Department of Physiology

Permanent URI for this collectionhttp://197.255.125.131:4000/handle/123456789/23061

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Correlation of lipid peroxidation and nitric oxide metabolites, trace elements, and antioxidant enzymes in patients with sickle cell disease
    (Journal of Clinical Laboratory Analysis, 2020-02-17) Antwi-Boasiako, C.; Dankwah, G.B.; Aryee, R.; Hayfron-Benjamin, C.; Aboagye, G.; Campbell, A.D.
    Background: Lipid peroxidation plays a very important role in sickle cell pathophysiology. The formation of malondialdehyde (MDA) in patients with sickle cell disease (SCD) may lead to endothelial dysfunction. Nitric oxide (NO) is a known vasodilator which plays a role in endothelial function. The current study determined the association between MDA and NO metabolites (NOx), trace elements, and antioxidant enzymes (SOD and CAT) in patients with SCD. The ratio of MDA/NOx was also determined as an index of oxidative stress in the study groups. Methods: This was a cross-sectional study involving 90 patients with SCD and 50 “healthy” controls. Blood samples (n = 140) were collected from the study groups. The plasma, sera, and red cells were kept at −20°C for biochemical analyses. Hemoglobin (Hb) and NOx levels were determined in the plasma using Labsystem Multiskan MS and Griess reagent system, respectively. Super oxide dismutase (SOD) and catalase (CAT) levels were determined in the red cells using assay kits from Cayman chemicals. Lipid peroxidation biomarker MDA was determined in the sera using the TBARS assay. Levels of iron (Fe), copper (Cu), and zinc (Zn) were also determined in the sera using Variant 240FS. MDA and NOx ratio was computed for the study groups and compared. Results: Levels of Hb, NOx, SOD, CAT, and Zn were significantly lower in the patients with SCD (P < .001). MDA, Fe, and MDA/ NOx ratio were, however, significantly higher in the patients with SCD (P < .001). There was no significant correlation between MDA and NOx, SOD, CAT, Fe, and Zn in the study groups. MDA, however, correlated positively and significantly with Cu in the HbSS patients with vaso-occlusive crises (VOC). Gender did not affect the levels of oxidative stress markers. Conclusions: Findings from this study suggest a link between lipid peroxidation and Cu in HbSS patients with VOC. Increased MDA/NOx ratio may contribute to sickle cell pathophysiology by promoting oxidative stress
  • Thumbnail Image
    Item
    Nitric oxide dysregulation in the pathogenesis of preeclampsia among Ghanaian women
    (Dove Press Journal: Integrated Blood Pressure Control, 2015-02-19) Adu-Bonsaffoh, K.; Antwi, D.A.; Amenyi, S.O.; Gyan, B.
    Background: Preeclampsia (PE) is still a disease of theories as the exact cause remains uncertain. Widespread vascular endothelial cell dysfunction is thought to mediate the generalized vasospasm and hypertension characteristic of PE. Altered nitric oxide (NO) production has been associated with the endothelial dysfunction in the pathogenesis of PE but conflicting results have emerged from previous studies. Objectives: To determine maternal serum levels of NO, a biomarker of endothelial function, in nonpregnant, normal pregnant, and preeclamptic women. Materials and methods: This was a cross-sectional case–control study of 277 women comprising 75 nonpregnant, 102 normal pregnant, and 100 preeclamptic women conducted at the Korle Bu Teaching Hospital between April and June 2011. About 5 mL of venous blood was obtained from the participants for the various investigations after meeting the inclusion criteria and signing to a written consent. Serum levels of NO were determined by Griess reaction. The data obtained were analyzed with SPSS version 20. Results: The study showed significantly elevated serum levels of NO in preeclamptic women (82.45±50.31 μM) compared with normal pregnant (33.12±17.81 μM) and nonpregnant (16.92±11.41 μM) women with P,0.001. The alteration in maternal serum NO levels was significantly more profound in early-onset (severe) PE (119.63±45.860 μM) compared to that of late-onset (mild) disease (62.44±40.44 μM) with P0.001, indicating a more severe vascular endothelial cell dysfunction in the early-onset disease. Conclusion: This study has determined a profound NO upregulation in PE evidenced by significant elevation of NO metabolite levels compared to normal pregnancy. This might be due to deranged endothelial function with dysregulated production of NO to restore the persistent hypertension characteristic of PE.