Browsing by Author "Aisen, P.S."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative(Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2018-08) Li, D.; Iddi, S.; Thompson, W.K.; Rafii, M.S.; Aisen, P.S.; Donohue, M.C.; Alzheimer's Disease Neuroimaging InitiativeIntroduction We characterize long-term disease dynamics from cognitively healthy to dementia using data from the Alzheimer's Disease Neuroimaging Initiative. Methods We apply a latent time joint mixed-effects model to 16 cognitive, functional, biomarker, and imaging outcomes in Alzheimer's Disease Neuroimaging Initiative. Markov chain Monte Carlo methods are used for estimation and inference. Results We find good concordance between latent time and diagnosis. Change in amyloid positron emission tomography shows a moderate correlation with change in cerebrospinal fluid tau (ρ = 0.310) and phosphorylated tau (ρ = 0.294) and weaker correlation with amyloid-β 42 (ρ = 0.176). In comparison to amyloid positron emission tomography, change in volumetric magnetic resonance imaging summaries is more strongly correlated with cognitive measures (e.g., ρ = 0.731 for ventricles and Alzheimer's Disease Assessment Scale). The average disease trends are consistent with the amyloid cascade hypothesis. Discussion The latent time joint mixed-effects model can (1) uncover long-term disease trends; (2) estimate the sequence of pathological abnormalities; and (3) provide subject-specific prognostic estimates of the time until onset of symptoms.Item Estimating the Evolution of Disease in the Parkinson’s Progression Markers Initiative(Neurodegenerative Diseases, 2018-08) Iddi, S.; Li, D.; Aisen, P.S.; Rafii, M.S.; Litvan, I.; Thompson, W.K.; Donohue, M.C.Parkinson's disease is the second most common neurological disease and affects about 1% of persons over the age of 60 years. Due to the lack of approved surrogate markers, confirmation of the disease still requires postmortem examination. Identifying and validating biomarkers are essential steps toward improving clinical diagnosis and accelerating the search for therapeutic drugs to ameliorate disease symptoms. Until recently, statistical analysis of multicohort longitudinal studies of neurodegenerative diseases has usually been restricted to a single analysis per outcome with simple comparisons between diagnostic groups. However, an important methodological consideration is to allow the modeling framework to handle multiple outcomes simultaneously and consider the transitions between diagnostic groups. This enables researchers to monitor multiple trajectories, correctly account for the correlation among biomarkers, and assess how these associations may jointly change over the long-term course of disease. In this study, we apply a latent time joint mixed-effects model to study biomarker progression and disease dynamics in the Parkinson's Progression Markers Initiative (PPMI) and examine which markers might be most informative in the earliest phases of disease. The results reveal that, even though diagnostic category was not included in the model, it seems to accurately reflect the temporal ordering of the disease state consistent with diagnosis categorization at baseline. In addition, results indicated that the specific binding ratio on striatum and the total Unified Parkinson's Disease Rating Scale (UPDRS) show high discriminability between disease stages. An extended latent time joint mixed-effects model with heterogeneous latent time variance also showed improvement in model fit in a simulation study and when applied to real data.Item Predicting the course of Alzheimer’s progression(SpringerOpen, 2019-06-17) Iddi, S.; Li, D.; Aisen, P.S.; Rafii, M.S.; Thompson, W.K.; Donohue, M.C.Alzheimer’s disease is the most common neurodegenerative disease and is characterized by the accumulation of amyloid-beta peptides leading to the formation of plaques and tau protein tangles in brain. These neuropathological features precede cognitive impairment and Alzheimer’s dementia by many years. To better understand and predict the course of disease from early-stage asymptomatic to late-stage dementia, it is critical to study the patterns of progression of multiple markers. In particular, we aim to predict the likely future course of progression for individuals given only a single observation of their markers. Improved individual-level prediction may lead to improved clinical care and clinical trials. We propose a two-stage approach to modeling and predicting measures of cognition, function, brain imaging, fluid biomarkers, and diagnosis of individuals using multiple domains simultaneously. In the first stage, joint (or multivariate) mixed-effects models are used to simultaneously model multiple markers over time. In the second stage, random forests are used to predict categorical diagnoses (cognitively normal, mild cognitive impairment, or dementia) from predictions of continuous markers based on the first-stage model. The combination of the two models allows one to leverage their key strengths in order to obtain improved accuracy. We characterize the predictive accuracy of this two-stage approach using data from the Alzheimer’s Disease Neuroimaging Initiative. The two-stage approach using a single joint mixed-effects model for all continuous outcomes yields better diagnostic classification accuracy compared to using separate univariate mixed-effects models for each of the continuous outcomes. Overall prediction accuracy above 80% was achieved over a period of 2.5 years. The results further indicate that overall accuracy is improved when markers from multiple assessment domains, such as cognition, function, and brain imaging, are used in the prediction algorithm as compared to the use of markers from a single domain only.Item The relative efficiency of time-to-progression and continuous measures of cognition in presymptomatic Alzheimer’s disease(Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2019-07-18) Iddi, S.; Li, D.; Aisen, P.S.; Thompson, W.K.; Donohue, M.C.Introduction: Clinical trials on preclinical Alzheimer’s disease are challenging because of the slow rate of disease progression.We use a simulation study to demonstrate that models of repeated cognitive assessments detect treatment effects more efficiently than models of time to progression. Methods: Multivariate continuous data are simulated from a Bayesian joint mixed-effects model fit to data from the Alzheimer’s Disease Neuroimaging Initiative. Simulated progression events are algorithmically derived from the continuous assessments using a random forest model fit to the same data. Results: We find that power is approximately doubled with models of repeated continuous outcomes compared with the time-to-progression analysis. The simulations also demonstrate that a plausible informative missing data pattern can induce a bias that inflates treatment effects, yet 5% type I error is maintained. Discussion: Given the relative inefficiency of time to progression, it should be avoided as a primary analysis approach in clinical trials of preclinical Alzheimer’s disease.