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ABSTRACT

The Akosombo hydroelectric dam accounts for over a third of the electricity generation

in Ghana. The amount of electricity produced depends on the amount of water in the

dam. Therefore, studying the tail behaviour of the dam’s water level is crucial given

the country’s rising demand for energy and the strain that this increased demand

places on the dam. For engineers and coastal development planners, determining the

likelihood that the water level of the Akosombo dam may rise due to heavy rains is

crucial as it can lead to flooding. In this study, Extreme Value Theory was to model

the tail behaviour of the water levels of the Akosombo dam. Truncation which is

introduced naturally by the height of the dam was incorporated. The possibility of

exceeding high-water levels that could cause flooding and its effects, as well as their

associated return periods were also estimated. An evaluation of the dam water level

data’s domain of attraction served as the study’s starting point. The data were fitted

using the Generalized Extreme Value distribution (GEV) and the Generalized Pareto

distribution (GPD). To account for potential truncation at very high-water levels,

the Right-Truncated Peaks-Over-Threshold (RT-POT) Distribution was fitted to the

data. The parameters of the GEV and GPD distributions were estimated using the

Maximum Likelihood (ML) and Bayesian estimation methods. The parameters of the

RT POT distribution were also estimated using the Maximum Likelihood (ML) and

Hill estimation methods. The results show that Akosombo dam water level data tail

distribution has a negative shape parameter (γ < 0), which places it in the Weibull

domain of attraction. Both estimation methods yielded remarkably similar estimates.

Several exceedance probabilities for various levels of the dam are also estimated. The

results show that it is not conceivable for the dam’s water level to rise over its 278-foot

maximum operating water level. Therefore, it is very unlikely for the water level to

rise above the crest of the dam under the prevailing operating conditions.
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1

Chapter 1

Introduction

This thesis seeks to revisit the application of extreme value theory in the management

of a hydroelectric dam. Extreme Value Theory is a branch of statistics concerned

with the extreme deviations from the median of probability distributions. A dam is a

large infrastructure built on a river or stream to impound water to form a reservoir.

This reservoir can be used to control flooding, generate electricity, provide water for

irrigation, etc.

This chapter is organized into five core sections. The first section provides a

comprehensive background. The second section describes hydroelectric dams and

how they operate, as well as electricity generation in Ghana. Subsequent sections

describe the problem, along with suitable justifications, research significance, scope

and contributions of the study and conclude with the source of data.

1.1 Background and Problem Statement

Extreme Value Theory (EVT) has over the past five decades developed into one of

the most essential statistical tools applied in disciplines such as meteorology, finance,

insurance and geology.

Minkah (2016) defines EVT as "a branch of statistics that examines the extreme

deviations from the median of probability distributions". Conventional statistical

analysis techniques heavily make use of measures of central tendency (i.e. mean,

mode and median). However, these measures are unable to comprehensively describe

the tail behaviours of extreme observations, which is vital in modelling the extremal

behaviour of observed rare events such as floods, and earthquakes, among others.
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Chapter 1. Introduction 2

Hence, EVT is needed to study the likelihood of rare events in a given sample of a

random variable.

A practical example of the use of EVT is the study of river levels over periods.

Here, our interest is mainly in the levels that are either too high or too low. Too high

levels could lead to flooding, while too low levels could lead to the dry-out of the river.

Similarly, EVT can be used in the management of a hydroelectric dam. Too much

water could lead to flooding of neighbouring towns. On the other hand, too low water

levels could lead to the water drying out. Hence in both situations, management must

be able to track and control the water levels in other to ensure the smooth run of the

dam.

Extreme events are rare and often accompanied by many unforeseen outcomes.

This has instigated the rising need to model the occurrence of these extreme events.

Many methods of estimation using extreme quantiles and corresponding return periods

have emerged over the years to model the occurrence of these extreme events.

1.1.1 Electricity Generation in Ghana

Electricity serves as the cornerstone for many modern societies. It is generated by

natural gas, coal, and nuclear energy. Other renewable sources of electricity include

hydropower, biomass, wind, geothermal, and solar power. Most developing countries

depend heavily on hydropower.

Hydroelectric dams have been one of the highly distinguished renewable methods

of electricity generation for decades. Ghana’s Akosombo dam prides itself on providing

32.14% of the country’s electricity (Energy Commission, 2016). The dam is equipped

with six 170 megawatts (230,000 hp) turbines, producing 1,020 megawatts. It is a

colossal and strong rock-filled embankment dam, built on the Volta River, which

routes its course from northern Ghana right through to the south. The dam was built

in such a way that flooded parts of the Volta River formed a lake ( i.e. Volta lake)

behind the dam.

After claiming independence, Dr. Kwame Nkrumah embarked on several industrial

projects. This heavy industrialization phase of Ghana required a constant electricity

supply. Paramount among these industries was the aluminium industry. In 1962, the
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government of Ghana decided to use the Akosombo gorge to construct a hydroelectric

dam to serve Ghana and its neighbouring countries with electricity.

Although the construction of the dam had many advantages, it must be stated

that it had several drawbacks, many of which the project did not envisage. The river

that had served the communities along its banks for years was going to become a

threat to their existence. Worldwide estimates show that about 80 million people are

displaced by dam projects (IDMC, 2017). Ghana is no exception. Although environ-

mentally benign, the development of the Akosombo dam caused Development-induced

displacement and resettlement (DIDR), which lead to the inundation of 15,000 homes

and 740 villages and the resettlement of 80,000 people, along with their livelihoods

(Mettle, 2011). However, the dam had other good prospects. The dam improved

fishing, river transportation, farming activities and drinking water. Thus, alleviating

poverty and fostering sustainable development. Due to such displacements, regular

evaluations must be made on the water levels in the Akosombo dam to control spillage

from the dam.

Displacements, along with other issues such as drying out of the dam are growing

concerns of many authors. Minkah (2016) demonstrated using EVT that, increasing

the capacity of the dam would increase the maximum operating water level. Thus,

increasing the average time period between floods. Ocran et al. (2017) also fitted

the generalized extreme value (GEV) distribution to estimate the bounds (upper and

lower) of the water levels in the Akosombo dam. They also computed the exceedance

probabilities for some very low, or very high water levels. Their results indicated that

the water level of the Akosombo dam cannot go above the maximum operating water

level (i.e. 278 feet). In addition, they demonstrated that the probability of the dam

reaching its minimum water level is rare.

How dams Operate

A dam is made up of two sides (the inlet and the outlet). Between these two sides is a

continuous flow of water which is significantly above sea level. There are two streams

of water located at the head (upstream) which contains the headwater and the tail

(downstream) which contains the tailwater of the dam. The dam serves as a reservoir

for storing river water. To generate electricity, water from the reservoir flows through
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turbines, rotating their blades. Water is released depending on electricity demand.

The movement of the blades converts potential energy into mechanical energy, which

electrical generators use to produce electricity.

1.1.2 Truncation

Truncation in data occurs when observations below and/or above a specific threshold

are not included in the data. Probability tails are sometimes bounded naturally, such

as in the cases of the Maximum Possible Loss in insurance treaties and the Probable

Maximum Precipitation (PMP) in meteorology. For other instances of truncation

occurring naturally, see Aban et al. (2006). In our case, the crest of the dam serves as

a natural truncation point. The truncated generalized Pareto distribution (TGPD)

is a probability distribution that is often used to model the behaviour of extreme

values (e.g., maximum or minimum values) in a dataset. It is a generalization of the

Pareto distribution, which is commonly used to model the distribution of income or

wealth. The TGPD is characterized by three parameters: the shape parameter, the

scale parameter, and the lower truncation point. The shape parameter determines the

shape of the distribution, the scale parameter determines the scale of the distribution,

and the lower truncation point determines the minimum value that the distribution

can take on.

In terms of applications, the truncated generalized Pareto distribution has been

used in a variety of contexts, including insurance, finance, and hydrology. For example,

it has been used to model the distribution of flood magnitudes, wind speeds, and other

environmental variables. It has also been used in finance, where it has been applied

to model the distribution of extreme stock returns and other financial variables.

There are several extensions of the TGPD, including the truncated double gener-

alized Pareto distribution (TDGPD) and the truncated generalized extreme value dis-

tribution (TGEV). These extensions have been used to model more complex datasets

and to provide a better fit to data with multiple modes or skewness.

There are several limitations to the use of the Truncated Generalized Pareto Dis-

tribution. One limitation is the assumption of independence between the data points

and the assumption of a single mode in the distribution. These assumptions may not
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always hold in real-world datasets, which can impact the accuracy of the model. An-

other challenge in using the TGPD is dealing with censored data, where the value of

some observations is unknown. This can occur, for example, when the maximum value

that can be observed is capped at a certain level. In these cases, special techniques

must be used to estimate the parameters of the TGPD. In addition, the TGPD may

be sensitive to the choice of parameters, and the estimates of these parameters may be

subject to uncertainty. Finally, the TGPD may not accurately model the distribution

of extreme values in certain types of datasets, and other distributions may be more

appropriate in certain cases.

1.1.3 Research Problem and Justification

Due to the lack of substantial data concerning extreme events, classical statistical

techniques are not appropriate, and hence, EVT which focuses on the tails of under-

lying distributions comes in handy. In Ghana, there have been a number of floods

arising from the spillage of water from the Akosombo dam and a shortage of electricity

due to low water levels. Many of these could be predicted using EVT. In addition,

the failures of some of the world’s largest dams such as the Oroville, Sanford and

Edenville dams instigate the need to study the performance of the Akosombo dam,

using techniques that take truncation at high levels into consideration.

Several authors have attempted to model the water level of the Akosombo dam. How-

ever, none considered the truncation introduced naturally by the dam level. The

recorded data may be truncated naturally because it is constrained within a specific

range set by the maximum levels of the dam. If the dam has a maximum capacity, the

collected data will only include observations within that capacity. Any measurements

exceeding the maximum level will not be included in the data. The study aims to ap-

ply extreme value theory for better management of a hydroelectric dam, with a focus

on estimating the maximum water level that could cause overflow of the Akosombo

dam, along with other parameters of interest.
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1.2 Research Objectives

In summary, the main objective of the study in its broadest terms is to provide a

model that would describe the extreme elevation of the Akosombo dam, taking into

account truncation. Specifically, this study seeks to:

i Compare the proposed model to existing distributions (i.e. GEV and GPD distri-

butions)

ii Estimate high quantiles (truncated and underlying non-truncated), exceedance

probabilities and return periods.

1.3 Significance

Earlier research on the Akosombo dam considered the maximum and minimum wa-

ter levels required for the smooth functioning of the dam. However, no research has

considered water levels in the reservoir that would rise above the dam’s crest, breach-

ing the integrity of the dam. This research aims to determine the water levels that

would overflow the parapet walls of the dam. Consequently, this overflow would cause

overtopping of the dam, causing dam failure and massive erosion downstream.

1.4 Scope and Contributions of the Study

This project responds to the need of Ghanaian researchers that have embarked on

studies on the elevation level of the Volta lake of the Akosombo dam for management

and socio-economic purposes, yet lacked the time and resources to look into alternative

perspectives on the issue. The proposed models will enrich literature, as well as

the management of the dam with deeper knowledge on how to ensure the dam runs

smoothly.

1.5 Data Source

Data for the study comprises of water levels of the Akosombo dam, between the

periods January 1965 and December 2013.
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Chapter 2

Literature Review

This chapter is tailored towards a brief review of extreme value theory and an intuitive

discussion of its application to the management of a hydroelectric dam. The surges

in economic growth in many countries have drastically increased electricity demand.

This increase is particularly observed in developing countries like Ghana. Among

the many renewable methods of electricity generation, hydroelectric power is mostly

used in developing countries. Ghana’s Akosombo dam provides electricity for the

country and trades its surplus to neighbouring countries. The smooth functions of

dams necessitate the need for management and independent researchers to investigate

possible extreme events.

2.1 Extreme Value Theory

To extrapolate tail distributions and subsequently estimate extreme quantiles, extreme

value analysis (EVA) offers many plausible statistical concepts (Blanchet et al., 2020).

Extreme value theory antedates the Swiss Mathematician Nicolaus I Bernoulli’s work

in the eighteenth century. Bernoulli studied the mean maximum distance from the

origin of a normal distribution in an attempt to estimate the lifetime of the last

survivor among a number of men (Kotz & Nadarajah, 2000).

Two distinct but complementary works by Von Bortkiewicz (1922) appear to have

sparked a vigorous advancement of the EVT. These studies broadened Bernoulli’s

work on determining the expected value of the maximum of a set of variables with

independent but identical distributions by estimating the range and the ordered ab-

solute errors. Von Bortkiewicz (1922) established the concept of greatest values from

a normal distribution in his article.
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Von Mises (1923) and Dodd (1923) extended the results of Von Bortkiewicz (1922)

by assessing the expected value and median of the said distribution respectively. Ad-

ditionally, they diligently acquired numerous legitimately asymptotic results.

The technique sparked the interest of many astronomers since they needed a method

to decide whether or not to dismiss extreme values.

Fisher and Tippett (1928) are considered to be the pioneers of EVT by identifying all

possible extreme value distributions(i.e. Gumbel, Fretchet and Weibull distributions).

However, Gnedenko (1943) is credited for formerly unifying the types of theorems

proposed by Fisher and Tippett (1928). The three distributions are jointly referred

to as the ”extreme value distribution”.

Frank (1954) studied EVA, establishing the Von Mises conditions on the hazard rate

to produce situations under which extreme value analysis behaviour can be observed

(Kotz & Nadarajah, 2000).

The EVT paradigm was mainly conceptual, until the 1950s. Gumbel (1958) used

theories established by Gnedenko to model the extremal behaviour of real physical

phenomena. The Fisher–Tippett–Gnedenko theorem(EVT), popularly known as the

first theorem in extreme value theory considered a full range of data. Works by

Balkema and De Haan (1974) developed existing theories into the second theory in

extreme value theory. The Pickands–Balkema–De Haan theorem focuses on data

values that exceed a certain threshold, instead of the full range of observations used

in the first theorem.

Another significant contribution to the development of EVA is Haan’s paper in 1970,

on “Regular Variation and its Application to the Weak Convergence of Sample Ex-

tremes” (Beirlant et al., 2004). Extreme value analysis is widespread in many dis-

ciplines including economics (Nolde & Zhou, 2021), environmental science (Smith,

1989), and in engineering (Castillo, 2012) among others. Several methods of appli-

cation and theoretical developments have been introduced since then, some of which

will be discussed.

Smith (1989) used extreme value analysis for environmental studies of the ozone layer.

Nolde and Zhou (2021) applied the theories of EVT in the evaluation of risk in finance.

In the field of energy generation, there have been profound applications of EVT. In

the areas of rainfall and temperature in Ghana, Nkrumah (2017) modelled the tail
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distributions of temperature and rainfall in Ghana based on the Generalized Pareto

distribution. In the management of a hydroelectric dam, Minkah (2016) applied ex-

treme value models based on the generalized Pareto (GP) distribution to show that

an expansion of the Akosombo dam can reduce the frequency of floods happening.

Similarly, Ocran et al. (2017) also fitted the generalized extreme value (GEV) distri-

bution to model the monthly maximum and minimum water levels of the Akosombo

dam.

2.1.1 Fields of Applications of EVT (Hydrology)

In hydrology, extreme value theory is often used to analyze extreme precipitation,

floods, and droughts, and to estimate the likelihood of their occurrence. Here are

some specific examples of how extreme value theory has been applied in hydrology:

• Flood frequency analysis: Extreme value theory is used to estimate the frequency

and magnitude of extreme floods, which are defined as floods that have a very

low probability of occurring. This information is used to design and assess the

reliability of flood protection structures, such as levees and dams. Leščešen and

Dolinaj (2019) used the Annual Maximum Series (AMS), a prominent example

of the block maxima approach of the extreme value theorem, to provide more

accurate flood forecasts for the design and upgrade of flood defence structures

in the Pannonian Basin.

• Drought assessment: Extreme value theory provides tools for assessing the prob-

ability and return period of droughts, which are defined as periods of low pre-

cipitation or low streamflow. This information can be used to plan for water

resources management during drought conditions. Skakun et al. (2014) utilized

the Poisson-GP (Generalized Pareto) model to estimate and plot return periods

for various categories of drought severity. With the help of this model, they

were able to map the drought risk using a time series of vegetation health index

(VHI) data that was gathered from National Oceanic and Atmospheric Admin-

istration (NOAA) satellites. Furthermore, EVT is used to design and size water

resources infrastructure such as reservoirs, to ensure they can withstand extreme

precipitation events.
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• Hydrological risk assessment: In the context of hydrological risk assessment,

EVT can estimate the likelihood of extreme hydrological events, such as flash

floods, landslides, and debris flows, and assess the potential consequences of

these events. This can help in identifying high-risk areas and in developing

mitigation and management strategies. By analyzing historical data on flood

or drought events, EVT can estimate the parameters of the probability distri-

butions that govern these events and use these parameters to make predictions

about the likelihood of extreme events in the future. Researchers have used

EVT to estimate the probability of extreme floods and to analyze the spatial

and temporal variability of flood risk. For example, Vitanov et al. (n.d.) used

EVT to analyze the probability of severe floods in the Mississippi River in the

United States and to estimate the likelihood of future floods in these areas. It’s

important to note that it’s often useful to combine EVT with other approaches

such as Time Series Analysis, downscaling climate models, etc. In the context of

flood forecasting and warning systems, EVT can be used to improve probabilis-

tic flood forecasting, this can be of great use in flash flood warning systems, and

it can also help set the warning thresholds and criteria. Furthermore, a plethora

of hydraulic infrastructures, such as dams and levees, are designed using the

Extreme Value Theory. The theory allows for the estimation of the extreme

loads that the structure may be subjected to and the design of the structure

accordingly.

• Climate change: Extreme value theory can be used to analyze and project

changes in the frequency and amplitude of severe hydrological events in response

to climate change This can inform the adaptation strategies for infrastructure

and communities and the design of resilience strategy. Also, in regional and

global analysis, extreme value theory is used to study the regional distribution

of extremes and to detect spatial patterns of the variability of extreme events

across a region, thus allowing the understanding of the relationship between cli-

mate, land use, and the occurrence of extreme events. EVT has also been used

to analyze the potential impacts of climate change on other types of extreme

events, such as heat waves and storms. For example, Dosio et al. (2018) used
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EVT to estimate the probability of extreme heat events under future climate

scenarios and to analyze the potential changes in the frequency and intensity of

heat waves. Studies such as MacAfee and Wong (2007) have also used EVT to

analyze the potential impacts of climate change on the frequency and intensity

of storms, such as hurricanes and typhoons.

