Browsing by Author "Ekloh, W."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The Ethnopharmacological and Nutraceutical Relevance of Launaea taraxacifolia (Willd.) Amin ex C. Jeffrey(Evidence-based Complementary and Alternative Medicine, 2018-07) Adinortey, M.B.; Sarfo, J.K.; Kwarteng, J.; Adinortey, C.A.; Ekloh, W.; Kuatsienu, L.E.; Nyarko, K.A.Launaea taraxacifolia (Willd.) Amin ex C. Jeffrey is a herb found mostly in tropical Africa. The plant, commonly found in West Africa, is used in the management of many diseases including cardiovascular, respiratory, haematological, endocrine, and metabolic diseases in Ghana, Nigeria, Benin, Serra Leone, and Senegal. This piece provides comprehensive and updated information on the traditional uses, phytochemical constituents, and pharmacological and toxicological information available on Launaea taraxacifolia to support its medicinal uses and also unearth knowledge gaps for future studies. An electronic literature search using search engines, namely, Google Scholar, ScienceDirect, and PubMed, was carried out to obtain information on the plant. Both common and scientific names of the plant were used as keywords for the search process. This paper captured information on Launaea taraxacifolia from 1985 to 2018. The search revealed that the leaves of the plant possess nutritional/pharmacological effects on diseases such as diabetes mellitus, hypertension, cancer, malaria, bacterial infections, and arthritis. The leaf has been shown to be a rich source of phytoconstituents such as flavonoids, phenolic acids, tannins, alkaloids, glycosides, coumarins, triterpenoids, ascorbic acid, lycopene, and β-carotene. Also, isolated phytoconstituents as well as the safety profile of the plant have been documented. This review on Launaea taraxacifolia has provided a one-stop documentation of information in support of the several purported ethnopharmacological uses of the plant. It also reveals information gaps such as the need to research into its pharmacokinetics, interactions with drugs of importance, and its development into a plant-based drug in order to expand its clinical use.Item Phytomedicines Used for Diabetes Mellitus in Ghana: A Systematic Search and Review of Preclinical and Clinical Evidence(Evidence-based Complementary and Alternative Medicine, 2019-04) Adinortey, M.B.; Agbeko, R.; Boison, D.; Ekloh, W.; Kuatsienu, L.E.; Biney, E.E.; Affum, O.O.; Kwarteng, J.; Nyarko, A.K.; Carvalho, J.C.T.Background . Available data indicate that diabetes mellitus leads to elevated cost of healthcare. This imposes a huge economic burden on households, societies, and nations. As a result many Ghanaians, especially rural folks, resort to the use of phytomedicine, which is relatively less expensive. This paper aims at obtaining information on plants used in Ghana to treat diabetes mellitus, gather and present evidence-based data available to support their uses and their mechanisms of action, and identify areas for future research. Method . A catalogue of published textbooks, monographs, theses, and peer-reviewed articles of plants used in Ghanaian traditional medicine between 1987 and July 2018 for managing diabetes mellitus was obtained and used. Results . The review identified 76 plant species belonging to 45 families that are used to manage diabetes mellitus. Leaves were the part of the plants frequently used for most preparation (63.8%) and were mostly used as decoctions. Majority of the plants belonged to the Euphorbiaceae, Lamiaceae, Asteraceae, and Apocynaceae families. Pharmacological data were available on 23 species that have undergone in vitro studies. Forty species have been studied using in vivo animal models. Only twelve plants and their bioactive compounds were found with data on both preclinical and clinical studies. The records further indicate that medicinal plants showing antidiabetic effects did so via biochemical mechanisms such as restitution of pancreatic β -cell function, improvement in insulin sensitivity by receptors, stimulating rate of insulin secretion, inhibition of liver gluconeogenesis, enhanced glucose absorption, and inhibition of G-6-Pase, α -amylase, and α -glucosidase activities. Conclusion . This review contains information on medicinal plants used to manage diabetes mellitus, including their pharmacological properties and mechanisms of action as well as models used to investigate them. It also provides gaps that can form the basis for further investigations and development into useful medications for effective treatment of diabetes mellitus.