between (I) and the Data collection dihydrates is the hydrogen-bonding environment around the Nonius KappaCCD area-detector 1870 independent re¯ections guanidinium atom N2. Here, the NÐH  N interactions diffractometer 1862 re¯ections with I > 2(I) involving these atoms in l-arginine dihydrate and dl-arginine ! and ' scans Rint = 0.032 Absorption correction: empirical max = 26.36  dihydrate (Lehmann et al., 1973; Suresh et al., 1994) are (SORTAV; Blessing, 1995) h = ÿ14! 14 replaced by NÐH  O hydrogen bonding: N2ÐH10  O1i. Tmin = 0.936, Tmax = 0.978 k = ÿ12! 12 41 487 measured re¯ections l = ÿ20! 20 Re®nement Re®nement on F 2 w = 1/[2(F 2o ) + (0.0335P) 2 R[F 2 > 2(F 2)] = 0.034 + 1.2913P] wR(F 2) = 0.080 where P = (F 2o + 2F 2 c )/3 S = 1.121 (/)max = 0.001 1870 re¯ections  = 0.33 e AÊ ÿ3max 172 parameters min = ÿ0.20 e AÊ ÿ3 H atoms treated by a mixture of independent and constrained re®nement Table 1 Selected geometric parameters (AÊ , ). O1ÐC1 1.2666 (14) N4ÐC6 1.3339 (15) O2ÐC1 1.2622 (15) C1ÐC2 1.5427 (16) N1ÐC2 1.4683 (16) C2ÐC3 1.5369 (16) N2ÐC6 1.3333 (15) C3ÐC4 1.5305 (16) N2ÐC5 1.4672 (16) C4ÐC5 1.5331 (16) Figure 2 C6ÐN2ÐC5 123.90 (10) C4ÐC3ÐC2 114.06 (10) Packing illustration (SCHAKAL97; Keller, 1997) of the title compound. O2ÐC1ÐO1 124.37 (11) C3ÐC4ÐC5 112.34 (10) O2ÐC1ÐC2 116.21 (10) N2ÐC5ÐC4 113.37 (10) This substitution of an NÐH  O in lieu of an NÐH  N O1ÐC1ÐC2 119.40 (10) N2ÐC6ÐN4 121.53 (11) N1ÐC2ÐC3 111.05 (10) N2ÐC6ÐN3 119.54 (11) hydrogen bond seems to have a conformational signi®cance N1ÐC2ÐC1 114.09 (10) N4ÐC6ÐN3 118.94 (11) for the title compound. The backbone in dl-arginine mono- C3ÐC2ÐC1 107.52 (9) hydrate shows a less extended conformation than its close analogues cited in the discussion. The carbon chain C1±C5 is in a fully extended conformation, which holds also for the Table 2 Ê  molecule in the dl-arginine dihydrate structure, but not for Hydrogen-bonding geometry (A, ). the l-dihydrate. However, the torsion angles (IUPAC±IUB,  DÐH  A DÐH H  A D  A DÐH  A1970) C3ÐC4ÐC5ÐN2 [3 = 59.0 (1) ] and C4ÐC5ÐN2Ð C6 [4 = 72.8 (1)] on the other hand describe a more bent N1ÐH2  O1W i 0.92 (2) 2.31 (2) 3.216 (2) 167 (2) N2ÐH10  O1ii 0.87 (2) 2.02 (2) 2.828 (2) 155 (2) conformation in the nitrogen-rich region. This results in a near N3ÐH71  O1iii 0.90 (2) 2.04 (2) 2.939 (2) 176 (2) iv gauche±gauche conformation. This is different from the trans± N3ÐH72  O1W 0.84 (2) 2.07 (2) 2.896 (2) 169 (2) N4ÐH81  O2iii 0.92 (2) 1.91 (2) 2.830 (2) 174 (2) trans and trans-perpendicular conformation observed for the N4ÐH82  O1v 0.87 (2) 2.25 (2) 3.050 (2) 