These examples illustrate the wide range of applications of extreme value theory in

hydrology and how it can inform water resources management and decision-making

process. EVT is a helpful tool for managing water resources since it may be used to

determine how likely uncommon phenomena are to occur and to evaluate their possible

effects. While EVT is good at modelling the extremes it is important to note that

EVT alone might not be able to capture all the complexities and factors that might

affect hydrological events, so it’s often useful to combine it with other techniques and

approaches to get a more comprehensive understanding.

2.1.2 Applications in Other Fields

In general, EVT can be applied to any field where data on rare events is available and

where the analysis of extreme events can provide valuable insights or information.

Financial risk management: In the context of financial risk management, EVT is

used to estimate the likelihood and potential impact of rare but severe events, such as

stock market crashes or extreme changes in interest rates, and to analyze the risk of

portfolio losses. This information can be used by financial institutions and investors

to make better-informed decisions about managing risk and allocating capital. Addi-

tionally, EVT techniques can be used to create more precise versions of well-known

risk indicators like Value-at-Risk (VaR) and Expected Shortfall (ES), which are fre-

quently employed in financial risk management. EVT can be used to estimate the tail

of the probability distribution, which is the extreme events, with this information it

can be used to estimate risk measures like VaR, CVA and stress testing. Several stud-

ies have used extreme value theory to estimate the probabilities of significant losses in

financial markets and to evaluate the performance of risk management strategies. A

paper by Demirer et al. (2019) demonstrated using EVT that high levels of political

uncertainty do not necessarily cause extreme stock market outcomes, but low levels of

University of Ghana http://ugspace.ug.edu.gh 



Chapter 2. Literature Review 12

political uncertainty are more likely to result in extreme positive stock market returns

than high levels of political uncertainty are to result in extreme negative stock market

returns.

Engineering and infrastructure: Extreme value theory has been applied in liter-

ature to design and assess the reliability of structures and infrastructure, such as

bridges, dams, and offshore platforms, that are subjected to extreme loads. The au-

thors of Li and Jones (2019) proposed an EVT model for forecasting substation MD

(maximum demand) by utilizing the stability and explanatory power of three com-

mon energy factors. The model is flexible enough to adapt to changes in a network

configuration as long as they are included in the explanatory variables.

Insurance: A lot of studies have used extreme value theory to model extreme

claims, such as those resulting from natural disasters, and to set premiums for in-

surance policies. The application of the theory aims for a better understanding of

the risk and mitigation strategy. Muela et al. (2017) studied the use of conditional

extreme value theory (CEVT) to estimate price and liquidity risk and found it to be

more effective than standard methods, specifically in the estimation of Value-at-Risk

(VaR).

Environmental Science: Extreme value theory has been used to examine the ef-

fects of infrequent occurrences like wildfires, earthquakes, hurricanes, and heat waves

in order to improve management and decision-making with the goal of minimizing the

impact on the environment. Beirlant et al. (2017) utilized EVT’s modelling capabil-

ities to simulate the distribution of seismic event magnitudes in the Groningen gas

field.

Sports Science: EVT is used to study the extreme performance of athletes and

teams in various sports. Vicente (2012) applied concepts of EVT to demonstrate that

a 100-meter runner can speed up in the current conditions and possibly lower Usain

Bolt’s current record by under 9 seconds. Also, Spearing et al. (2019) modelled the

swim times of elite swimmers using the concept of EVT.
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2.2 Truncation of Dams

As explained in the previous chapter, truncation in data occurs when observations

below and/or above a specific threshold are not included in the data. Truncation lev-

els are usually considered rare levels in the field of hydrology and hydroelectric power

generation. They require immediate attention to curb any unprecedented damaging

events. Dam failures can be caused by a variety of factors, but the most prevalent in-

clude overtopping, internal erosion, and instability. When there is not enough spillway

capacity to drain surplus water during severe floods, overtopping occurs (Lewin et al.,

2003). As a result, the water level of the dam’s reservoir would incessantly increase,

climbing above the parpet walls of the dam’s crest. Without the intervention of harsh

emergency measures, the dam would be eventually overtopped, leading to imminent

damage and failure.

Spillways are generally considered to be the most expensive components of dams due

to their high operations and regular maintenance costs. Albeit spillways go through

extensive inspections and maintenance, they are susceptible to a variety of damages.

History is littered with many cases of dam failures. Dam failures owing to faulty

spillways have occurred at the Oroville, Edenville, and Sanford dams, to name a few.

2.2.1 The failure of the Oroville dam

The Oroville dam is a massive zone earth-filled dam built in 1968, with an impressive

height of 770 feet (235 metres). Its main functions were to manage flood flows, generate

hydroelectric power, and serve as a water reservoir for Northern California’s roughly 20

million residents. In the case of a flood, the dam regulates water flow into the Feather

river basin. The water impounded by the dam formed Oroville lake, which is by far the

second largest in the United States. The dam has two spillways, a primary spillway

and an emergency spillway. Its main spillway has an estimated release capacity of

300,000 cubic feet (8,000 cubic meters) of water per second (Koskinas et al., 2019).

The emergency spillway overflows whenever the water level of the reservoir gets above

the maximum operating level, consequently preventing the crest of the dam from

overtopping. Even with such an astronomical spillway design and capacity, the dam

encountered a rather bizarre moment in early 2017. Extreme weather conditions
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compound poor or incomplete spillway designs, resulting in considerable damage in

most situations (Bhattarai et al., 2016). That was the rare case of the Oroville dam.

On the stormy February 7, 2017, the reservoir began to rise above the optimal oper-

ating level. Excessive inflows were released by opening spillway gates. Unfortunately,

the chutes connecting the spillway gates to the Feather river basin got compromised

halfway. Operators of the dam were faced with a tough decision on whether or not to

allow small flows of water over the damaged concrete chutes, taking into considera-

tion a possible overflow of the dam. Small flows were released into the main spillways,

which eventually moved entire parts of the concrete chute and walls downstream.

Lake Oroville’s surface level continued to rise, eventually surpassing and overflow-

ing the emergency spillway crest. Dam operators fully opened the main spillway gates

to severely reduce the dam’s surface elevation level, risking complete destruction of

the spillway, in order to prevent the dam from completely overflowing. Fortunately,

the dam’s spillways were able to quickly release extra water, preventing the dam from

overflowing and failing.

2.2.2 The Failure of the Edenville and Sanford Dams

The Edenville dam was a large earthen embankment dam built in 1924, in Michigan,

United States. It impounded water from the Tittabawassee River and the Tobacco

River to form Wixom Lake. Its primary purpose was to generate hydroelectric power

and control flooding in Midland County. It is connected to the Sanford dam down-

stream, which impounds water to form Sanford lake. Following several dam failures

and the inability of the dam to pass Probable Maximum Flood (PMF), the dam’s

operational license was revoked in 2018. PMF is the maximum amount of flooding

that might be expected.

The days that ushered the dams’ failure were somewhat rainy and stormy. Fore-

casts had predicted heavy rains for May 18th, 2020. As predicted, the rains came

in and with it a heavy storm. The deluge eventually increased the level of water in

Wixom lake, which drew the attention of the dam’s operator. All spillway gates were

opened to let out excess floodwaters downstream. However, the level of the water in

the lake continued to rise regardless.
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Over the next few days, the situation worsened, with the dam’s water level reaching

its highest level ever recorded, causing significant erosion along the dam’s east spillway.

The eastern side of the dam suffered extensive erosion as the water level surged to

barely a foot from the dam’s crest. The dam was breached as a result of the erosion,

and water began to flow through it. In a matter of hours, the entire Wixon Lake was

drained through the opening.

The water downstream, forming Sanford lake, increased uncontrollably as the

Wixon lake drained away. The water level in the Sanford dam eventually surged

above the crest, overtopping the dam and causing it to fail. The failures of the two

dams resulted in a deluge that wiped out the cities surrounding the dams. Over

10,000 people were inundated before the deluge destroyed over 2500 structures worth

thousands of dollars.

2.3 Truncation of Probability Distributions

A truncated distribution is a probability distribution that is restricted to a certain

range or interval. It is obtained by removing all the probability mass outside of this

range and re-normalizing the remaining probability mass so that it adds up to 1.

Truncated distributions are often used in statistical modelling and inference when the

data is known to be confined to a certain range, or when certain values are not allowed.

For example, a truncated exponential distribution is an exponential distribution with

a limited range, such as between two certain values.

Rare incidents such as in Section (2.2), draw attention to the possibility of trun-

cation of probability distributions, such as in Pareto tail modelling.

Aban et al. (2006) obtained the conditional estimator based on Maximum Like-

lihood Estimation to show that for ordered statistics from an independent and iden-

tically distributed sample, the M.L.E derived can be used for Pareto tail modelling.

It expands the estimator proposed by Hill (1975), which was used for Pareto-type

modelling. Aban et al. (2006)’s estimator covered the case of the Truncated Pareto

distribution.

Three decades after Hill’s proposed estimator, Nuyts (2010) derived a modification of

Hill’s estimator by trimming the estimator to make it more robust against outliers.
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2.3.1 Commonly Used Truncated Probability Distributions

The exponential family of distributions is a widely used set of both discrete and

continuous distributions. They possess very good statistical properties, making them

ideal for model fitting.

2.3.1.1 Truncated Exponential Distribution

The truncated exponential distribution is a version of the exponential distribution

that is limited to a specific range of values. It is used to simulate scenarios in which

the relevant variable cannot have values below a predetermined threshold or above a

predetermined maximum. The PDF of the truncated exponential distribution is:

”f(x) = (1/λ) ∗ e(−y/λ) for y in [α, β], ” (2.1)

Where y is the variable of interest, λ is the rate parameter, and α and β are

the lower and upper bounds of the truncated range, respectively. The cumulative

distribution function (CDF) can be found by integrating the PDF from α to y. The

mean and variance of the truncated exponential distribution are different from the

non-truncated distribution and can be found by using the CDF and PDF functions.

2.3.1.2 The Truncated Generalized Poisson distribution

The Truncated Generalized Poisson (TGP) distribution is a probability distribution

that is a generalization of the Poisson distribution and is often used in modelling

count data.It is frequently used for modelling count data that has a lower bound of

zero, but an upper bound that is not known. The TGP distribution is defined by

two parameters: the mean, which is the same as in the Poisson distribution, and

the dispersion parameter, which controls the spread of the distribution. The TGP

distribution is often used in applications such as modelling insurance claims, customer

arrivals, and financial transactions.

2.3.1.3 Truncated Generalized Pareto Distribution (TGPD)

A truncated GPD is a statistical model that is used to describe the tail behaviour

of a distribution. The TGPD is a variant of the GPD, which is frequently used to
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model extreme values in data sets. The difference between the two is that the GPD

is defined over the complete real line, while the TGPD is defined only over a certain

range of values, beyond a certain threshold.

The estimation of the parameters of the TGPD is usually done using the maximum

likelihood method. Recent literature has focused on developing new methods for

estimating the parameters of the TGPD, such as Bayesian methods, and also on

comparing the performance of the TGPD with other models for extreme values, such

as the GPD.In the Bayesian paradigm of estimation, Verster et al. (2012) fitted a

TGPD to the tail of a diamond data, in order to predict high quantiles.

The mean and variance of the truncated GPD are different from the non-truncated

distribution and can be found by using the CDF and PDF functions. We must remark

that the truncated GPD is only defined for shape parameter γ > 0.

2.4 Applications of TGPD

The Truncated GPD is a statistical model that is commonly used to model extreme

values and is widely used in fields such as finance, insurance, engineering and reliability

analysis. New research focuses on the estimation of the parameters of the TGPD,

developing new methods and comparing performance with other models. Conventional

EVT models do not inculcate the possibility of truncation at very high or very low

levels. Thus, becomes a limitation when modelling data with very high or low levels.

Ma et al. (2021) used the Peaks-Over-Threshold, Block Maxima, and Right-

Truncated POT Distribution to predict the earthquake frequency and return earth-

quake periods in several Chinese zones. According to their findings, the right-truncated

POT model was the best statistical model. In the field of telecommunication, Cou-

turier and Victoria-Feser (2010) modelled the audience data of a Swiss radio station

using the zero-inflated truncated Generalized Pareto distribution and showed that the

proposed model accurately represents the non-zero observations. The model can also

be applied to data in other fields such as hydrology. In application to hydrology,

Minkah (2016) and Ocran et al. (2017) modelled the Akosombo dam data under con-

ventional EVT models, without accounting for possible truncation. This work seeks

to bridge that gap in the literature.
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Chapter 3

Extreme Value Theory

In this chapter, we consider the various methods to be used in our analysis. In Extreme

Value Theory literature, researchers fit either parametric, semi-parametric or non-

parametric models for the Generalized Extreme Value Distribution or the Generalized

Pareto Distribution.

3.1 Limiting Distribution of Maxima

The statistical theory of extreme values seeks to predict future extremes by analyzing

current extremes (Gumbel, 1958). Extreme Value theory dates back to the 1920s with

Fisher and Tippett (1928), who are known to have identified all the possible extreme

value distributions. Their theorem is regarded as one of the cornerstones of EVT. It

stated that for properly centred and scaled partial maxima, the Gumbel, Fréchet and

Weibull distributions exhausted all possible limits.

Consider an unknown distribution function F of a random variable for a given

sample (X1, X2, X3, ...Xn), we can examine the probability of events that are more

extreme than any observed earlier. Let Mn be the partial maxima (i.e. either maxi-

mum or minimum), then

Mn = max(X1, X2, X3, · · · , Xn) (3.1)

We emphasize that although the focus of this study is on modelling the behaviour

of sample maxima, outcomes for sample minima may be accessed through:

Mn = min(X1, X2, X3, · · · , Xn) = −max(−X1,−X2,−X3, · · · ,−Xn) (3.2)
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Intuitively, as n → ∞ for some distributions, Mn would converge to the upper end-

point of F , mathematically defined as xF = sup{x ∈ ℜ : F (x) < 1}.

The partial maxima, Mn, is bounded by the probability distribution:

P (Mn ≤ x) = P (X1 ≤ x, · · · , Xn ≤ x) = P (X1 ≤ x) ∗ · · · ∗ P (Xn ≤ x) = {F (x)}n

(3.3)

where;

{F (x)}n =


1 x ≥ xF ,

0 x < xF .

(3.4)

Classical estimation leads to F . Heuristically, since {F (x)}n is a probability distribu-

tion depending on F , the error probability would surge as n → ∞. This affects the

robustness of Mn. In addition, it can be observed in Equation (3.4) that {F (x)}n is a

degenerate function, which is not ideal for statistical analysis. Thus, there is a search

for a family of distributions to characterise {F (x)}n, rather than F .

A normalization idea similar to the Central Limit Theorem (CLT) is used to address

this.

3.2 Approaches of Extreme Value Theory

There are two fundamental approaches in extreme value theory, based on two different

theorems. Based on the works of Fisher and Tippett (1928) and Gnedenko (1943), the

first theory of EVT was developed. The theory assumes data to be generated in full

range. Here, the full data is divided into long blocks of equal sizes, and the maximum

in each block is studied (Gumbel, 1958). Selected observations follow the Generalised

Extreme Value Distribution.

Conversely, the second theory was developed by Balkema and De Haan (1974) and

Pickands III (1975). Here, observations in data are only used when it crosses a specific

deterministic threshold, bringing forth the Peaks-Over Threshold (POT) approach.

Selected observations follow the Generalised Pareto Distribution.
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3.3 Fisher-Tippett Theorem

Theorem 1: Considering a sequence of i.i.d. random variables, X1, X2, X3, · · · , Xnwith

E(Xi) = µ, V ar(Xi) = σ2 and σ2 ∈ +ℜ. Then,

lim
n→∞

∑n
i=1Xi − nµ√

nσ

d→ Z ∼ N (0, 1) (3.5)

Applying the concept in Equation (3.5) above, we can normalize Mn with normalizing

constants, an and bn, where an > 0 and bn ∈ R.

M∗
n =

Mn − bn
an

(3.6)

Thus, the distribution F is approximated as:

lim
n→∞

(M∗
n) (3.7)

Let F (x) = Pr(X ≤ x), Gnedenko (1943) formalised the theory above into the ex-

treme value distribution, stated as:

lim
n→∞

P = lim
n→∞

F (an + bnx)
n =

(
max(X1, · · · , Xn)− bn

an
≤ x

)
= G(x) (3.8)

where G(x) converges in distribution to either one of the following;

Ψ : G(x) = exp
{
−exp

[
−
(
x− b

a

)]}
,−∞ < x < ∞;

Φ : G(x) =


0 x ≤ b,

exp
{
−
(
x−b
a

)−α
}
, x > b;

Ω : G(x) =


exp

{
−
[
−
(
x−b
a

)α]}
x < b,

1, x ≥ b.
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We must remark that a > 0, b and for families Φ and Ω, α > o. The three families

of distribution above are jointly classified as the extreme value distributions, with

type Ψ, Φ and Ω representing the Gumbel, Fréchet and Weibull family of distributions

respectively. .

Fisher and Tippett (1928) demonstrated that a non-degenerate distribution func-

tion would converge in distribution to one of the extreme value distributions. How-

ever, they established no conditions for convergence. Von Mises (1923) and Gumbel

(1958) are credited for establishing convergence conditions for the limiting distribu-

tions. Convergence was based on the Extreme Value Index (EVI), also known as the

shape parameter.

Although the Extreme Value Distribution exhausted all possible limit laws, it was

extremely difficult to work with. Complicated methods had to be applied to select

a domain of attraction to fit the data. Jenkinson (1955) introduced the Generalised

Extreme Value distribution, to serve as a single family for the three families of dis-

tributions. Here, we fit a model to the data and the data informs us of the most

appropriate domain of attraction. Under some appropriate stationarity and regular-

ity conditions, the G.E.V distribution governs the behaviour of block maxima. Here,

blocks can represent months, weeks or years.

3.3.1 The Block Maxima Approach

Block maxima samples are fitted to the Generalized Extreme Value distribution using

this method. The Block maxima (or minima) approach partitions a sample of size n

into a specified number of non-overlapping blocks B. These blocks usually represent

time periods, usually years. However, they may be used to represent other character-

istics, such as speed, strength and weakness (Vicente, 2012). Let B1, B2, · · · , Bn be a

set of blocks, where ⋃
·

n∈R
Bn and B1 |= B2, · · · |= Bn

Attention is restricted to the maximum of each block, which is used to fit the GEV

distribution. This distribution is based on the first theory of Extreme Value Theory.

Although this method has excellent asymptotic features, it is well known to waste data

because only the maximum in each block is used for model fitting. In order to balance
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the bias-variance connection, careful consideration must be given to the selection of

block lengths. Large block lengths might have fewer sample maxima, which would

increase variation and decrease bias. It also applies in reverse. It is a three-parameter

model characterised by the following distribution.

G(x) =


(
1 + γ(x−µ

σ )
)−1/γ if γ ̸= 0

e−(x−µ)/σ if γ = 0

(3.9)

with γ, µ and σ representing the shape, location, and scale parameters of the distribu-

tion function respectively. It should be noted that µ > 0, 1 + γ(x− µ)/σ > 0, γ ∈ R

and µ ∈ R. The parameter γ, referred to as the Extreme Value Index determines the

nature of the tail distribution.

Domains of Attraction

The Frechet domain (γ > 0) has an infinite endpoint. The Gumbel domain (γ = 0)

has a more steep infinite endpoint. The Weibull domain (γ < 0) is short-tailed, with

an infinite right endpoint (Coles et al., 2001).

3.3.2 Statistical Choice for GEV models

In fields where the focus is on extremely rare events, model selection is crucial. The

test on γ is of primordial importance in establishing the domain of attraction of a

distribution (Minkah, 2016). Here, we consider the following hypotheses.

For γ ̸= 0. Where γ < 0 or γ > 0

H0 : γ = 0 against H1 : γ ̸= 0 (3.10)

However, we can utilize the following hypotheses if our goal is to study the condition

where γ < 0.

H0 : γ = 0 against H1 : γ < 0 (3.11)

The Gumbel test and LRT would be utilized in selecting the most appropriate

domain of attraction to fit the data.
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3.3.2.1 The Gumbel Test

Consider a random variable Υ = Υ1,Υ2, · · · ,Υn. Let Γ = Γ1, Γ2, · · · , Γm represent

the number of exceedances over a specified threshold ϑ, obtained from Υ. Then, the

Gumbel Statistic is obtained as:

GSt =
max(Γ)

median(Γ)
=

Γm:m

Γ[m/2]+1:m
(3.12)

Consider GSt∗ which is the Gumbel statistic under equation (3.10) as:

GSt∗ =
GSt−Bm

am

d−−−−→
m→∞

φ

where

Bm =
ln(m) + ln(ln (2))

ln(ln(m))− ln(ln(2))

For test (3.11), given an significance level α, (H0) is rejected if GSt∗ ≤ Gα. P-values

for the test can be derived using the relation below:

p(GSt∗) = φ(GSt∗)

3.3.2.2 Likelihood Ratio Test (LRT)

The generalized extreme-value distribution has a relatively heavier upper tail when γ

< 0. It is crucial to discern between these two conditions when characterizing natural

occurrences since the cataclysmic events of a certain intensity may be projected to

occur more frequently often if γ < 0 than if γ = 0. The LRT can be used to test the

validity of the Gumbel model and other GEV models. The LRT in the GEV context

is a ratio of the Gumbel distribution to the Generalized Extreme Value Distribution.

Consider the likelihood function ℓ(γ, µ, σµ) of the GEV.

ℓ(θ) =


ℓ(0, µ, σµ|Γ1, · · · , Γm) for Gumbel

ℓ(γ, µ, σµ|Γ1, · · · , Γm) for GEV
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The likelihood ratio test statistic is obtained as:

LRT = −2(ℓ(Gumbel)− ℓ(GEV)).

Hence under H0:

LRT
d−−−−→

m→∞
χ2
(1).

However, Hosking (1984) suggested using Bartlett’s correction to the χ2 approxima-

tion in order to increase the accuracy of estimation. The improved statistic is as

follows:

L∗ =
L

1 + 2.8
m

d−−−−→
m→∞

χ2
(1) (3.13)

At a significance level, α, H0 in equation (3.11) is rejected if:

L∗ ≥ χ2
1,1−α (3.14)

P-value for the test is computed using: p(L∗) = 1− χ2
(1)(L

∗)

3.3.3 Estimation Under Generalized Extreme Value Distribution

We can proceed with estimations from the brief description of the GEV distribution

in (3.9). Literature is cluttered with many methods of estimation using the GEV

distribution. Prominent among them are the Maximum Likelihood (ML), Probability

Weighted Moments (PWM), L-Moments and Bayesian methods. The EVI (γ), the

scale (σ), and location (µ) parameter estimates from these methods can be used to

obtain other parameters of interest. In terms of accuracy, the GEV distribution fits

extreme data points very well.

3.3.3.1 Maximum Likelihood Estimation

Under this approach, the parameter estimators (γ̂, µ̂, σ̂) of the parameters (γ, µ, σ)

are derived by maximizing the GEV distribution’s likelihood function.
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Consider a random variable (X = X1, X2, · · · , Xn), following the GEV distribution.

We can obtain the parameters of interest by forming the likelihood function

L(µ, σ, γ|x) =
n∏

i=1

G(x) (3.15)

L(µ, σ, γ|x) =


∏n

i=1
1
γ exp

(
− [1 + γ(x−µ

σ )]
−1
γ
)[
1 + γ(x−µ

σ )
]−1

γ −1 if γ ̸= 0∏n
i=1

1
γ exp

(
− x−µ

σ

)
exp
(
− exp(−x−µ

σ )
)

if γ = 0

(3.16)

When γ ̸= 0, we obtain the log-likelihood function as:

L(θ/x) = −nlogσ − ( 1γ + 1)
n∑

i=1

log
(
1 + γ(x−µ

σ )
)
−

n∑
i=1

(
1 + γ(x−µ

σ )
)−1

γ (3.17)

and when γ = 0,

L(µ, σ, γ|x) = −nlogσ −
n∑

i=1

exp
(
− x−µ

σ

)
−

n∑
i=1

(x−µ
σ

)
. (3.18)

The estimators of the parameters(γ, µ, σ), are obtained by maximizing equation (3.18)

with respect to the individual parameters of interest. For small samples, the param-

eter estimates suffer from biasedness. However, under certain regularity conditions

such as high sample sizes, this approach has the best asymptotic properties such as

consistency, efficiency and normality (Coles et al., 2001). Therefore as sample size

increases, estimates converge faster to the true parameter estimates.

3.3.3.2 Estimation of Other Parameters

In addition to the parameters estimated above, we also extend our interest to other

important parameters such as return levels, return periods and exceedance probability.

Quantiles are functions of a random variable obtained by inverting the distribution

function of the original distribution. They are commonly known as "return levels" in

hydrology. When assessing the likelihood that specific uncommon events will occur,

extreme quantiles are particularly very useful. Estimates from extreme quantiles are

utilized in flood control, finance, and insurance, to name a few.
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Return levels enlighten us about the odds of extreme events happening, which in

our case is water inflows. The return level can be calculated as the (1− p)th quantile,

by inverting (3.18). Let Zp represent the return level (i.e.(G−1(1− p;µ, σ, γ).

Zp =


µ− σ

γ [ln(1− p)]−γ − 1 if γ ̸= 0

µ− σ ln
[
− ln(1− p)

]
γ if γ = 0

(3.19)

A return period describes the average time in between events, such as floods earth-

quakes, etc. It generally indicates the rarity of an extreme event.

The inverse of the return period yields the exceedance probability. Consider a

random variable Xp with an extreme value Xn, the probability of exceeding Xn is

termed the exceedance probability. Simply put, say we are interested in the exceedance

probability for a three-year return period, we can formulate it as 1
3= 0.333 or 33%.

However, we may be interested in finding the exceedance probability over a period of

time. We can estimate that using;

Exceedance probability = 1− (1− p)n

where p - exceedance probability; n - time period; (1− p) - non-exceedance prob-

ability.

3.3.3.3 Bayesian Estimation

Bayesian methods provide a principle approach to model uncertainties in parameters

based on Baye’s Rule. Statistical inferences about unknown parameters are made in

terms of probability statements using a probability distribution of the parameter under

consideration after the data is observed. The Bayesian approach to modelling consid-

ers both parameters and a given random variable as random and fixed. The random

quantities are modelled with a probability distribution. Uncertainty of the Bayesian

methods is expressed through the prior distributions. The Bayesian framework cap-

italises on the drawback of requiring a restraint on γ of the classical framework. It

circumvents constraints on γ and simply and intuitively makes predictions of future

observations.

Consider a random variable Y . Suppose that Y is modelled with a probability dis-

tribution function g(y; θ), with θ representing an unknown parameter. The Bayesian
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approach to making inferences about the unknown parameter θ is as follows.

1. Both θ and Y are assumed to be random.

2. Before observing data, the uncertainty in θ is modelled with an appropriate

probability distribution, say h(θ). This distribution is termed a prior distribu-

tion.

3. After the data is observed, h(θ) is updated into a new distribution say p(θ|y)

using conditional probability as

P (θ|y) = P (y|θ) ∗ h(θ))
P (y)

(3.20)

Where P (y|θ) – data likelihood often denoted as L(θ).

P (y) =

∫ ∞

−∞
p(y|θ)h(θ)dθ (3.21)

P (y) is termed normalization constant/ marginal likelihood/ model evidence. h(θ)

is termed prior distribution.

From the definition of the posterior distribution, the following statements can be

made.

• The posterior distribution is proportional to the product of the likelihood of the

sample data and the prior distribution.

p(θ|y) ∝ p(y|θ) ∗ h(θ) (3.22)

• P (θ|y) ∝ 1
p(y)

3.3.3.4 Prior Probability

Priors define the probability of an event before empirical data is collected. It as-

signs a probability to every possible value of each parameter to be estimated. Priors

can be classified into informative, non-informative, weak and improper. García-Pérez

(2019) provided evidence that the application of informative priors frequently results

University of Ghana http://ugspace.ug.edu.gh 



Chapter 3. Extreme Value Theory 28

in the falsification of data. They continued by explaining that the inclusion of fabri-

cated data, whose statistical properties are dictated by the prior’s parameters, can be

thought of as prior knowledge. Due to this, this work makes use of the non-informative

prior (specifically the Maximal Data Information (MDI) prior)

Non-Informative Priors

Non-informative priors, also termed improper priors, consider the ’entity’ itself to be

the primary source of information for developing our prior distributions for the scale

and shape parameters. As a result, we create priors based on formal criteria and let the

data speak for itself. The three most commonly used non-informative priors are the

MDI prior, the uniform prior and the Jeffreys’ prior. Castellanos and Cabras (2007)

demonstrated that among the just mentioned priors, only the latter yields proper

posterior distributions, irrespective of the sample size. There is also the tendency for

the MDI prior to increase without limit as the shape parameter decreases infinitely.

However, this study adopts the MDI prior to constructing the posterior distribution

mathematically denoted as:

πM (ϕ) ∝ exp {E[logf(Y |ϕ)]} (3.23)

Zellner (1995) obtained the MDI prior by maximizing the difference between the like-

lihood function and the prior density. Considering the MDI prior density in Equation

(3.23), it can be observed that πM (ϕ) ̸∝ e−ξ(1+γ) for γ > R, which is a necessary

condition for proper posterior densities.

πM (σ, γ) ∝ 1

σ
e−ξ(1+γ), σ > 0, µ, γ ∈ R,where ξ = Euler’s constant (3.24)

A number of proposals have been developed to nullify the problem of improper pos-

terior distributions. To diffuse this effect, Smith and Goodman (2000) proposed the

truncation of the MDI prior. Consider a sample of m ordered thresholds from a GP

distribution, the construction of a truncated MDI prior density with constraint, m ≥ 2

produces a proper posterior density.
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The truncated MDI prior in (3.25) was adopted to ensure a proper posterior dis-

tribution (Northrop & Attalides, 2016)

πT
M (σ, γ) =

1

σ
e−ξ(1+γ), γ ≥ −1 (3.25)

3.3.3.5 Posterior Probability

The derivation of posterior probability, which particularly facilitates conditional or

Bayesian conclusions about the relevant parameters, is described in this section. The

selection of suitable priors, however, is a critical challenge in Bayesian inference. Em-

pirical Bayes, which derive prior variances from the data, can be used to refine the

problem. Empirical Bayes requires a hierarchical model. In the absence of a hierarchi-

cal system in the observation model, the priors’ shape is unknown and is considered

to be flat. Maximum Likelihood estimation results from Bayesian computations with

flat priors.

The available literature on estimation has still not revealed a perfect and accurate

estimator, and though some techniques are comparably superior, they are still asso-

ciated with some discrepancies. A recent trend of estimation procedures that have

yielded superior results over existing ones has been the Bayesian estimation coupled

with its advantageous predictive ability (Amin et al., 2015)

Suppose that prior beliefs about our parameters θ = (δ, γ) can be formulated and

described via a probability density function p(θ) without using the data.

With reference to (3.20), the posterior distribution for the MDI prior is

P (θ|y)MDI ∝ I(θ)P (θ) =

1

σn+1
π(γ)exp

{
−

n∑
i=1

(
1 +

γ(yi − µ)

σ

)−1
γ

}
n∏

i=1

(
1 +

γ(yi − µ)

σ

)1+−1
γ

,where σ > 0

(3.26)
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3.3.3.6 Posterior Distribution Sampling

Where necessary, we will use The Ratio-of-Uniforms (RoU) and the Markov Chain

Monte Carlo (MCMC) methods to sample from the posterior distribution obtained

above.

The Markov Chain Monte Carlo (MCMC) Method

When handling the posterior distribution analytically is difficult, Markov Chain Monte

Carlo provides a class of algorithms for Bayesian model inference. Markov Chain

Monte Carlo (MCMC) methods, such as Metropolis-Hastings and the Gibbs sampler

compute posterior moments and probabilities by taking samples from the posterior

distribution. These samples are generated by proposing new states in the distribution

and accepting or rejecting them based on the probability of the state. We set up a

Markov chain with the posterior as its long-run distribution using MCMC techniques.

The Markov chain is extended until it reaches the limiting (long-run) distribution.

Therefore, after that initial run-in time, any value obtained is close to a random sam-

ple taken from the posterior distribution.

The Ratio-of-Uniforms (RoU) Method

Kinderman and Monahan (1977) developed the Ratio-of-Uniforms technique for pseudo-

random number sampling from a large variety of statistical distributions. It is based

on the idea of generating samples from a uniform distribution and then comparing

them to the likelihood of the model to obtain samples from the posterior distribution.

This procedure, a fundamental, but computationally demanding algorithm, was

utilized to set up an algorithm to sample from the posterior distributions described

in equation (3.43).

By computing X = S
T for a pair (S, T) that is uniformly distributed in the set

δ, we can generate a random variable X with density f(x) from the desired density.

This is the basis for the ratio of uniforms.

Let γ = (s, t) : 0 < t ≤ f(s/t)

The Ratio-of-Uniforms approach for creating random variables is as follows:

1. Generate v and u independently from U(θ, b) and U(c, d)

2. Set x =
v

u
if u2 ≤ p

(
v
u

)
then return to i.
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The procedure for choosing the bounds b, c and d is extensively discussed in Kin-

derman and Monahan (1977). The efficiency of the RoU is given by the reciprocal

of the expected number of trials required for generating each variate known as the

Acceptance Probability (Barabesi, 1993).

3.3.4 General Comments

We must emphasize that although the Block Maxima approach to EVT is most ap-

propriate for data that are already in blocks (i.e. years, months), the approach has

major drawbacks.

• The approach is widely known to waste data since only the maximum of each

block is used for model building.

• Extremes may tend to converge in specific blocks.

3.4 Balkema and De Haan Theorem

Theorem: Let X1, X2, . . . be a sequence of independent and identically-distributed

random variables, and let Ft be their conditional excess distribution function. Then,

for a large class of underlying distribution function F , and a significantly large thresh-

old, t, the conditional excess distribution function, Ft, is well approximated by the

generalized Pareto distribution.

The classical approach (block maxima approach) makes use of only the maxi-

mum observation in each block, thus reducing its efficiency (Nkrumah, 2017). Con-

versely, the Peaks-over threshold (POT) approach utilizes all the observations exceed-

ing a specified threshold. Balkema and De Haan (1974) proved that the Generalized

Pareto Distribution can describe exceedances above a significant threshold. It is a

two-parameter model characterised by the following distribution.

Fγ(z) =


1− (1 + γz)−1/γ for γ ̸= 0,

1− e−z for γ = 0.

with support z ≥ 0 for γ ≥ 0 and 0 ≤ z ≤ −1/γ for γ < 0

The parameter γ classifies the GPD into either one of the following distributions.

• Pareto distribution (γ > 0)
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• Exponential distribution (γ = 0)

• The short-tailed Pareto distribution (γ < 0)

3.4.1 Peaks Over Threshold (POT)

The tails of a distribution could take any shape. Let Ft represent the distribution

function of the amount by which the random variable X exceeds a certain threshold,

say t. Then Ft is termed the conditional excess distribution function of X.

Pickands III (1975) proved that this conditional excess distribution function Ft for

larger values of y, follows the GPD distribution for a large class of underlying distri-

bution functions.

The excesses is obtained as y = x−t, with the right tail function Ft having bounds

xF ≤ ∞.