152 (2) l-arginine dihydrate and dl-arginine dihydrate. The under- O1WÐH1W  O2 0.87 (2) 2.04 (2) 2.911 (2) 175 (2) O1WÐH2W  N1iilying factor for this less extended backbone conformation in 0.92 (2) 1.90 (2) 2.806 (2) 169 (2) C3ÐH4  O2i 1.02 (2) 2.36 (2) 3.344 (2) 164 (1) the title compound might be the N2ÐH10  O1ii hydrogen Symmetry code: (i) 12ÿ x; 1‡ y; z; (ii) 1‡ x; 32 2 2ÿ y; 1ÿ z; (iii) 12ÿ x; 1ÿ y; zÿ 1bond shown by the title compound. ÿ ÿ ÿ ÿ ÿ 2 ; (iv) 1 x; 1 y; 1 z; (v) x; 32 y; z 1 2. Acta Cryst. (2000). C56, 1274±1276 Robert Kingsford-Adaboh et al.  C6H14N4O2H2O 1275 organic compounds Table 3 (Project Lu 222/21) is fully acknowledged. We also wish to Selected torsion angles () of dl-arginine monohydrate, l-arginine thank the Fonds der Chemischen Industrie in Germany for dihydrate and dl-arginine dihydrate. supporting this work. dl-Arg l-Arg dl-Arg monohydrate dihydrate dihydrate Supplementary data for this paper are available from the IUCr electronic O2ÐC1ÐC2ÐN1 166.33 (10) archives (Reference: BM1417). Services for accessing these data are O1ÐC1ÐC2ÐN1 '1 ÿ15.37 (15) ÿ13.0 (2) ÿ11.5 (3) described at the back of the journal. O2ÐC1ÐC2ÐC3 ÿ70.05 (13) O1ÐC1ÐC2ÐC3 108.25 (12) N1ÐC2ÐC3ÐC4 1 ÿ58.47 (13) 63.9 (2) ÿ54.1 (3) C1ÐC2ÐC3ÐC4 176.08 (10) References C2ÐC3ÐC4ÐC5 2 ÿ178.02 (10) 150.5 (2) ÿ179.8 (2) Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31±37. C6ÐN2ÐC5ÐC4 4 72.81 (14) 163.2 (2) ÿ92.2 (3) ÿ Bhat, T. N. & Vijayan, M. (1977). Acta Cryst. B33, 1754±1759.C3ÐC4ÐC5ÐN2 3 59.02 (13) 175.1 (2) 163.0 (2) C5ÐN2ÐC6ÐN4 5 ÿ Blessing, R. H. (1995). Acta Cryst. A51, 33±38.4.86 (17) 10.1 (2) 7.4 (4) Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-5138. Oak C5ÐN2ÐC6ÐN3 ÿ175.13 (10) Ridge National Laboratory, Tennessee, USA. Espinosa, E., Lecomte, C., Molins, E., Veintemillas, S., Cousson, A. & Paulus, W. (1996). Acta Cryst. B52, 519±534. Flaig, R., Koritsanszky, T., Janczak, J., Krane, H.-G., Morgenroth, W. & Luger, All H atoms were found in the difference Fourier maps. Five types P. (1999). Angew. Chem. Int. Ed. Engl. 38, 1397±1400. Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. of H atoms were re®ned freely with a common isotropic displacement IUPAC±IUB Commission on Biochemical Nomenclature (1970). J. Mol. Biol. parameter for each. 52, 1. Data collection: COLLECT (Hooft, 1998); cell re®nement: Karle, I. L. & Balaram, P. (1990). Biochemistry, 29, 6747±6756. DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and Karle, I. L. & Karle, J. (1964). Acta Cryst. 17, 835±841. Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany. SORTAV (Blessing, 1995); program(s) used to solve structure: Lehmann, M. S., Verbist, J. J., Hamilton, W. C. & Koetzle, T. F. (1973). J. Chem. SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: Soc. Perkin Trans. 2, pp. 133±137. SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII Otwinowski, M. & Minor, W. (1997). Methods Enzymol. 276, 307±326. (Burnett & Johnson, 1996) and SCHAKAL (Keller, 1997); software Scott, T. & Brewer, M. (1983). Concise Encyclopedia of Biochemistry, English used to prepare material for publication: SHELXL97 and PLATON Edition, p. 38. Berlin: Walter de Gruyter and Co. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of (Spek, 1990). GoÈ ttingen, Germany. Soman, J., Vijayan, M., Ramankrishnan, B. & Row, T. N. G. (1990). RK-A thanks the Alexander von Humboldt Foundation for Biopolymers, 29, 533±542. Spek, A. L. (1990). Acta Cryst. A46, C-34. having supported a research stay in Germany. The ®nancial Suresh, S., Padmanabhan, S. & Vijayan, M. (1994). J. Biomol. Struct. Dyn. 11, support from the Deutsche Forschungsgemeinschaft (DFG) 1425±1435. 1276 Robert Kingsford-Adaboh et al.  C6H14N4O2H2O Acta Cryst. (2000). C56, 1274±1276 supporting information supporting information Acta Cryst. (2000). C56, 1274-1276 [doi:10.1107/S0108270100010325] DL-Arginine monohydrate at 100 K Robert Kingsford-Adaboh, Manja Grosche, Birger Dittrich and Peter Luger Computing details Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and SCHAKAL (Keller, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1990). DL-2-amino-5-guanidovaleric acid Crystal data C6H14N4O2·H2O Dx = 1.394 Mg m−3 Mr = 192.23 Melting point: 230 K Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2ab Cell parameters from 15774 reflections a = 11.470 (3) Å θ = 2.5–26.4° b = 9.966 (6) Å µ = 0.11 mm−1 c = 16.023 (1) Å T = 100 K V = 1832 (1) Å3 Plate, colourless Z = 8 0.60 × 0.50 × 0.20 mm F(000) = 832 Data collection Nonius kappaCCD area detector 41487 measured reflections diffractometer 1870 independent reflections Radiation source: rotating anode 1862 reflections with I > 2σ(I) Graphite monochromator Rint = 0.032 ω and φ scans θmax = 26.4°, θmin = 2.5° Absorption correction: empirical (using h = −14→14 intensity measurements) k = −12→12 (SORTAV; Blessing, 1995) l = −20→20 Tmin = 0.936, Tmax = 0.978 Refinement Refinement on F2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods R[F2 > 2σ(F2)] = 0.034 Secondary atom site location: difference Fourier wR(F2) = 0.080 map S = 1.12 Hydrogen site location: inferred from 1870 reflections neighbouring sites 172 parameters H atoms treated by a