Ft = P ({X − t ≤ y|X > t}); 0 ≤ t ≤ xF − t (3.27)

Rewriting Ft in terms of F gives;

Let x = y + t, then

Ft(x) = P (X > x) = P (Y > x|Y < t)

Ft(x) = P (X > x) =
P (Y > x ∩ Y < t)

P (Y < t)

Ft(x) = P (X > x) =
P (x ≤ Y ≤ t)

P (Y < t)
=

P (Y ≤ t)− P (Y ≤ x)

P (Y < t)

Ft(x) =
FY (x)− FY (t)

1− FY (t)
(3.28)

3.4.2 Statistical Choice of GPD Models

The statistical choice for GPD models follows the same procedure as observed in the

GEV models in Section 3.3.2.
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However, this test places more emphasis on the exponential distribution function

which models excesses surpassing a specific threshold and has garnered some interest

in literature. Many tests have been developed to fulfil this hypothesis test. Promi-

nent among them are tests by Gomes and van Montfort (1986), Marohn (2000) and

Kozubowski et al. (2008). The Gomes and Van Monfort test and the Marohn test are

popular tests for comparing the exponential distribution to the Generalized Pareto

Distribution. The first mentioned test is a ratio of the maximum and the median of

recorded exceedances. The latter test is obtained explicitly using the coefficient of

variation. We consider the following hypotheses,

For γ ̸= 0. Where γ < 0 or γ > 0

H0 : γ = 0 against H1 : γ ̸= 0 (3.29)

However, we can utilize the following hypotheses if our goal is to study the condition

where γ < 0.

H0 : γ = 0 against H1 : γ < 0 (3.30)

The Gomes and Van Monfort Test, the Marohn GPD Test and LRT would be utilized

in selecting the most appropriate domain of attraction to fit the data.

3.4.2.1 Gomes and Van Monfort Test

Consider a random variable Υ = Υ1,Υ2, · · · ,Υn. Let Γ = Γ1, Γ2, · · · , Γm represent

the number of exceedances over a specified threshold ϑ, obtained from Υ. Using the

Gumbel statistic expressed in Equation 3.3.2.1, we can consider GSt∗ which is the

Gumbel statistic under equation (3.10) as:

GSt∗ = log(2)GSt− log(m)
d−−−−→

m→∞
φ

For test (3.11), given an significance level α, (H0) is rejected if GSt∗ ≤ Gα. P-values

for the test can be derived using the relation below:

p(GSt∗) = φ(GSt∗)
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3.4.2.2 Marohn GPD Test

Consider a random sample Y1, ...., Ym and a specified threshold u. Let Z1, ...., Zν(m)

represent the exceedances over the selected threshold u. Marohn (2000) obtained the

optimal test statistic for testing the excesses Zj − u of the GPd as:

Tm =
ν(m)

2

(
Θ2

ι(m)(Z̄ − u)2
− 1

)
(3.31)

Where;

Θ =

ν(m)∑
j=1

(Zj − Z̄)2

Z̄ =

ν(m)∑
j=1

Zj

ν(m) = rescaled location parameter

(H0) for test (3.11) is rejected at a significance level α, if Tm ≤ zα. The associated

p-value for the test can be computed with:

p(Tm) = ϕ(Tm)

3.4.2.3 Likelihood Ratio Test (LRT)

The LRT for the GPD context is a ratio of the exponential d.f. to the GPD. The test

statistic is obtained using the same methodology outlined in Section 3.3.2.2.

However, Hüsler and Li (2007) suggested using Bartlett’s correction to the χ2 approx-

imation in order to increase the accuracy of estimation. The improved statistic is as

follows:

L∗ =
L

1 + 4
m

d−−−−→
m→∞

χ2
(1) (3.32)

At a significance level, α, the null hypothesis in equation (3.11) is rejected following

the same methodology as observed in the case of the GEV.
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3.4.3 Threshold Selection

Literature is littered with profound methods of selecting optimal thresholds for fitting

models for the Generalized Pareto Distribution. The practical choice of the threshold

′t′ must be taken with caution. An optimal threshold is advised to balance the Mean

Square Error (MSE). With every method so far, a core trait is finding a threshold that

provides a trade-off between bias and variance. Few excesses (realizations) would yield

model parameters with small variations, but consequently a large bias. On the other

hand, the converse holds (Tancredi et al., 2006). Recently, Wu and Qiu (2018) have

elaborated concise methods for an optimal threshold selection. Some functions and

graphical methods have been developed to efficiently choose appropriate thresholds.

The Mean Excess (M.E) function, referred to as Mean Residual Life (M.R.L) function

in survival analysis was developed by Benktander and Segerdahl (1960). It is typically

used to facilitate the selection of a suitable threshold and also to evaluate whether a

G.P.D model is appropriate for the excesses. Mathematically, the Mean Excess (M.E)

function is computed as:

E(X − t|X > t) =
σµ + µγ

1− γ

Davison and Smith (1990) cited a different approach to estimating the shape param-

eter, γ, from a sequence of ordered potential thresholds t1, t2, ..., tk. They suggested

utilizing the Mean Excess Plot to estimate an ideal threshold. The G.P.D model is

then employed to fit all excesses above this cutoff. The Mean Excess Plot graphs

the mean of the excesses (i.e. E[X − t|X > t]) against the ordered statistics. Coles

et al. (2001) elaborated that a fair balance for the MSE is ideally the point where a

linear pattern starts on the M.E plot. The goal is to determine the lowest threshold

at which the plot is almost linear, accounting for the 95% confidence intervals. They

also indicated that the level where the parameter estimates are roughly steady as we

approach larger thresholds and the GP model’s asymptotic features hold is an opti-

mal threshold. However, this threshold selection approach depends on the researcher’s

subjective view. The pattern of the M.E plot indicates the heaviness of the tail distri-

bution function. An upper pattern suggests a heavy-tailed distribution. On the other

hand, a descending pattern stipulates a light-tailed distribution. A horizontal form
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hints at an exponential distribution. An alternate method for graphically choosing

the best threshold is the Parameter Stability Plot (P.S.P.). For a detailed examination

of the issues and some intriguing threshold selection techniques, the reader is directed

to Beirlant et al. (2004), Coles et al. (2001) and Scarrott and MacDonald (2012).
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Estimation Methods Under Generalized Pareto Distribution

The realm of estimation constitutes two fundamental schools of thought. These

schools govern the underlying principles for parameter estimation. The Classical

(Frequentist) approach expresses uncertainty through asymptotic distributional prop-

erties. The Bayesian approach makes probability statements about parameters using

conditional distributions derived using Baye’s rule. Both philosophical approaches

have identical behavioural assumptions. However, they have distinct estimation and

interpretation schemes.

Commonly used classical estimation methods include Maximum Likelihood Es-

timation (MLE) and Probability Weighted Moments (PWM). The need for a "γ"

constraint to attain asymptotic characteristics of estimates using this estimating pro-

cedure is a significant drawback. MLE requires γ > −1
2 , while PWM requires γ < 1

2 .

In this thesis, we focus on MLE due to its superior asymptotic properties.

3.4.4 Maximum Likelihood Estimation

For γ ̸= 0, the GPD has a log-likelihood function as;

L(γ, σ|Xi) = −n lnσ +

(
1

γ
− 1

) n∑
i=1

ln

(
1− γ(Xi)

σ

)
, (3.33)

and for γ = 0, the GPD has a log-likelihood function as;

L(µ, σ, 0|Xi) = −n lnσ − 1

σ

n∑
i=1

Xi (3.34)

Let G(x) = f(xi;µ, σ, γ|x)

L(θ/x) =
n∏

i=1

G(x) (3.35)

lnL(µ, σ, γ|x) =
n∏

i=1

lnG(x) (3.36)

d lnL(µ, σ, γ|x)
dµ, dσ, dγ

= 0 (3.37)
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Substituting (3.36) into (3.37), we obtain

n∑
i=1

ln

(
1 + γ

yi
σ

)
= γn (3.38)

(1 + γ)

n∑
i=1

γ
yi

σ + γyi
= n (3.39)

Maximizing (3.39) with respect to γ and σ yields MLE estimates for γ̂ and σ̂ re-

spectively. However, solving for these parameter estimates would yield a system of

equations with no distinct solutions. Hence, we propose using computational ap-

proaches to solve them iteratively. For more details on the computational methods for

solving such equations, we refer the reader to Prescott and Walden (1983); Hosking

et al. (1985) and Smith (1985).

3.4.5 Bayesian Estimation

Bayesian estimation for the GPD distribution follows the same procedures as outlined

in Section 3.3.3.3

3.4.5.1 Prior Probability

The MDI prior was constructed by Zellner (1995), by maximizing the difference be-

tween the likelihood function and the prior density. Thus, the MDI prior to construct-

ing the posterior distribution is mathematically denoted as:

πM (ϕ) ∝ exp {E[logf(Y |ϕ)]} (3.40)

Considering the MDI prior density in (3.41), it can be observed that πM (ϕ) ̸∝

e−(1+γ) for γ > R, which is a necessary condition for proper posterior densities.

πM (σ, γ) ∝ 1

σ
e−(1+γ), σ > 0, γ ∈ R (3.41)

A number of proposals have been developed to nullify the problem of improper pos-

terior distributions. To diffuse this effect, Smith and Goodman (2000) proposed the

University of Ghana http://ugspace.ug.edu.gh 



Chapter 3. Extreme Value Theory 39

truncation of the MDI prior. The construction of a truncated MDI prior density with

constraint, m ≥ 1 produces a proper posterior density.

The truncated MDI prior in (3.42) was adopted to ensure a proper posterior dis-

tribution (Northrop & Attalides, 2016)

πT
M (σ, γ) =

1

σ
e−(1+γ), γ ≥ −1 (3.42)

3.4.5.2 Posterior Probability

With reference to (3.3.3.3), the posterior distribution for the MDI prior is similarly

obtained as:

P (θ|y)MDI ∝ I(θ)P (θ) =

1

σn+1
e−(1+γ)

n∏
i=1

(
1 +

γ(x1 − u)

σ

)−( 1+γ
γ

)

(3.43)

3.4.5.3 Posterior Distribution Sampling

Where necessary, we will use The Ratio-of-Uniforms (RoU) and the Markov Chain

Monte Carlo (MCMC) methods to sample from the posterior distribution obtained

above. The reader is referred to Section 3.3.3.6 for details on these methods.

3.4.6 Estimation of Other Parameters

Estimating other parameters follow the same procedure shown in Section (3.3.3.2),

but with the GPD distribution function instead. As used in (3.19), we obtain other

parameter estimates of interest for the GPD by inverting (3.36).

3.4.6.1 Extreme Quantiles

Consider a quantile function Φp of a random variable Y defined as:

P (Y ≤ Φp) = p

Recall the df of the GPD from (3.4), and λ = some threshold. Fγ(z) = p
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Hence,

Fγ(z) = 1− P (Y > λ)

(
1 + γ

Φp − λ

σ

)−1
γ

= p

Solving equation (3.4.6.1) yields:

(
1 + γ

Φp − λ

σ

)−1
γ

=
1− p

P (Y > λ)

The pth quantile, Φp, can then be estimated as:

λ+
σ

γ

{[
1− p

P (Y > λ)

]−γ

− 1

}

3.4.6.2 Return Levels

The return level is calculated as the (1 − p)th quantile, by inverting (3.36). Let Mp

represent the return level (i.e.(M−1(1− p;µ, σ, γ))).

Mp =


σ
γ p

−γ − 1
k if γ ̸= 0

−σ ln p if γ = 0

(3.44)

To estimate the return levels over a period of time, the parameters (γ, µ andσ) in

(3.44) are replaced by their sample estimates (γ̂, µ̂ and σ̂)

3.4.6.3 Return Period & Exceedance Probability

These parameters are similarly estimated using the functions expressed in 3.19 but

with the GPD function instead.

Let xϕ be the return period with period ϕ and n the number of events during a

specific time frame.

P (X > xϕ) =
1

nϕ
.
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Hence

P (X ≤ xϕ) = 1− 1

nϕ
.

Applying the same concept from Equation (3.4.6.1) gives:

Fγ(z) = 1− P (Y > λ)

(
1 + γ

Φp − λ

σ

)−1
γ

= 1− 1

nϕ

Hence, the return period (xϕ) is established as:

xϕ = µ+
σ

γ

{[
1

nϕP (Y > λ)

]−γ

− 1

}
(3.45)

Exceedance probabilities are computed as (x−1
ϕ )

3.5 Truncated POT Distribution

At some levels, every probability distribution can get truncated. This will almost

always result in new distributions, rather than one within the same family. If F (x)

is the distribution function of a random variable, then F (y) is the distribution func-

tion of a new random variable Y, defined as the distribution of X trimmed to the

semi-open interval (a, b). Even with the emergence of many methods of fitting tail

distributions, like the POT approach, truncation effects are often not captured at high

levels. Beirlant et al. (2017) demonstrated and proposed the use of a pseudo maxi-

mum likelihood approach to estimate the model parameters. Aban et al. (2006) also

used the maximum likelihood approach to model parameters of a truncated Pareto

distribution and further proved the existence and uniqueness of the estimators under

certain conditions.

Consider a random variable X = X(1), X(2), · · · X(n). Let X(1) ≤ X(2) ≤ · · · X(n)

be a sample of ordered statistics from X. Assuming a threshold as Xn−k and ex-

ceedances as Xn−j+1. The excesses (Ej,k) can be found as Xn−j+1 - Xn−k.

Let

• Y - Original data before truncation

• T - Truncation point
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• FY (y) = P (Y ≤ y)

• Right Tail Function = F Y (y) = 1− FY (y)

where Quantile function- QY (p) = inf{y : FY (y) ≥ p}(0 < p < 1), and tail quantile

function UY (v) = QY (1− 1
v (v > 1)

Then;

Xn
d
=Y |Y < T (3.46)

FT (x) = P (X > x) = P (Y > x|Y < T )

=
P (Y > x ∩ Y < T )

P (Y < T )

=
P (x ≤ Y ≤ T )

P (Y < T )
=

P (Y ≤ T )− P (Y ≤ x)

P (Y < T )

FT (x) =
F Y (x)− F Y (T )

1− F Y (T )
= (1 +DT )F Y (x)−DT (3.47)

Thus, DT = F Y (T )/FY (T ), and it is referred to as the odds of the truncated proba-

bility mass under the untruncated distribution Y.

P
(X − t

σt
> x|X > t

)
−→ (1 + γx)1/γ − (1 + γk)1/γ

1− (1 + γk)1/γ
, (3.48)

Where k represents the top-order statistics.

Let E1,k = Xn −Xn−k. Substituting E1,k/σ for k in (3.48)

logLk,n(γ, σ) = log

( k∏
j=2

σ−1(1 + γ
σEj,k)

−(1/γ)−1

1− (1 + γ
σE1,k)−(1/γ)

)
(3.49)

Also, substituting τ = γ/σ in (3.49) and solving gives

logLk,n(γ, τ) = (k − 1)logτ − (k − 1)logγ −
(
1 +

1

γ

) k∑
j=2

log(1 + τEj,k)

−(k − 1)log(1− (1 + τE1,k)
−1/γ)

(3.50)

3.5.1 Statistical Choice of Truncated GPD Models

The statistical choice for the truncated GPD models follows the same procedure as

observed in the GPD models in Section 3.4.2.
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3.5.1.1 Likelihood Ratio Test

Under the RT-POT, we will be performing the LRT for the two truncated GPD models

(i.e. γ ̸= 0 and γ = 0) using their respective likelihoods. For γ ̸= 0. Where γ < 0 or

γ > 0

H0 : γ = 0 against H1 : γ ̸= 0 (3.51)

However, we can utilize the following hypotheses if our goal is to study the condition

where γ < 0.

H0 : γ = 0 against H1 : γ < 0 (3.52)

3.5.1.2 Test between Truncated and Non-truncated Distributions

To aid in deciding the type of truncation present, Albrecher et al. (2017) cited a

procedure to test between light truncation and rough truncation. The test is based

on hypotheses:

H0 : X is not truncated at the tails,

H1 : X is truncated at the tails.
(3.53)

For the Hill Estimator:

The test statistic is obtained as:

Tk,n =

√
12k(Ek,n(Hk,n)− 1

2)

1− (Ek,n(Hk,n))
, (3.54)

where Ek,n = 1
k

∑k
j=1

Xn−k,n

Xn−j+1,n
and Hk,n = Hill estimator.

H0 is rejected at an asymptotic level, α, if Tk,n < −zα. Associated p-values can be

obtained as a product of the test statistic Tk,n and the CDF of the standard normal

distribution, Φ.

For the Maximum Likelihood Estimator:

The test statistic is obtained as:

Tk,n = k (1 + τ̂(Xn,n −X−k,n))
1
γ̂k , (3.55)

H0 is rejected at an asymptotic level, α, if Tk,n > ln( 1α). Associated p-values can be

obtained as the exponential of the negated test statistics exp(−Tk,n).
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3.5.2 Maximum Likelihood Estimation

Using Pseudo maximum likelihood estimation, we obtain γ̂k, τ̂k as:

γ̂k =
1

k − 1

k∑
j=2

log(1 + τ̂kEj,k) +
(1 + τ̂kE1,k)

−1/γ̂log(1 + τ̂E1,k)

1− (1 + τ̂kE1,k)−1/γ̂
(3.56)

1

k − 1

k∑
j=2

1

1 + τ̂kEj,k
=

1

1 + γ̂k

1− (1 + τ̂kE1,k)
−1−1/γ̂

1− (1 + τ̂kE1,k)−1/γ̂
(3.57)

σ̂k can be obtained from (3.57)

3.5.2.1 Truncation Odds

This parameter evaluates the likelihood that the truncated probability mass will re-

main within the scope of the original underlying distribution. Beirlant et al. (2016)

discussed ways of estimating this parameter using the Truncated Hill estimator and

the Truncated MLE. With F and T representing the Cumulative Density Function of

the original distribution and the upper Truncation point respectively, DT is mathe-

matically defined as:

DT =
1− F (T )

F (T )

It is estimated using:

D̂J := max

{
0,

k

n

(1 + τ̂kE1,k)
−1/γ̂k − 1

k

1− (1 + τ̂kE1,k)−1/γ̂k

}
(3.58)

3.5.2.2 Exceedance (Tail) probabilities

The likelihood that a specific value, w, will be surpassed in a given time frame in the

future. It is computed using the estimated value of the shape parameter (γ), τ and

DJ from (3.56), (3.57) and (3.58) respectively.

p̂J(w) = (1 + D̂J)
k

n

(
1 + τ̂k(c−Xn−k, n)

)−1/γ̂k

− D̂J (3.59)
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3.5.2.3 Extreme Quantiles

Quantiles, Q(1−p), describe the tails of marginal distributions. In this study, we will

examine both quantiles of the truncated and original underlying distributions.

Estimating extreme quantiles of the original distribution Y requires reconstructing

the parent distribution itself. Extreme quantiles for the unobserved quantities can

then be estimated using estimates of γ, τ and DJ from (3.56), (3.57) and (3.58)

respectively. These quantiles can be obtained using:

Q̂Y (1− p) = Q̂Y (1− [p− (1− p)D̂J ]) (3.60)

Considering observations truncated at a specific point, quantiles for the truncated

distribution, QJ(1− p), can be obtained using

Q̂J(1− p) = Xn−k,n +
1

τ̂k

[{
D̂J + k

n

D̂J + p

}γ̂k

− 1

]
(3.61)

The upper endpoint intuitively refers to the point where p = 0. The maximum

point at which truncation occurs. It can be computed with:

T̂k = Xn−k,n +
1

τ̂k

[{
1− k−1

(1 + τ̂kE1,k)−1/γ̂k − k−1

}γ̂k
]

(3.62)

3.5.3 Hill Estimation

When using Pareto-type modeling, high quantiles are computed using a projection

from a fitted regression line through the point (− ln (((k + 1)/(n+ 1)), lnXn−k) on

the Pareto QQ-plot. The slope, Hk,n, referred to as Hill’s estimator is obtained from

the fitted regression line on the Pareto QQ-plot. See Albrecher et al. (2017) for more

computational details. The Hill estimator is shown in Albrecher et al. (2017) as:

Hk,n =
1

k

k∑
j=1

(ln(Xn−j+1,n)− ln(Xn−k,n)) (3.63)

The Hill plot obtained from this estimator can be used to estimate the threshold

and tail of a GPD. An adaptation of this estimator suited for the truncated GPD

was proposed by Aban et al. (2006) and Beirlant et al. (2016). Nuyts (2010) proposed
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trimming Hill’s estimator to make up for truncation. They suggested using the bounds

1 ≤ r < k < n rather than (r = 1). The modified Hill’s estimator is obtained as:

Hr,k,n =
1

k − r + 1

k∑
j=r

(ln(Xn−j+1,n)− ln(Xn−k,n)) (3.64)

3.5.3.1 Estimation of other Parameters

Using estimates from the Hill estimator, we can obtain estimators for other parame-

ters, just as derived using the MLE.

The odds of truncation can be computed as:

D̂J =

k + 1

n+ 1

R
1
γk
r,k,n − 1

k+1

1−R
1
γk
r,k,n

 , 0

 , (3.65)

where R
1
γk
r,k,n =

Xn−k,n

Xn−r+1,n
. However in practice, the estimator D̂

(0)
J = max{DJ , 0} is

used to capture both truncated and the underlying distributions.

The upper endpoint can be obtained as:

T̂k,n = max

Xn−k,n

((
Xn−k,n

Xn,n

) 1
γ̂k −

(
1

k+1

1− 1
k+1

))−γ̂k

, Xn,n

 . (3.66)

The exceedance or tail probabilities are computed using:

p̂j =
k + 1

n+ 1

((
q

Xn−k,n

)− 1
γk −R

1
γk
r,k,n

)
1−R

1
γk
r,k,n

. (3.67)

Considering the random variable in equation (3.46), quantiles of the truncated distri-

bution can be obtained for either rough or light truncation. Rough truncation relates

to cases where the data will begin to show the divergence from the Pareto pattern

caused by truncation at a high value after the threshold t has been exceeded. However,

under light truncation, from the given threshold t onward, virtually no truncation is

evident in the data.
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For rough truncation, quantiles are computed using:

Q̂(1− p) = Xn−k,n

(
D̂J + k+1

n+1

D̂J + p

)γ̂k

, (3.68)

Also, for light truncation, we obtain quantiles using:

Q̂(1− p) = Xn−k,n

(
k + 1

(n+ 1)p

)γ̂k

. (3.69)

Similarly, we can estimate quantiles for the parent distribution Y using:

QW (1− p) = Xn−k,n

(
D̂J + k+1

n+1

p(1 + D̂J)

)γ̂k

. (3.70)

3.6 Confidence Interval for Parameters

We will create some confidence intervals for the estimates produced for the GPD

parameters (γ, σ, µ) since all estimates need a margin of error to achieve asymptotic

normality. Prior to the proposition by Beirlant et al. (2004) for drawing confidence

intervals, the normal distribution was used as an approximation to the true sampling

distribution for estimates obtained through Maximum Likelihood estimations, and

credible intervals for Bayesian estimations. Let Υ be any parameter of interest, then

the confidence interval was constructed traditionally using

υ̂ = ±1.96 ∗
√

ηυ̂
m

Beirlant et al. (2004) suggested using the Profile Likelihood Based Confidence Interval

because it is obtained directly from the likelihood function. In addition, it does not

assume the normality of the estimator, as it is based on the asymptotic χ2 distribution

of the likelihood function, rather than the standard error as applied in Wald’s C.I.

The Profile Likelihood Based Confidence Interval is obtained using:

ℓp(Υi) = max
Υi

ℓ(Υi,Υ−i)

Remarking Υ as the parameter of interest, the 100(1− α)% confidence interval for Υ

can be constructed using the profile-likelihood function as:
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CIΥ =

{
Υ : logℓp(Υ) ≥ logℓp(Υ̂)−

χ2
(1)(1− α)

2

}
(3.71)

3.7 Goodness of Fit Tests

These tests determine if sample data from a particular population fits a given distri-

bution. The following hypotheses would be evaluated.

H0 : γ = 0 vs H1 : γ ̸= 0 (3.72)

H0 : The data comes from an Exponential distribution.

H1 : The data does not come from an Exponential distribution.
(3.73)

3.7.1 Kolmogorov-Smirnov (K-S) Test

The original Kolmogorov-Smirnov test was developed by Andrey Kolmogorov and

Nikolai Smirnov. For two independent samples, it measures the disparity between the

empirical distribution functions. However, the test can also determine if a sample is

drawn from a hypothesized reference probability distribution.

In testing hypotheses (3.72), which is a classical exponential case, we compare the

cumulative distribution of the exponential distribution to the cumulative distribution

of the GPd. Hence under H0, the K-S statistic is obtained using:

Dm = max
1≤i≤m

(∣∣∣∣1− exp
(
−Yi:m

σ̂µ

)
− i

m

∣∣∣∣, ∣∣∣∣1− exp
(
−Yi:m

σ̂µ

)
− i− 1

m

∣∣∣∣) (3.74)

Let σµ denote the estimated scale parameter σµ obtained from the exponential distri-

bution and Hγ represent the GPD.
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3.7.2 Cramer-Von Mises Test

Let x1, x2, · · · , xn be the observed values, in increasing order. Then the test statistic

is:

W 2
m =

m∑
i=1

(
Hγ̂

(
Yi:m|σ̂µ,Hγ

)
− 2i− 1

2m

)2

+
1

12m
(3.75)

3.7.3 Anderson-Darling Test

A variation of the Kolmogorov-Smirnov test is the Anderson-Darling test. It is more

susceptible to tail variations in distributions. We proceed to test hypotheses (3.73).

Let Hγ represent the GPD. The Anderson-Darling Test statistic is computed as:

A2
m = −m− 1

m

m∑
i=1

{
(2i− 1)log

(
Hγ̂

(
Yi:m|σ̂µ,Hγ

))
+ (2m+ 1− 2i)log

(
1−Hγ̂

(
Yi:m|σ̂µ,Hγ

))}
(3.76)
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Chapter 4

Data Analysis

Results obtained from the Extreme Value Analysis of the data are presented in this

chapter. This chapter is divided into three sections. Section 4.1 examines the distri-

bution of the data using descriptive statistics and plots such as the mean excess plot,

boxplot, histogram and exponential QQ plot. Section 4.2 provides results under the

Block Maxima method. Section 4.4 provides results under the Block Maxima method.

Section 4.5 provides a summary of this chapter.

4.1 Descriptive Statistics

The descriptive disposition of the data under review is presented in this section, utiliz-

ing a variety of summaries and plots. Information on whether the data is appropriate

for extreme value analysis is also provided here. Daily water levels (in feet) of the

Akosombo dam between the periods of January 1st, 1965 and December 31st, 2013

would be used for analysis. The statistics are provided in Table (4.1) below.

Table 4.1: Summary statistics of the water level (daily) of the
Akosombo dam

Statistics Value (ft)
Minimum 197.40
1st quartile 247.20
Median 256.20
Mean 255.71
3rd quartile 265.70
Maximum 277.54
Variance 161.2486
Standard Deviation 12.70
Skewness -1.12
Kurtosis 3.24
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The data comprises of 17,533 daily water readings from the Akosombo dam, span-

ning the periods of January, 1965 and December 2013. The minimum and maximum

water levels measured since the dam’s construction are 197.40 feet and 277.54 feet

respectively, with the maximum water level a few inches below the crest of the dam.

Overall, the dam has been very efficient in retaining optimal water levels, averaging

an elevation height of 256.2 feet for the period under investigation. Furthermore, the

skewness (-1.12) and kurtosis (3.24) statistics indicate the presence of a radical shift

from the mean of the distribution. This shift suggests that the data has a longer or

fatter tail on the left side of the distribution as observed in Figure (4.1).

(a) (b)

(c)

Figure 4.1: Summary plots of the data

The top panel shows the spread of the data. The bottom panel describes the ap-

propriateness of the data for extreme value analysis. The top left (A) was used to

identify extreme observations. The months of June, July and August recorded more

variations in water levels. Besides the months of November and December, all other

months had some extreme observations. The top right plot (B) indicates that most

data points are above the critical operating level (240.00 ft.). The scatter plot on

the bottom (C) depicts independence among the data points, as the points follow no

apparent pattern.

To ensure that the data are consistent over periods of time, we check for stationarity

using the “Augmented Dickey-Fuller (ADF)” test using the hypothesis test:

University of Ghana http://ugspace.ug.edu.gh 



Chapter 4. Data Analysis 52

• H0: Data is non-stationary

H1: Data is stationary

. Following the hypothesis test in 4.1, the ADF test indicated at a 95% confidence

level that our data is stationary and fit for further analysis. See Table 4.2 for the

table. Refer to Appendix (A.2.1) for R code.

Table 4.2: ADF Stationarity Test for water level

Variable Test Statistic P-value
Water level -11.85 0.01

4.2 The Block Maxima Method

4.2.1 Preliminary Analysis

As a rudimentary step prior to Gumbel’s method, it is essential to have an insight into

the right tail of the underlying distribution. By completing a preliminary graphical

analysis, we may determine which of the three kinds of extreme value distributions

outlined in (3.3) is most present in our distribution function F . We must remark

that Balkema and De Haan (1974) proved theoretically that, a quantile of the GEV

distribution can be roughly expressed as a function of the GPD at a high threshold.

Thus, the exponential distribution function can approximate the right tail of a Gumbel

family of distributions.
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y
i:
m

(a)
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− log(− log(pi))

y
i:
m

(b)

Figure 4.2: Exponential QQ plot (A) and Gumbel QQ plot (B) of
Gumbel model

In Figure 4.2, the left graph (A) represents the plot of theoretical and empirical

quantiles (QQ) of the Exponential model. The right graph (B) presents a plot of the

theoretical and empirical quantiles of the Gumbel model. Both plots can be visually
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inspected to reveal a significant level of concavity, particularly for large values of the

underlying distribution. It can clearly be observed in Figure 4.2 that the exponential

QQ plot approximates the Gumbel model very well. Thus, the Gumbel model does

not provide a good fit for the data. The majority of these conclusions are subjective

and descriptive. To support these conclusions, we will require unbiased tests. We will

put our data through more rigorous statistical tests in the section after this.

4.2.2 Statistical Choice For GEV models

Our search for an extreme value model has been reduced to two models as a result

of the preliminary analysis in the previous section. Recall that in our preliminary

report, the Exponential and Gumbel models both exhibited some concavity. Thus,

we evaluate the Gumbel model’s suitability objectively and also look for additional

models that can accurately match the data. It is noteworthy that other models of

interest as established in (3.3) are the GEV distributions with γ < 0 and γ > 0.

However, motivated by our preliminary analysis, we will test,

H0 : γ = 0 against H1 : γ < 0.

4.2.2.1 Gumbel Test

Following the procedure outline in Section 3.3.2.1, and using the R code described in

Appendix A.5.1, we get the proceeding results:

Test Statistic= 1.48 Critical Value*= -2.28 p-value= 5.741256e-05

At α = 0.05, the aforementioned findings result in the rejection of the null hypothesis,

H0. The Gumbel model is thus inappropriate for modelling this data. This result,

however, validates our observations from Figure 4.2. We shall carry out another test

to verify the Gumbel model’s validity.

Summary

Therefore, based on our preliminary findings and the Gumbel test, we may conclude

that the Gumbel model is unsuitable for modelling this data. Furthermore, we can

agree that the Weibull model (γ < 0) is more suitable for fitting the data.
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4.2.3 Parameter Estimations

The established distribution for modelling the water level of the Akosombo dam is

the Weibull family of distributions, from which parameter estimations and other sta-

tistical deductions can be inferred. We will obtain parameter estimates using both

the classical and Bayesian estimation techniques in this section and compare them.

Using the R code in Appendices A.7.1 and A.7.2, we obtain the results shown in Table

4.3. In Table 4.3, we present the parameter estimates obtained using both MLE and

Bayesian approaches, along with their respective Log-likelihoods, Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC). The parameter estimates

signal that there is little variation between the two estimation frameworks employed.

They further establish that the data follow the Weibull domain of attraction (i.e.

γ < 0). The difference in scale parameters, though small, suggests that the fit pro-

duced with Bayesian methodology has a more dispersed distribution. We determine

that the Gumbel model, while good, is less suitable for fitting the data by comparing

the log-likelihood, AIC and BIC estimates for the MLE estimates of the GEV model

and Gumbel model. Refer to Appendix B.1 for Gumbel estimates. Here, besides the

log-likelihood value, models with smaller estimates fit the data better. This validates

the conclusions we reached in Section 4.2.2.

Table 4.3: Parameter estimation of the Generalised Extreme Value
using MLE and Bayesian methods

Maximum Likelihood Estimation Bayesian Estimation

Estimates µ σ γ µ σ γ

Parameters 254.13 13.65 -0.59 249.73 13.67 -0.59
Confidence Intervals (252.95, 255.32) (12.71, 14.58) (-0.64, -0.55) (252.79, 255.57) (12.75, 14.67) (-0.64, -0.54)
Standard errors 0.60 0.48 0.03
Loglikelihood -2247.28
AIC 4500.56
BIC 4513.67

4.2.4 Goodness of Fit Tests

We employ the goodness of fit tests outlined in Section 3.7 to validate our findings in

the tests mentioned above. Using the R code displayed in Appendix A.3.1 and the

value of σµ obtained in Table 4.3, we obtain:

Kolmogorov-Smirnov statistic: 0.05 P-value: 0.074.
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In accordance with the hypothesis test in 3.72, we fail to reject the null hypothesis

that the data follow the Gumbel domain of attraction. The Kolmogorov-Smirnov test,

however, is known to perform appallingly with sample sizes above 1000. As a result,

we conduct the Likelihood Ratio Test.

4.2.4.1 The Likelihood Ratio Test

It is possible to compare the Gumbel model’s validity to the GEV model using a

different test that was proposed by Hosking (1984). The LR test adheres to the steps

discussed in Section 3.3.2.2. With the R code presented in Appendix A.6.3, we obtain

the following results:

LRT= 465.94 LRT*= 463.72 P-value= 7.45353e-103 .

The Likelihood Ratio test also rejects the Gumbel model at a 0.05 significance level.

4.2.5 Estimation of Other Parameters

With the parameter estimates acquired in the preceding subsection, we estimate other

quantiles for both estimation methods. It can be shown from Table 4.4 that parameter

estimates generated using both estimating techniques produced comparable outcomes.

But both models with γ = 0 generated return levels and periods with high exceedance

probability, as observed in Appendix B.2 and B.4, supporting the findings we made in

Section 4.2.2. Results from the GEV models with γ ̸= 0 were more credible. The Ako-

sombo dam’s water level rises to 275.54 and 275.66 feet at least once every century,

with a 1% chance of it occurring. We see lower water levels with increased exceedance

probabilities for shorter time periods. Using the MLE and Bayesian frameworks, we

estimated the right upper endpoints (i.e., highest estimated level) as 277.01ft and

277.25ft, respectively, based on the highest water level that has been recorded in

the Akosombo dam during the study period, which was 276.64ft. The corresponding

exceedance probability for the endpoints is extremely low (9.448319e-06 and 1.88541e-

10, respectively). Therefore, there is very little chance that the water level in the dam

will rise above its maximum operating water level (278.00ft).
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Table 4.4: GEV return level, period, upper endpoint and
exceedance probabilities

Return Periods
(Years)

Maximum Likelihood Bayesian
Return
Level

Exceedance
Probability

Return
Level

Exceedance
Probability

2 258.67 0.50 258.35 0.49
5 267.66 0.20 267.52 0.19
10 271.03 0.10 270.98 0.099
20 273.12 0.05 273.17 0.049
50 274.78 0.02 274.86 0.019
100 275.54 0.01 275.66 0.009

Value Exceedance
Probability Value Exceedance

Probability

Maximum water
level 277.54 0.00 277.54 0.00

Upper Endpoint
(XF )

277.01 9.448e-06 277.25 1.885e-10

4.2.6 Model Diagnostics

Figures 4.3 and 4.4 illustrate, respectively, how well the GEV model performs when

using ML and Bayesian techniques. Both empirical quantities 4.3a and model quan-

tiles 4.3b of the GEV model shown in Figure 4.3 illustrate a poor fit for the data. The

density plot also portrays a significant variation between the empirical model (den-

sity) and the fitted model. The same is observed in the Figure 4.4 obtained under the

Bayesian paradigm.