mixture of independent 0 restraints and constrained refinement Acta Cryst. (2000). C56, 1274-1276 sup-1 supporting information w = 1/[σ2(F 2o ) + (0.0335P)2 + 1.2913P] Δρmax = 0.33 e Å−3 where P = (F 2 + 2F 2)/3 Δρ = −0.20 e Å−3o c min (Δ/σ)max = 0.001 Special details Experimental. An Oxford Cryosystems low temperature device was used. Reciprocal space was explored by ω and φ- scans. No intensity decay was observed. All non-hydrogen atoms were refined anisotropically. Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) x y z Uiso*/Ueq O1 0.09635 (7) 0.64767 (8) 0.62401 (5) 0.0146 (2) O2 0.18322 (8) 0.49433 (8) 0.54327 (5) 0.0169 (2) N1 0.00031 (9) 0.77965 (11) 0.48646 (6) 0.0164 (2) H2 0.0240 (15) 0.8350 (17) 0.5293 (11) 0.026 (3)* H3 −0.0658 (15) 0.7393 (18) 0.5006 (11) 0.026 (3)* N2 0.38611 (8) 0.76189 (10) 0.30292 (6) 0.0126 (2) H10 0.4497 (14) 0.7655 (16) 0.3321 (10) 0.022 (4)* N3 0.46176 (9) 0.57487 (10) 0.23697 (7) 0.0143 (2) H71 0.4476 (14) 0.5069 (16) 0.2017 (10) 0.023 (2)* H72 0.5031 (15) 0.5588 (16) 0.2792 (10) 0.023 (2)* N4 0.29681 (9) 0.67581 (11) 0.18398 (6) 0.0149 (2) H81 0.3010 (14) 0.6160 (17) 0.1403 (10) 0.023 (2)* H82 0.2491 (14) 0.7433 (17) 0.1808 (10) 0.023 (2)* C1 0.12472 (9) 0.60032 (12) 0.55352 (7) 0.0117 (2) C2 0.09004 (10) 0.67665 (12) 0.47352 (7) 0.0132 (2) H1 0.0572 (12) 0.6089 (15) 0.4331 (9) 0.015 (3)* C3 0.20162 (10) 0.73814 (12) 0.43668 (7) 0.0132 (2) H4 0.2333 (13) 0.8049 (15) 0.4789 (9) 0.0171 (15)* H5 0.2587 (13) 0.6624 (15) 0.4304 (9) 0.0171 (15)* C4 0.18335 (10) 0.80988 (12) 0.35324 (8) 0.0151 (3) H6 0.1299 (13) 0.8854 (16) 0.3610 (9) 0.0171 (15)* H7 0.1454 (13) 0.7508 (16) 0.3150 (9) 0.0171 (15)* C5 0.29742 (10) 0.86543 (12) 0.31729 (7) 0.0140 (2) H8 0.2832 (12) 0.9146 (15) 0.2655 (9) 0.0171 (15)* H9 0.3331 (13) 0.9287 (15) 0.3577 (9) 0.0171 (15)* C6 0.38086 (10) 0.67190 (11) 0.24145 (7) 0.0115 (2) O1W 0.41679 (8) 0.51029 (10) 0.61367 (6) 0.0209 (2) H1W 0.3454 (19) 0.506 (2) 0.5954 (12) 0.046 (4)* H2W 0.4469 (17) 0.584 (2) 0.5869 (12) 0.046 (4)* Acta Cryst. (2000). C56, 1274-1276 sup-2 supporting information Atomic displacement parameters (Å2) U11 U22 U33 U12 U13 U23 O1 0.0160 (4) 0.0147 (4) 0.0129 (4) 0.0021 (3) 0.0019 (3) 0.0005 (3) O2 0.0199 (4) 0.0149 (4) 0.0158 (4) 0.0056 (3) 0.0025 (3) 0.0014 (3) N1 0.0129 (5) 0.0199 (6) 0.0165 (5) 0.0043 (4) 0.0025 (4) 0.0043 (4) N2 0.0099 (5) 0.0154 (5) 0.0126 (5) −0.0012 (4) −0.0010 (4) −0.0020 (4) N3 0.0154 (5) 0.0149 (5) 0.0125 (5) 0.0014 (4) −0.0019 (4) −0.0004 (4) N4 0.0159 (5) 0.0144 (5) 0.0145 (5) 0.0022 (4) −0.0034 (4) −0.0024 (4) C1 0.0087 (5) 0.0130 (5) 0.0134 (5) −0.0015 (4) 0.0009 (4) 0.0014 (4) C2 0.0124 (5) 0.0148 (6) 0.0123 (5) 0.0010 (5) 0.0004 (4) 0.0003 (4) C3 0.0118 (5) 0.0144 (5) 0.0135 (6) 0.0004 (5) 0.0005 (4) 0.0007 (5) C4 0.0129 (6) 0.0174 (6) 0.0149 (6) 0.0018 (5) 0.0015 (5) 0.0028 (5) C5 0.0159 (6) 0.0123 (5) 0.0140 (6) −0.0001 (4) 0.0020 (5) 0.0000 (5) C6 0.0107 (5) 0.0126 (5) 0.0111 (5) −0.0039 (4) 0.0025 (4) 0.0023 (4) O1W 0.0179 (5) 0.0225 (5) 0.0223 (5) −0.0050 (4) −0.0035 (4) 0.0087 (4) Geometric parameters (Å, º) O1—C1 1.2666 (14) C1—C2 1.5427 (16) O2—C1 1.2622 (15) C2—C3 1.5369 (16) N1—C2 1.4683 (16) C2—H1 1.009 (15) N1—H2 0.922 (18) C3—C4 1.5305 (16) N1—H3 0.888 (18) C3—H4 1.016 (15) N2—C6 1.3333 (15) C3—H5 1.005 (15) N2—C5 1.4672 (16) C4—C5 1.5331 (16) N2—H10 0.867 (16) C4—H6 0.978 (15) N3—C6 1.3422 (16) C4—H7 0.955 (16) N3—H71 0.898 (17) C5—H8 0.977 (15) N3—H72 0.842 (17) C5—H9 0.992 (15) N4—C6 1.3339 (15) O1W—H1W 0.87 (2) N4—H81 0.920 (17) O1W—H2W 0.92 (2) N4—H82 0.868 (17) C2—N1—H2 108.5 (10) C4—C3—H4 109.0 (8) C2—N1—H3 108.6 (11) C2—C3—H4 107.7 (8) H2—N1—H3 109.4 (15) C4—C3—H5 110.7 (8) C6—N2—C5 123.90 (10) C2—C3—H5 106.4 (8) C6—N2—H10 117.7 (11) H4—C3—H5 108.9 (11) C5—N2—H10 118.0 (11) C3—C4—C5 112.34 (10) C6—N3—H71 116.9 (10) C3—C4—H6 109.5 (9) C6—N3—H72 118.9 (11) C5—C4—H6 107.7 (9) H71—N3—H72 117.7 (15) C3—C4—H7 109.6 (9) C6—N4—H81 117.9 (10) C5—C4—H7 111.8 (9) C6—N4—H82 121.2 (10) H6—C4—H7 105.6 (12) H81—N4—H82 119.4 (14) N2—C5—C4 113.37 (10) O2—C1—O1 124.37 (11) N2—C5—H8 109.6 (8) O2—C1—C2 116.21 (10) C4—C5—H8 111.0 (8) Acta Cryst. (2000). C56, 1274-1276 sup-3 supporting information O1—C1—C2 119.40 (10) N2—C5—H9 105.3 (9) N1—C2—C3 111.05 (10) C4—C5—H9 109.6 (9) N1—C2—C1 114.09 (10) H8—C5—H9 107.7 (12) C3—C2—C1 107.52 (9) N2—C6—N4 121.53 (11) N1—C2—H1 107.3 (8) N2—C6—N3 119.54 (11) C3—C2—H1 109.3 (8) N4—C6—N3 118.94 (11) C1—C2—H1 107.5 (8) H1W—O1W—H2W 103.6 (17) C4—C3—C2 114.06 (10) Hydrogen-bond geometry (Å, º) D—H···A D—H H···A D···A D—H···A N1—H2···O1Wi 0.92 (2) 2.31 (2) 3.216 (2) 167 (2) N2—H10···O1ii 0.87 (2) 2.02 (2) 2.828 (2) 155 (2) N3—H71···O1iii 0.90 (2) 2.04 (2) 2.939 (2) 176 (2) N3—H72···O1Wiv 0.84 (2) 2.07 (2) 2.896 (2) 169 (2) N4—H81···O2iii 0.92 (2) 1.91 (2) 2.830 (2) 174 (2) N4—H82···O1v 0.87 (2) 2.25 (2) 3.050 (2) 152 (2) O1W—H1W···O2 0.87 (2) 2.04 (2) 2.911 (2) 175 (2) O1W—H2W···N1ii 0.92 (2) 1.90 (2) 2.806 (2) 169 (2) C3—H4···O2i 1.02 (2) 2.36 (2) 3.344 (2) 164 (1) Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, −y+3/2, −z+1; (iii) −x+1/2, −y+1, z−1/2; (iv) −x+1, −y+1, −z+1; (v) x, −y+3/2, z−1/2. Acta Cryst. (2000). C56, 1274-1276 sup-4 View publication stats