To test for convergence, Markov Chain Monte Carlo (MCMC) outputs obtained were

plotted using trace plots. Figure 4.5 shows trace plots of the scale, shape and location

parameter samples that were obtained from the posterior distribution. The plots

indicate that sampling was done fairly well from the posterior distribution.
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(a) (b)

(c) (d)

Figure 4.3: Diagnostic plots for GEV model obtained from
Bayesian Estimation
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(a) (b)

(c) (d)

Figure 4.4: Diagnostic plots for GEV model obtained from
Bayesian Estimation
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(a) (b)

(c)

Figure 4.5: Trace plots for GEV model obtained from Bayesian
Estimation
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4.3 The POT Method

4.3.1 Preliminary Analysis

Obvious concavity in the exponential Q-Q plots of the data, as well as the excesses

in (4.6), provide credible evidence that the data’s underlying limit distribution has a

lighter right tail (Beirlant et al., 2004). As a result, it suggests that the exponential

model is unsuitable for characterizing the excesses of the data. Given that the GPD

transforms into an exponential model when γ = 0, we anticipate that the data will

follow a GPD with γ < 0. Noting that the Exponential QQ plots are illustrative but

sensitive to interpretation, we subject the data to more rigorous statistical tests in

the following section to justify our decision to choose a GPD model with γ < 0.

(a) (b)

Figure 4.6: Exponential QQ plots of water level and excesses over
threshold

4.3.2 Statistical Choice of GPD model

Preliminary analysis for the possible GPD model suggested our data may not be

appropriately fitted with the exponential model. Thus, we perform three statistical

tests to determine the best domain of attraction for the GPD. As elaborated in the

previous chapter, we perform the Marohn, Gomes and Van Monfort, and the likelihood

ratio tests. The choice of an appropriate GPD model follows the hypothesis test:

”H0 : γ = 0 against H1 : γ ̸= 0.”

Recalling the random variable Υ = Υ1,Υ2, · · · ,Υn and the exceedances Γ = Γ1, Γ2, · · · , Γm,

we obtain the excesses ϱ over the selected threshold ϑ as (Γ − ϑ). In the context of
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this work, the random variable Υ represents the water level of the water impounded

by the Akosombo dam.

4.3.2.1 Gomes and Van Monfort Test

With suggestions in our preliminary analysis, we conduct the Gomes and Monfort test

based on the one-sided hypothesis in equation (3.30). The test based on the Gumbel

test statistic rejects the null hypothesis when Gst∗ ≤ Gα. See Section 3.4.2.1 for

the concise procedure for the test. The results obtained from the test are presented

in Table 4.5. Since our p-value (1.153889e-276) is less than 0.05, we reject H0 and

conclude that the Gumbel model is inappropriate for fitting the data.

Table 4.5: Gomes and Van Monfort test statistics

Statistics Value
GSt 0.9968
GSt* -6.4542
P-value 1.153889e-276

4.3.2.2 Marohn GPD Test

Using the R code presented in Appendix A.6.2 and the steps outlined in Section

3.4.2.2, we arrive at the findings that follow:

Reject Ho

t_m*= -9.235633 <= p-value= 1.283816e-20

The null hypothesis, H0, is rejected by the aforementioned findings at a 0.05 α level.

Therefore, modelling this data using the Gumbel model is unsuitable.

4.3.2.3 Likelihood Ratio Test (LRT)

Hosking (1984) test can be used to compare the Exponential model’s validity against

that of the GPD model. The LR test follows the steps outlined in Section 3.4.2.3.

The following outcomes are obtained using the R code shown in Appendix A.6.3:

[1] l= 237.67 l*= 236.92 p-value= 1.846293e-53

The Exponential model is likewise rejected by the Likelihood Ratio test at a 0.05

significance level.

University of Ghana http://ugspace.ug.edu.gh 



Chapter 4. Data Analysis 62

Summary

As a result, we can infer from our preliminary results, the Gomes and Van Monfort

Test, Marohn GPD Test, and the LRT that the Exponential model is unsuitable for

modelling this data. We can also agree that the γ < 0 is a better model for fitting

the data.

4.3.3 Threshold Selection

This approach assumes that we have a sufficiently high threshold for fitting the ap-

propriate limiting distribution of the data. All excesses over this specified threshold

are used to fit a limiting parametric distribution, from which parameters of inter-

est specified in our methodology, high quantiles, return levels and period would be

estimated.

As elaborated in Section (3.4.3), the choice of an acceptable threshold is facilitated

visually by the parameter stability plots and mean residual excess plots. Figure (4.7)

graphs a range of mean excess values against a range of ordered statistics. Figure

(4.8) displays the Maximum Likelihood estimates of the shape parameter γ against a

range of thresholds. In addition, Figure (4.9) displays the MLE estimates for the scale

parameter against a range of thresholds. All three plots evaluated suggest a threshold

value of 272 feet. This threshold yields 2138 exceedances, making up a proportion of

0.1219 (12.19%) of the data.
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Figure 4.7: Mean Excess Plot of daily water level
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Figure 4.8: Shape Parameter Stability Plot: Shape parameter
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surrounding the parameter estimations at each k indicate the 95%
confidence interval.
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4.3.4 Parameter Estimations

We have sufficient justification from the aforementioned section to proceed with Ex-

treme Value analysis. Following the procedure outlined in our third chapter, we

continue by fitting models for both the underlying truncated distribution and the

non-truncated distribution.

Using the Maximum Likelihood Estimation and the Bayesian Estimation, we estimate

the parameters for the appropriate limiting distribution (i.e.the shape and scale pa-

rameters). We further construct high quantiles and estimate for each their exceedance

probability, return period and return level. Table 4.6 presents the MLE and Bayesian

estimates for the GPD respectively. Both estimation methods produce similar results,

suggesting that the data follow the Weibull domain of attraction. From Table 4.6,

we observed that the GPD (γ ̸= 0), produces better estimates, with smaller standard

errors as compared to the GPD (γ = 0) as shown in Table B.3 . In addition, the

Weibull class produces estimates with bigger log-likelihoods, with smaller AIC and

BIC. Thus, the Weibull class fits the data better than the Exponential distribution,

as observed in Table 4.6.

Table 4.6: Parameter estimation of the generalized Pareto model
for the Akosombo dam with MLE and Bayesian methods

Maximum Likelihood Bayesian

Estimates σ γ σ γ

Estimated parameters 2.72 -0.47 2. -0.47
Standard errors 0.02 0.09 / /
Confidence Intervals (2.55, 2.87) (-0.51, -0.43) (2.55, 2.87) (-0.50, -0.43)

Log-likelihood -1937.55 /
AIC 3879.10 /
BIC 3889.39 /

4.3.5 Goodness of Fit Tests

We employ the goodness of fit tests outlined in Section 3.7 to validate our findings in

the tests mentioned above. Using the R code displayed in Appendix A.4.1 and the

value of σµ obtained in Table 4.6, we obtain:

Kolmogorov-Smirnov statistic: 0.98

University of Ghana http://ugspace.ug.edu.gh 



Chapter 4. Data Analysis 67

Cramer-Von Mises Statistic: 0.69 P-value: 1.594373e-05

Anderson-Darling statistic: 3.92 P-value: 2.863804e-05.

In order to reject the null hypothesis of an exponential distribution, the test statis-

tic obtained must be compared to the critical values listed by Lilliefors (1969). If the

test statistic exceeds the corresponding critical point, the null hypothesis is rejected.

Table 4.7 presents some generated critical values. With 1286 recorded excesses (m),

we obtain our critical values as:

0.96√
1268

= 0.0269, 1.06√
1268

= 0.0298 1.25√
1268

= 0.0351

For α = 0.1, α = 0.05 and α = 0.01 respectively.

We reject the null hypothesis that the data follow the exponential distribution for

all three alpha levels by comparing the calculated rejection values to the computed

Kolmogorov-Smirnov statistic, 0.98. However, it is universally acknowledged that the

Kolmogorov-Smirnov (K-S) test has a low sensitivity to tail-related deviations from the

hypothesized distribution. Thus, we support our results with the Cramer-Von Mises

and Anderson-Darling tests. At a 0.05 significance level, both the Cramer-Von Mises

and Anderson-Darling tests reject the null hypothesis with p-values of 1.594373e-05

and 2.863804e-05 respectively.

Table 4.7: Lilliefors (1969) Simulated critical values of the
Kolmogorov-Smirnov statistic adapted to the Exponential
distribution with unknown parameters.

Significance level for Dm

Statistic m 0.1 0.05 0.01

Dm

5 0.406 0.442 0.504
10 0.295 0.325 0.38
15 0.244 0.269 0.315
20 0.212 0.234 0.278
30 0.174 0.192 0.226

> 30 0.96/
√
(m) 1.06/

√
(m) 1.25/

√
(m)

4.3.6 Estimation of Other Parameters

We estimate other quantiles for both estimation methods using the parameter es-

timates obtained in the preceding subsection. Table 4.8 illustrates that parameter

estimates generated using both estimating techniques produced comparable results.

All models produced exceedance probabilities that increased as return levels and pe-

riods increased. However, the models γ ̸= 0 produce more insightful return levels,
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Table 4.8: GPD return level, period, upper endpoint and
exceedance probabilities

Return Periods
(Years)

Maximum Likelihood Bayesian
Return
Level

Exceedance
Probability

Return
Level

Exceedance
Probability

2 275.50 0.138 275.51 0.137
5 276.29 0.055 276.31 0.055
10 276.70 0.028 276.72 0.027
20 276.99 0.014 277.02 0.014
50 277.26 0.006 277.2883 0.005
100 277.39 0.003 277.43 0.003

Value Exceedance
Probability Value Exceedance

Probability

Maximum water
level 277.54 0.001 277.54 0.001

Upper Endpoint
(XF )

277.79 0 277.79 0

corroborating our findings in Section 4.3.2.3. This increases the credibility of results

from GPD models with γ ̸= 0. The water level at the Akosombo dam rises to 277.39

feet and 277.43 feet at least once every century, with a 0.2% chance of occurring. We

see lower water levels with increased exceedance probabilities for shorter periods.

We estimated the right upper endpoints (i.e., highest estimated level) using the

MLE and Bayesian frameworks to be 277.79ft and 277.79ft, respectively. During the

study period, the highest water level recorded in the Akosombo dam (i.e.277.54ft)

resulted in an exceedance probability of 0.01%. The endpoints have a corresponding

exceedance probability of 0.00%. As a result, there is no risk that the dam’s water

level will rise above its maximum operating water level (278.00ft).

4.3.7 Model Diagnostics

Figures 4.10 and 4.11 illustrate, respectively, how well the GPD model performs when

using ML and Bayesian techniques. Both empirical quantities 4.10a and model quan-

tiles 4.10b of the GPD model shown in Figure 4.10 illustrate a good fit for the data.

The fitted model and the empirical model (density) exhibit some striking similarities,

as shown by the density plot. Similar results are seen in the Figure 4.11 obtained

using the Bayesian framework.

Trace plots were used to plot the MCMC outputs in order to check for convergence.

Trace plots of the scale and shape parameter samples that were obtained from the
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(a) (b)

(c) (d)

Figure 4.10: Diagnostic plots for GPD Model obtained under the
MLE framework

(a) (b)

(c) (d)

Figure 4.11: Diagnostic plots for GPD Model obtained under the
Bayesian framework
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(a)
(b)

Figure 4.12: Trace plots for GPD model obtained from Bayesian
Estimation

posterior distribution are shown in Figure 4.12. The plots show that sampling from

the posterior distribution was done particularly well.
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4.4 The Right-Truncated POT Model

4.4.1 Preliminary Analysis

The data belongs to the Weibull domain of attraction according to preliminary anal-

ysis and the fitted GEV and GPD models. In light of this, Hill’s estimator suggested

in Section 3.5.3 is inappropriate for this data. Figure 4.15 illustrates the subpar per-

formance. Although inconclusive, we can observe from Figure 4.13 that the truncated

distribution fits the data better than the original non-truncated distribution. As a

result, we fit the RT-POT with γ = 0 and γ ̸= 0 parameters.

Figure 4.13: Pareto plots from Truncated and Original
Distributions)

4.4.2 Statistical Choice For Truncated GPD Models

4.4.2.1 Likelihood Ratio Test

As explained in Section 3.5.1.1, we test the validity of the RT-POT model with γ = 0

against that of the RT-POT model with γ ̸= 0. The LR test follows the steps outlined

in Section 3.4.2.3. Using the R code displayed in Appendix A.6.3, the following results

were attained:

[1] l= 219.3 l*= 218.61 p-value= 1.817952e-49

The RT-POT model with γ = 0 is rejected by the Likelihood Ratio test at a 0.05

significance level.
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4.4.2.2 Test between Truncated and Non-truncated Distributions

We reject the null hypothesis that the Akosombo dam data is not truncated at the

tails by following the process described in Section 3.5.1.2 and the code provided in

Appendix A.10. Figure 4.14 illustrates the decision, and further buttressed with the

mean p-values of the test as 0.02749057

Furthermore, Figure 4.14 clearly shows that a majority of k falls below the baseline

p-value (0.05). As a result, we can definitively reject H0 and assert that truncation

exists in the data.

Figure 4.14: Test of Truncation effect

4.4.3 Parameter Estimation

To compare the efficiency of the truncated GPD described in Section 3.5 to the regular

GPD, we also model the Akosombo dam data using the truncated GPD. In order to

provide a relative position with the non-truncated GPD, we chose the threshold, u,

at 272 feet. The parameter estimates for the truncated POT are given in Table 4.9.

The shape parameter estimate (γ = −0.47) of the Right POT indicates that the

Weibull domain of attraction is most significant for the Akosombo dam data. The

upper endpoints are estimated to be 277.60 and 285.34 for the RT-POT(γ ̸= 0) and
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RT-POT(γ = 0) respectively. The estimated odds of truncation, DT , were the same

for both models(0.002), suggesting that the likelihood that the truncated probability

mass will remain within the scope of the original underlying distribution is very low.

Comparing the log-likelihood, AIC and BIC estimates, it can be clearly observed that

the Right Truncated POT with γ ̸= 0 fits the data better than the model with γ = 0.

After computing the tail index γ using the ML and Hill estimators, we can effortlessly

use them to determine higher quantiles.

Table 4.9: Maximum Likelihood parameter estimation of the
Right-Truncated generalized Pareto and Exponential models for the
Akosombo dam

Truncated Generalised Pareto Model (γ ̸= 0) Truncated Exponential Model (γ = 0)

Estimates σ γ τ σ γ

Estimated parameters 2.65 -0.47 -0.168 1.86 /
Standard errors / 0.03 0.006 0.05 /
Confidence Intervals / (-0.49, -0.46) (-0.15, -0.16) (1.76, 1.97) /
Log-likelihood -1945.94 -2055.59
AIC 3895.88 4113.18
BIC 3906.19 4125.47
Tk 277.60 285.34
DT 0.002 0.002

4.4.4 Estimation of Other Parameters

We estimate additional quantiles for both estimation techniques using the parameter

estimates obtained in the preceding Subsection. Table 4.10 demonstrates that the

model produced by the RT-POT with γ ̸= 0 had better parameter estimates. This

model’s log-likelihood was higher (-1945.94). The model with γ = 0 is a better fit,

as shown by the AIC and BIC, which quantitatively measure how much information is

lost in a model. Consequently, we will continue with the RT-POT with γ ̸= 0. Table

4.4 shows that there is a 0.01% chance of the water level at the Akosombo dam rising

to 277.13 feet at least once every century. Lower water levels are observed along

with shorter exceedance probabilities. Based on the highest water level ever recorded

in the Akosombo dam during the study period, which was 277.54ft, we estimated

the right upper endpoints (i.e., highest estimated level) as 277.60ft using the code in

Appendix A.9.2. The upper endpoint’s corresponding exceedance probability is very

unlikely (i.e. 0.0008). In light of this, there is a very low likelihood that the dam’s

water level will rise above its maximum operating water level (278ft).
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Table 4.10: Return period, Return level, exceedance probability

Return Period (Years)
Truncated POT (γ ̸= 0)

Return level Exceedance Probability
2 273.57 0.50
5 275.04 0.199
10 275.80 0.099
20 276.36 0.049
50 276.87 0.019
100 277.13 0.009

Value Exceedance Probability
Maximum water level 277.54 0.0008
Upper Endpoint (XF ) 277.60 4.465e-05

(a) (b)

Figure 4.15: Shape parameter estimates γ for the Truncated
distribution using MLE and the Hill estimator

Model fitting the Akosombo dam data using the RT-POT with γ ̸= 0, we observe that

the shape parameter, γ, remains unsteady until it stabilizes below -0.4 for increasing

values of k.

(a) (b)

Figure 4.16: Estimates of Tk evaluated for each k. Figure (A)
represents γ ̸= 0. Figure (B) represents γ = 0.

From Figure 4.16, we see that both models estimate the endpoints well. However,

Figure 4.16a produces an upper endpoint closer to the maximum water level (i.e.

277.54 ft) recorded in the Akosombo dam till date. The model with γ = 0 yields

an upper endpoint which greatly exceeds the maximum water level recorded in the
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Akosombo dam.

Figure 4.17: Odds of Truncation for γ ̸= 0

The odds of truncation,DT , for increasing values of k follows an unstable pattern for

lower values of k, as observed in Figure 4.17. DT stabilizes at odds very closes to zero,

indicating that the the odds of the truncated probability mass under the untruncated

distribution Y is almost negligible. Hence, the probability that the truncated proba-

bility mass will remain within the scope of the original underlying distribution is very

small.

Using the maximum water level as a high quantile, we observe from Figure 4.18 that

for higher values of k, the exceedance probabilities remains stable with negligible prob-

abilities. Simply, this signals that there is a very low probability that the maximum

water level would be surpassed. Figure 4.19 shows estimates of large quantiles for

small exceedance probabilities such as 0.01. For higher values of k, the truncated

distribution remains stable between the heights of 277.0 and 277.2 feets. As observed

in Figure 4.20, the reconstructed parent distribution follows a similar pattern as the

truncated distribution, but heavy on the first 450 values of k. The pattern stabilizes

between the water levels of 277.0 and 277.5 feets.
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Figure 4.18: Estimates of small exceedance probabilities of high
quantiles (277.54 ft), for γ ̸= 0

Figure 4.19: Estimates of large quantiles of the truncated
distribution associated with small exceedance probabilities (0.01%),
for γ ̸= 0
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Figure 4.20: Estimates of large quantiles of the parent distribution
associated with small exceedance probabilities (0.01%), for γ ̸= 0
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4.5 Summary of Chapter

This chapter obtained parameter estimates of the shape, scale and location parameters

of the GEV and GPD under both the Bayesian and classical frameworks. Parameter

estimates of the shape, scale and location parameters of RT-POT were also obtained

using MLE. Extreme quantiles under each distribution were estimated using the two

estimation approaches. We also access the accuracy of the estimates using standard

errors and confidence intervals. Trace plots were also used to access the convergence

of the MCMC samples. The study found that all the studied distributions yielded

negative estimates of the shape parameter. This observation led to the conclusion

that the Hill estimation method was unsuitable for further application in this study

as it is valid for positive shape parameters.
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Chapter 5

Conclusion and Recommendations

This chapter focuses on the summary of our results and conclusions based on the

study objectives. It ends with appropriate recommendations based on the findings

and conclusions. In this paper, we attempt to fit three distinct distributions to model

the extreme elevations of the Akosombo dam, based on available data. We employ

Extreme Value Theory to fit the GEV, GPD and RT-POT distributions to model the

Akosombo dam data. Data used for the study comprised of water levels of the Ako-

sombo dam, between the periods January 1965 and December 2013. The Maximum

Likelihood, Bayesian and Hill estimators were used.

5.1 Summary of Findings

This study constituted three objectives. The primary objective was to provide a model

that would describe the extreme elevation of the Akosombo dam, taking into account

truncation. Before embarking on this objective, we tested the data for the possibility

of truncation at high elevations. The test showed that the data was truncated at high

levels, giving us enough evidence to proceed with this objective. Under this objective,

two conditions were evaluated, based on the shape parameter. Based on preliminary

findings, we concluded that the data followed the RT-POT distribution with γ ̸= 0,

specifically γ < 0. Thus the Hill estimator was excluded as it is appropriate for

modelling data with a non-negative shape index. To contrast the models in terms of

performance, we fit the available data to the RT-POT model with γ = 0 and γ < 0.

A threshold of 272 feet was selected based on mean excess and parameter stability

plots. The model with γ < 0 was selected as it had a bigger Log-likelihood and smaller

AIC and BIC estimates. The shape parameter was estimated as -0.47 with standard
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error 0.03 and confidence intervals (-0.49, -0.46). The odds of truncation, which

evaluates the likelihood that the truncated probability mass will remain within the

scope of the original underlying distribution was estimated as 0.002.

Our second goal compares the fitted Right-Truncated Peaks Over Threshold to

the current GEV and GPD distributions. We performed various statistical tests using

the Gumbel test on GEV models before fitting the GEV distribution to the data. The

Gumbel test demonstrated that the Gumbel model γ = 0 is unsuitable for modelling

this data at a 5% significance level. According to Table 4.3, the GEV model with

the Weibull domain of attraction is the best suitable for fitting the data based on the

log-likelihoods, AIC, and BIC of the two GEV models fitted. Both the Bayesian and

ML estimators produced estimates that were approximately similar.

When evaluating the chosen model’s goodness of fit, the Kolmogorov-Smirnov test

stated in Section 3.7 revealed that, at a 95% level of confidence, the Weibull model is

the most appropriate model for fitting the data. The Weibull model was found to be

appropriate with a 95% level of confidence by the Likelihood Ratio test.

We carried out some statistical tests for GPD models using the Gumbel test before

fitting the GPD distribution to the data. The Gumbel test demonstrated that the

Gumbel model (γ = 0) is unsuitable for modelling this data at a 5% significance level.

Thus, the GPD model with the Weibull domain of attraction is the best suitable for

fitting the data, as shown in Table 4.6 and Table B.3, according to the log-likelihoods,

AIC, and BIC of the two GPD models that were fitted. Estimates produced by the

Bayesian and ML estimators were remarkably similar.

Diagnostic plots for all estimators indicated that the data were well-fitted. The

GEV model obtained was examined using the Kolmogorov-Smirnov test. A GEV

model with a negative EVI (γ < 0) was chosen as a result of the test. A GPD model

with a negative EVI (γ < 0) was likewise chosen by the Marohn GPD, LRT, and the

Gomes and Van Monfort diagnostic tests. The Weibull model is the most effective

model for fitting the data when assessing the goodness of fit of the chosen model,

according to the Kolmogorov-Smirnov test provided in Section 4.3.5.

To choose between the γ = 0 and γ ̸= 0 models for the RT-POT, we similarly

performed the Likelihood Ratio Test. Our results indicate that the γ ̸= 0 model

provided a better fit to the data. The Akosombo dam data is truncated at the tails,
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according to the test comparing truncated and non-truncated distributions, which also

demonstrated this at a 95% significance level. In comparison to the γ = 0 model, the

γ ̸= 0 model provides a better fit to the data, according to the parameter estimates

shown in Table 4.9.

The RT-POT model was demonstrated to fit the data better since it had better

estimates when the AIC, BIC, and log-likelihoods of the GEV, GPD, and RT-POT

models were compared.

Estimating high quantiles (truncated and underlying non-truncated), exceedance

probability, and return periods are our third objective. The following is a presentation

of estimates obtained using the ML and Bayesian approaches. With the GEVd, the

Akosombo dam’s water level rises to 275.54 and 275.66 feet at least once every century,

with a 1% chance of happening. The highest estimated level for the right upper

endpoints (i.e., highest measured level) was determined to be 277.01 feet and 277.25

feet, respectively, based on the highest water level ever recorded in the Akosombo

dam during the study period, which was 277.54 feet. The probability of exceeding

the endpoints is very low (9.45 ∗ 10−6and1.89 ∗ 10−10). There is therefore very little

chance that the dam’s water level will rise over its highest operational level (278 ft)

using either of the estimation techniques.

For the GPD, the Akosombo dam’s water level rises to 275.54 and 275.77 feet

at least once every century, with a 1% chance of happening, according to the ML

and Bayesian estimation methods. The right upper endpoints were determined to be

277.01 feet and 277.25 feet, respectively, based on the highest water level ever recorded

in the Akosombo dam during the study period, which was 277.54 feet. The resulting

exceedance probability for the endpoints is very low (9.45 ∗ 10−6and1.89 ∗ 10−10)

respectively. As a result, there is very little chance that the dam’s water level will rise

over its highest operational level (278ft).

The Likelihood Ratio Test revealed that the RT-POT with γ ̸= 0 provided a better

fit to the data. We also reject the null hypothesis that the Akosombo dam data is not

truncated at the tails, as explained in Section 4.4.2. We chose a threshold of 272 feet

and estimated the upper endpoint as 277.60 feet, which is a few inches lower than the

measured height of the crest of the Akosombo dam (278.00 feet). Given that the right

endpoint estimate at the chosen threshold value is lower than the maximum operating
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level of the dam, it is possible to calculate exceedance probabilities and return periods

near the maximum operating level. A negligible exceedance probability of (4.47∗10−5)

is associated with the upper endpoint. The water level at the Akosombo dam has a

0.01 percent chance of rising to 277.13 feet at least once every century, according

to the exceedance probability. Ocran et al. (2017) and Minkah (2016) obtained the

right endpoints greater than the maximum operating water level (279.07 feet and

280.180 feet respectively). We also obtained an upper endpoint of 277.60 feet, a few

inches lower than the maximum operating water level. This difference is attributed

to the marginal difference in the shape parameters obtained. Ocran et al. (2017)

and Minkah (2016) obtained (γ = −0.47 and γ = 0.30) respectively. The shape

parameter, γ, obtained in this study is -0.47. However, our results are consistent in

terms of exceedance probabilities.

Minkah (2016) showed that an increase in the maximum water level of the dam will

reduce the return period of floods, specifically the 100-year return period. Similarly,

in this current study, it is shown that even though the probability of exceeding the

maximum operating water level is negligible, extending the dam’s height may decrease

the return period of floods.

5.2 Conclusion

We are able to reiterate a few key aspects of the findings in the previous chapter.

Analytically and experimentally, we have demonstrated that when applied to samples

of appropriate sizes, the findings produced by the Bayesian and classical frameworks

are comparable. The numerical approaches used by the methodologies are the only

thing that stands out as different. We should point out that, despite its convenience,

applying prior distributions enhances parameter estimates and quantifies hypotheses,

as evidenced by findings compared to the previous chapter.

For all three distributions under study, the shape and scale parameters were esti-

mated using the two methods, and the results were remarkably similar. Smith (1985)

demonstrated that ML estimators are regular and satisfy common asymptotic criteria

for γ > −1
2 . The EVI estimate obtained for all three distributions was marginally

University of Ghana http://ugspace.ug.edu.gh 



Chapter 5. Conclusion and Recommendations 83

greater than -0.5. Our estimators are therefore regular and exhibit common asymp-

totic features.

The upper endpoints derived from all of the studied distributions were considerably

below the 278-foot maximum operational level of the dam. Therefore, under the

prevailing conditions, it is highly improbable that the dam’s water level will overflow.

We can reiterate some conclusions using the highest water level that was recorded

in the dam at the time of the study. Exceedance probabilities for some elevation levels

were calculated using the estimated upper endpoint. These probabilities provided

information on the likelihood that the water level will rise above the chosen elevation

levels for dam management. According to the analysis, there is very little chance that

the water level will rise over the maximum value that has been recorded (277.54).

We must note that while our findings indicated that the Akosombo dam data

is truncated at high levels, Minkah (2016) and Ocran et al. (2017), who fitted the

Akosombo dam data to the GPD and GEV distributions respectively, also achieved

similar findings. Due to the catastrophic nature of extreme events, estimates of pa-

rameters with smaller confidence intervals are highly preferred. Thus, based on the

smaller confidence intervals of the Truncated-POT, we can conclusively say that the

Right-POT model is better for predicting the Akosombo dam data.

5.3 Recommendations & Limitations

• There is a small chance that the water would exceed the dam’s crucial maximum

water level. Engineers of the dam may consider increasing the height of the dam

to avoid any severe unanticipated events.

• The study is limited by the use of incomplete historical data records, only con-

sidering water levels between 1965 and 2013. To make the results more reliable,

data with a larger period and a more complete water level catalogue are needed.

5.4 Areas for Future Studies

• The study focused on truncation at very high-water levels that could result in

flooding and a breach of the dam. Therefore, we focussed on the right tail of
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the distribution of water levels. In the future, we can look at the left tail which

could address the closure of the dam due to inadequate water levels.

• A goal of this work was to apply Bayesian estimation methods for the RT-

POT distribution. However, due to time constraints, attempts did not fully

materialize.

• The present study assumes stationarity concerning the impact of climatic con-

ditions on dam water levels. Thus, incorporating covariates like rainfall, tem-

perature, inflow volume, and discharge volume could enhance estimation and

statistical inference. However, further research is required to assess the advan-

tages of including these covariates in the findings of the current study.
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Appendix A

R Software codes

Project Data

GEV data

library(readxl)

Elevations_Max<- read_excel("Akosombo Daily Upstream Elevations Max.xlsx",

sheet = "GEV")

GEVData<-data.frame(unlist(Elevations_Max,use.names = FALSE))

GEVData<-sort(GEVData[!is.na(GEVData)])

GPD data

Projdata<-read.csv(file="CombinedData.csv", header = TRUE)

ProjectData<-data.frame(unlist(Projdata,use.names = FALSE))

ProjectData<-ProjectData[!is.na(ProjectData)]

waterlvl<-sort(ProjectData)

A.1 Plots

A.1.1 Summary Plots

### Boxplot of data

par(mfrow=c(2,2))

Box<-function(x){

par(mar=c(4,4,1,1))
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boxplot(x$JAN,x$FEB,x$MAR,x$APRIL,x$MAY,x$JUNE,x$JULY,x$AUG,x$SEPT,x$OCT,

x$NOV,x$DEC, xlab = "Months", ylab = "Water level(Ft)",

ylim = c(230,280), col=heat.colors(12),

names = c("Jan","Feb","Mar","April","May","June","July",

"Aug","Sept","Oct","Nov","Dec"))}

Box(Projdata)

### Histogram of data

histdat<-function(x){

par(mar=c(4,4,1,1))

hist(x,breaks=50,main="", xlab="Water Levels (in feet)",col="purple",freq=FALSE)

xfit<-seq(min(x),max(x),length=50); dfunc<-dnorm(xfit,mean=mean(x),sd=sd(x))

lines(xfit, dfunc, col="black", lwd=2)}

histdat(waterlvl)

### Scatter plot

scatdat<-function(x){

par(mar=c(4,4,1,1))

plot(x,xlab = "Days", ylab="Water levels", col=ifelse(x>240,"red","dodgerblue"))}

scatdat(ProjectData)

### Exponential Q-Q plot

par(mar=c(4,4,1,1))

qqplot(qexp(ppoints(length(waterlvl))), line=TRUE,

col="dodgerblue", xlab= "", ylab = "", main="",waterlvl)

title(xlab= "Exponential plotting position", line = 3,

cex.lab=1.2, family="sans")

title(ylab= "Water level", line = 3,

cex.lab=1.2, family="sans")

A.1.2 Gumbel QQ Plot and Exponential QQ Plot for GEVd

QQ<-function(data, method = c("Gumbel", "Exponential"))
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{ data <- data

mi<-length(data)

ii<-c(1:mi)

l<-ii/(mi+1)

if (method == "Exponential"){

QGEV<-sapply(l, FUN = function(x) -log(1-x))

plot(QGEV,data,pch=18, col= "orange", xlab=expression(-log(1-p[i])),

ylab=expression(y[i:m]))

grid() }

else {

QGEV<-sapply(l, FUN = function(x) -log(-log(x)))

plot(QGEV,data,pch=18, col= "orange", xlab=expression(-log(-log(p[i]))),

ylab=expression(y[i:m]))

grid()}}

par(mar=c(4,4,1,1))

par(mfrow=c(1,2))

QQ(GEVData, method = "Exponential")

QQ(GEVData, method = "Gumbel")

A.1.3 Sample Mean Excess Plot

library(evir)

par(mar=c(4,4,1,1))

Meplot<-meplot(ProjectData, main = "", type= "l")

grid(25,25,lwd=0.0005,col = "lightblue")

A.1.4 Shape Stability Plot

library(evmix)

par(mar=c(4,4,1,1))

shapeplot<-tshapeplot(ProjectData, tlim = NULL,legend.loc = "bottomleft",

main = "", xlab = "Threshold u", ylab = "Shape Parameter")

grid(25,25,lwd=0.0005,col = "lightblue")
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A.1.5 Scape Stability Plot

par(mar=c(4,4,1,1))

tscaleplot<-tscaleplot(ProjectData, tlim = NULL,

legend.loc = "bottomleft", main = "", xlab = "Threshold u",

ylab = "Modified Scale Parameter",alpha = 0.05)

grid(25,25,lwd=0.0005,col = "lightblue")

A.2 Augmented Dickey-Fuller (ADF) Test

A.2.1 ADF Test for GEV data

library(tseries)

adf.test(sort(GEVData))

A.2.2 ADF Test for GP data

library(tseries)

adf.test(waterlvl)

#####################################################

################# GOODNESS OF FIT TESTS ############

#####################################################

A.3 FOR GEV

A.3.1 Kolmogorov-Smirnov Test

library(EnvStats)

gofTest(GEVData, distribution = "gev",test = "ks")

A.4 FOR GPD

A.4.1 Kolmogorov-Smirnov Test

K.S<-function(data, u){

if(!require(stats4)){
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install.packages("stats4")

library(stats4)}

u<-u

uplus<-data[which(data>u)]

excess<-uplus-u

n<-length(excess)

ii<-c(1:n)

Exp<-function(lambda){

ll <- n * log(lambda) - lambda*sum(excess)

return(-ll) }

suppressWarnings(

exp.est <- mle(Exp, start=list(lambda=mean(excess))))

lambda<-as.numeric(exp.est@coef)

rate<-1/lambda

Dm<- max(abs(1-exp(-(excess/rate)) - 1/ n),

abs(1-exp(-(excess/rate)) - (ii-1)/ n))

return(cat("Kolmogorov-Smirnov statistic: ",Dm,"\n"))}

KolSmir<-K.S(data = ProjectData, u = 272)

A.4.2 Cramer Von Mises Test

CVMTest<-function(data, u){

if(!require(eva)){

install.packages("eva")

library(eva)}

u<-u

uplus<-data[which(data>u)]

excess<-uplus-u

me<-length(excess)

CVMT<- gpdCvm(excess)

CVMstat<-CVMT$statistic

CVMpval<-CVMT$p.value

return(cat("Cramer-Von Mises Statistic: ",CVMstat,"\n",
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"P-value: ",CVMpval,"\n"))}

CVMTest(data = ProjectData, u = 272)

A.4.3 Anderson- Darling Test

ADTest<-function(data, u){

if(!require(eva)){

install.packages("eva")

library(eva)}

u<-u

uplus<-data[which(data>u)]

excess<-uplus-u

me<-length(excess)

ADT<-gpdAd(excess)

ADstat<-ADT$statistic

ADpval<-ADT$p.value

return(cat("Anderson-Darling statistic: ",

ADstat,"\n","P-value: ",ADpval,"\n"))}

ADTest(data = ProjectData, u = 272)

#####################################################

######### STATISTICAL CHOICE OF MODELS ##########

#####################################################

A.5 FOR GEV

A.5.1 Gumbel Test

GumTest<-function(data){

if(!require(goft, evd)){

install.packages("goft", "evd")

library(goft, evd)}

data<- data

mi<-length(data)
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bm<-(log(mi)+log(log(2)))/(log(log(mi))-log(log(2)))

am<-1/(log(log(mi)))

GTS<-ev_test(data, dist = "gumbel", method = "ratio",

N= 10000)

GTstar<- (GTS$statistic - bm)/am

pvalue<-pgumbel(GTstar)

cat("[1] Test Statistic=",GTS$statistic," Critical Value*=",GTstar,

" p-value=",pvalue,"\n")}

GumTest(data = GEVData)

A.6 FOR GPD

A.6.1 Gomes and Van Monfort(1986) test

GMT<-function(data,u){

u<-u

uplus<-data[which(data>u)]

excess<-uplus-u

n<-length(excess)

Gvm<-uplus[n]/uplus[floor(n/2)+1]

Gvmstar<-log(2)*Gvm-log(n)

Pval<-evd::pgumbel(Gvmstar)

Decision<-if (Gvmstar<=Gvm){cat("Reject Ho","\n",

" Gm*=",Gvmstar, "<=",

" Gm=",Gvm,"\n",

"P-value=",Pval,"\n")

} else {

cat("Fail to reject Ho","\n",

" Gm*=",Gvmstar, ">=",

" Gm=",Gvm,"\n",

"P-value=",Pval,"\n")}

return(Decision)

}
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GMT(data = ProjectData, u= 272)

A.6.2 Marohn (2000) GPD Test

Marohn<-function(data,u){

u<-u

uplus<-data[which(data>u)]

excess<-uplus-u

n<-length(excess)

Mar<-0.5*((var(uplus)*(n-1)/n)/(mean(uplus)-u)^2-1)

Marstar<-sqrt(n)*Mar

pvaluniMarstar<-pnorm(Marstar)

Decision<-if (Marstar<=pvaluniMarstar){cat("Reject Ho","\n",

" t_m*=",Marstar, "<=",

" p-value=",pvaluniMarstar,"\n")

} else {

cat("Fail to reject Ho","\n",

" t_m*=",Marstar, ">=",

" p-value=",pvaluniMarstar)}

return(Decision)

}

Marohn(data = ProjectData, u = 272)

A.6.3 Likelihood Ratio Test For GEV, GPD and tGPD

LRT<-function(data, type = c("GEV", "GPD", "tGPD"), u = NULL, tGPDLL = NULL, tGPD0LL = NULL)

{

if(!require(extRemes,ismev)){

install.packages("extRemes","ismev")

library(extRemes,ismev)}

data<- data

uplus<-data[which(data>u)]

excess<-uplus-u
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n<-length(excess)

if (type =="GEV")

{

me<-length(data)

Gumb<-fevd(data, type = "Gumbel", method = "MLE")

GEVm<-ismev::gev.fit(data)

loglikgum<--Gumb$results$value

loglikgev<--GEVm$nllh

LRgev<-round(-2*(loglikgum-loglikgev),2)

LRgevstar<-round(LRgev/(1+2.8/me),2)

pvalueLRgev<-pchisq(LRgevstar,1,lower.tail=F)

print(cat("LRT=",LRgev," LRT*=",LRgevstar," P-value=",pvalueLRgev,"\n"))

} else

if (type == "GPD")

{

if(!is.null(u)) u <- u

if(!require(stats4)){

install.packages("stats4")

library(stats4)}

ii<-c(1:n)

Exp<-function(lambda){

ll <- n * log(lambda) - lambda*sum(excess)

return(-ll)

}

suppressWarnings(

exp.est <- mle(Exp,

start=list(lambda=mean(excess))))
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Expll<--exp.est@min

loglikgpd<--GP$Loglikelihood

n<-length(excess)

LRT<-round(-2*(Expll-loglikgpd),2)

LRTstar<-round(LRT/(1+4/n),2)

pvalueLRT<-pchisq(LRTstar,1,lower.tail=F)

print(cat("[1] l=",LRT," l*=",LRTstar," p-value=",pvalueLRT,"\n"))

}

if (type == "tGPD")

{

if(!is.null(tGPD0LL)) tGPD0LL <- tGPD0LL

if(!is.null(tGPDLL)) tGPDLL <- tGPDLL

n<-length(excess)

LRT<-round(-2*(tGPD0LL-tGPDLL),2)

LRTstar<-round(LRT/(1+4/n),2)

pvalueLRT<-pchisq(LRTstar,1,lower.tail=F)

print(cat("[1] l=",LRT," l*=",LRTstar," p-value=",pvalueLRT,"\n"))

}

}

LRT(data = GEVData, type = "GEV")

LRT(data = ProjectData, type = "GPD", u = 272)

LRT(data = ProjectData, type = "tGPD", u = 272, tGPD0LL = Est$Loglikelihood, tGPDLL = likk$LL)

A.7 GEV Parameter Estimation

A.7.1 Maximum Likelihood Estimation

For (γ ̸= 0)
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library(extRemes)

fitGEVMLE<-fevd(GEVData, type = "GEV", method = "MLE")

fitGum<-fevd(GEVData, type = "Gumbel", method = "MLE")

ci(fitGEVMLE, type = "parameter")

ci(fitGum, type = "parameter")

A.7.2 Bayesian Estimation

For (γ = 0)

init <- c(1,1)

logpost0<-function(data, params)

{ n<-length(data)

sigmar<-params[1]

mu<-params[2]

ll<--n*(log(sigmar)) - sum(exp(-((data-mu)/sigmar)))-sum(((data-mu)/sigmar))

const<-0.5772156649

logprior<-1/(sigmar*exp(-const))

logpost<-ll+ logprior

return(logpost)}

Est <- ru(logf = logpost0, d = 2, n = n, init = init,

lower = 0, rotate = FALSE, trans = "BC", data = GEVData,

a_method = "Nelder-Mead", var_names = c("Sigma", "Mu"))

summary(Est)

For (γ ̸= 0)

library(revdbayes)

prior_dist <- set_prior("mdi", "gev", min_xi = -1)

post_dist <- rpost(50000, "gev", GEVData, prior_dist)

summary(post_dist)
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A.8 GPD Parameter Estimation

A.8.1 Maximum Likelihood Estimation

For both (γ ̸= 0) and (γ = 0)

MLEGPD<-function(data, u, type =c("Exponential", "GP"))

{

if(!require(data.table)){

install.packages("data.table")

library(data.table)

}

u<-u

uplus<-data[which(data>u)]

excess<-uplus-u

n<-length(excess)

if (type == "Exponential")

{

MLE.Exp<-function(data, params)

{

sigmar<-params[1]

logl<--n*log(sigmar)-(1/sigmar)*sum(excess)

return(-logl)

}

OptExp<-optim(f=MLE.Exp,

par=0.1,

lower = 0,

upper = 10,

hessian=TRUE,

method = "Brent",

# Custom Inputs

data = data)

MLEGPD_par <- OptExp$par

invMat<- solve(OptExp$hessian)

University of Ghana http://ugspace.ug.edu.gh 



Appendix A. R Software codes 97

MLEGPD_SE <- sqrt((diag(invMat)))

MLE <- data.table(param = c("sigma"),

estimates = MLEGPD_par,

se = MLEGPD_SE)

print(MLE)

}

else if (type == "GP")

{

MLE.GPD<-function(data, params)

{

xi<-params[1]

sigmar<-params[2]

#if (xi == 0 | sigmar <= 1)

# return(1e7)

logl<-(-n*log(sigmar)-((1/xi)+1)*sum(log(1+(xi*excess)/sigmar)))

return(-logl)

}

MLEGPD_opt <- optim(fn=MLE.GPD,

par=c(1,3),

lower = c(-Inf, -Inf),

upper = c(Inf, Inf),

hessian=TRUE,

method = "Nelder-Mead",

# Custom Inputs

data = data)

MLEGPD_par <- MLEGPD_opt$par

invMat<- solve(MLEGPD_opt$hessian)

MLE_SE <- sqrt((diag(invMat)))

MLE <- data.table(param = c("xi", "sigma"),

estimates = MLEGPD_par,

se = MLE_SE)
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print(MLE)

}

}

####### Estimations

GPExp<-MLEGPD(data = ProjectData, u = 272, type = "Exponential")

GP<-MLEGPD(data = ProjectData, u = 272, type = "GP")

####### Exp Parameters

scaleGPExp<-GPExp$estimates

####### GP parameters

shapeGPD<-GP$estimates[1]

scaleGPD<-GP$estimates[2]

###### Confidence Intervals ########

############################################

conf.l <- 0.95

# For GP

critval <- qnorm((1 + conf.l)/2)

invfishGP<-GP[[2]]

shapeGPD + c(-1, 1) * critval * sqrt(invfishGP[1,1])

scaleGPD + c(-1, 1) * critval * sqrt(invfishGP[2,2])

### For Exponential

critval <- qnorm((1 + conf.l)/2)

invfishExp<- GPExp[[2]]

scaleGPExp + c(-1, 1) * critval * sqrt(invfishExp[1,1])
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A.8.2 Bayesian Estimation

For γ ̸= 0

library(revdbayes)

u<-272

GPDprior_dist <- set_prior(prior = "mdi", model = "gp", min_xi = -1)

GPDpost_dist <- rpost(n = 10000, model = "gp", prior = GPDprior_dist,

data = ProjectData, thresh = u)

summary(GPDpost_dist)

A.9 Truncated RT-POT Parameter Estimation

For γ ̸= 0

A.9.1 Parameter Estimation

myTruncorig<-function (data, start, eps = 10^(-10),...)

{

X <- sort(data)

n <- length(X)

gamma <- numeric(n)

tau <- numeric(n)

K <- 1:(n - 1)

conv <- numeric(n)

start_orig <- start

for (k in (n - 1):2) {

if (k != (n - 1)) {

start <- c(gamma[k + 1], tau[k + 1])

}

E <- X[n - (1:k) + 1] - X[n - k]

E[1] <- X[n] - X[n - k]

lik <- function(x) {

gammapar <- x[1]

taupar <- x[2]
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a <- 1 + taupar * E[-1]

beta <- 1 - (1 + taupar * E[1])^(-1/gammapar)

if (gammapar/taupar < eps | min(a) < eps | 1 + taupar *

E[1] < eps) {

L <- -10^6

}

else {

L <- (k - 1) * log(taupar/gammapar) - (1 + 1/gammapar) *

sum(log(a)) - (k - 1) * log(beta)

}

return(-L)

}

if (!is.numeric(lik(start)) | !is.finite(lik(start)) |

is.nan(lik(start)) | lik(start) == 10^6) {

start <- start_orig

}

sol <- optim(start, fn = lik, method = "Nelder-Mead", hessian = T)

conv[k] <- sol$conv

gamma[k] <- sol$par[1]

tau[k] <- sol$par[2]

invMat<- solve(sol$hessian)

MLE_SE <- sqrt((diag(invMat)))

AIC<-(2*2) - 2*-sol$value

BIC<- - 2*-sol$value +2*log(n)

critval <- qnorm((1 + 0.95)/2)

c.int<- sol$par + c(-1, 1) * critval * sqrt(invMat)

names(sol$par)<- c("Gamma","Tau")

#plot(x = k, y = sol$par[1], type = "l", xlab = "k", ylab = "gamma")

return(list(Estimates = sol$par, Confidence_Interval = c.int,

LL = -sol$value, SE= MLE_SE, AIC = AIC, BIC = BIC))

} }
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myfun<-myTruncorig(prodat, start = c(1, 1), eps = 10^(-10),

plot = TRUE, add = FALSE, main = "",

ylim=c(0,4), xlim=c(120,450))

gam<- as.numeric(myfun$Estimates[1])

taup<-as.numeric(myfun$Estimates[2])

sig<-gam/taup

MLE Estimator For γ as a Function of k

par(mar=c(4,4,1,1))

TruncMLE<-function(data, u){

prodat<-data[data>=u]

prodat<-sort(prodat)

TMLE<-trMLE(prodat, start = c(1, 1), eps = 10^(-10),

plot = TRUE, add = FALSE, main = "",

ylim=c(-0.5,0.5), xlim=c(400,1050)) #Estimates for EVI

return(TMLE)

}

TrunMLE<-TruncMLE(data = ProjectData, u = 272)

A.9.2 Estimation of Other Parameters

For γ ̸= 0 For Upper Endpoint (Tk)

par(mar=c(4,4,1,1))

TruncEnd<-function(data, u){

prodat<-data[data>=u]

prodat<-sort(prodat)

EndTrunc<-trEndpointMLE(prodat, gamma=TrunMLE$gamma,

tau=TrunMLE$tau, plot=TRUE,

ylim=c(277.1,277.7), main="")

return(EndTrunc)

}

Endpointr<-TruncEnd(data = ProjectData, u = 272)

EndpointEst<-tail(Endpointr$Tk,10)[1]
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For Small Exceedance Probability

par(mar=c(4,4,1,1))

SEP<-function(data, u){

prodat<-data[data>=u]

prodat<-sort(prodat)

Sep<-trProbMLE(prodat, gamma=TrunMLE$gamma,

tau=TrunMLE$tau,

DT=DTTrunc$DT,

plot=TRUE, q=273.573, main = "", ylim = c(0,0.025))

}

crush<-SEP(data = ProjectData, u = 272)

For Truncation Odds

par(mar=c(4,4,1,1))

TruncDT<-function(data, u, gamma, tau){

prodat<-data[data>=u]

prodat<-sort(prodat)

TruDT <- trDTMLE(prodat, gamma=gamma,

tau=tau, plot=TRUE, ylim=c(0,0.03), xlim=c(75, length(prodat)), main = "")

return(TruDT)

}

DTTrunc<-TruncDT(data = ProjectData, u = 272, gamma=TrunMLE$gamma, tau=TrunMLE$tau)

For Large Quantiles of Parent Distribution

par(mar=c(4,4,1,1))

par(mfrow= c(1,2))

LQ<-function(data, u){

prodat<-data[data>=u]

prodat<-sort(prodat)

trQuantMLE(prodat, gamma=TrunMLE$gamma,

tau=TrunMLE$tau, DT=DTTrunc$DT, plot=TRUE,

p=c(0.01), xlim= c(0,800), ylim=c(276.6,277.5), main = "")
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}

gof<-LQ(data = ProjectData, u = 272)

For Large Quantiles of Truncated Distribution

par(mar=c(4,4,1,1))

par(mfrow= c(1,2))

LQOri<-function(data, u){

prodat<-data[data>=u]

prodat<-sort(prodat)

trQuantMLE(prodat, gamma=TrunMLE$gamma,

tau=TrunMLE$tau, DT=DTTrunc$DT, plot=TRUE,

p=c(0.01), xlim= c(65,800), ylim=c(277,279),

Y=TRUE, main = "")

}

LQOri(prodat, u = 272)

For (γ0)

A.9.2.1 Parameter Estimation

Estimator<-function(data, thresh)

{

if(!require(data.table)){

install.packages("data.table")

library(data.table)

}

exceeds <- data[which(data>thresh)]

k <- exceeds - thresh

N <- length(k)

nll0 <- function(param){

sigmar <- param[1]

a <- log(1 - exp(k[1]/sigmar))

ll<- -(N - 1)*log(sigmar)- (sum(k[-1]/sigmar))

- (N - 1)*a
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return(-ll)

}

truncest <- optim(par = 1, fn = nll0, method = "Brent",

upper = 4, lower = 0, hessian = T)

MLEtGPD_par <- truncest$par

invMat<- solve(truncest$hessian)

MLEtGPD_SE <- sqrt((diag(invMat)))

MLE <- data.table(param = c("sigma"),

estimates = MLEtGPD_par,

se = MLEtGPD_SE)

AIC<-(2*1) - 2*-truncest$value

BIC<- - 2*-truncest$value +2*log(N)

critval <- qnorm((1 + 0.95)/2)

c.int<- MLEtGPD_par + c(-1, 1) * critval * sqrt(invMat)

print(list(MLE_estimate = MLE, Confidence_Interval = c.int,

Loglikelihood= -truncest$value, AIC= AIC, BIC= BIC))

}

Est<-Estimator(data = ProjectData, thresh = 272)

A.9.2.2 Other Parameter Estimation

For Upper Endpoint

myTkfun<-function (data, sigma, plot = FALSE, add = FALSE,

main = "Endpoint Estimates", ...)

{

X <- sort(data)

n <- length(X)

K <- 1:(n - 1)

E <- X[n] - X[n - K]

a <- exp(E[1]/sigma)

b <- K - a

Tn <- X[n - K] + sigma * log(1 + K*(a - 1/ b))

plot(K, Tn[K], type = "l", xlab = "k", ylab = expression(T[k]))
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return(Tn)

}

Tkk<-myTkfun(prodat, sigma = Est$MLE_estimate$estimates)

tail(Tkk,n=1)

A.10 Truncation Test

testTr<-trTestMLE(prodat, gamma=TrunMLE$gamma, tau=TrunMLE$tau, main = "")

mean(testTr$Pval)
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Appendix B

Tables

B.1 Gumbel Model Parameter Estimates

Table B.1: Maximum Likelihood and Bayesian Estimates for the
location and scale parameters

Maximum Likelihood Estimation Bayesian Estimation

Estimates µ σ µ σ

Parameters 249.73 17.37 249.6 17.67
Confidence Intervals (248.23, 251.22) (16.52, 18.21) (249.2, 250.2) (17.12, 17.69)
Standard errors 0.765 0.429
Loglikelihood -2480.25
AIC 4964.5
BIC 4973.24

Table B.2: Return level, period, upper endpoint and exceedance
probabilities for Gumbel model

Return Periods
(Years)

Maximum Likelihood Bayesian
Return
Level

Exceedance
Probability

Return
Level

Exceedance
Probability

2 256.0909 0.50 256.0506 0.50
5 275.7733 0.20 275.9989 0.20
10 288.8048 0.10 289.2065 0.10
20 301.3049 0.05 301.8754 0.05
50 317.4851 0.02 318.2741 0.02
100 329.6098 0.01 330.5626 0.01

Value Exceedance
Probability Value Exceedance

Probability

Maximum water
level 276.64 0.019 276.64 0.1946478

Upper Endpoint
(XF )

-Inf 1 -Inf 1
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B.2 Exponential Model Parameter Estimates

Table B.3: Parameter estimation of the generalized Pareto model
for the Akosombo dam with MLE and Bayesian methods
(Exponential case)

Maximum Likelihood Bayesian

Estimates σ γ σ γ

Estimated parameters 1.862 / 1.835 /
Standard errors 0.05 / / /
Confidence Intervals (1.759, 1.965) (-0.510, -0.432) / /

Log-likelihood -2056.385 /
AIC 4114.769 /
BIC 4127.06 /

Table B.4: Return level, period, upper endpoint and exceedance
probabilities for Exponential model

Return Periods
(Years)

Maximum Likelihood Bayesian
Return
Level

Exceedance
Probability

Return
Level

Exceedance
Probability

2 275.7031 0.50 275.6490 0.50
5 277.4094 0.20 277.3304 0.20
10 278.7002 0.10 278.6023 0.10
20 279.9909 0.05 279.8742 0.05
50 281.6972 0.02 281.5556 0.02
100 282.9880 0.01 282.8276 0.01

Value Exceedance
Probability Value Exceedance

Probability

Maximum water
level 277.54 0.05104802 277.54 0.04884645

Upper Endpoint
(XF )

-Inf 1 -Inf 1
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