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Abstract

The monitoring of health and the technologies that are related to it are an exciting area
of research. The paper proposes a mechanical manufacturing vibration monitoring system
that is based on Hilbert-Huang transformation (HHT) feature extraction to monitor the
running state of the spindle of a mechanical numerical control (NC) machine tool of an
electrocardiogram (ECG) machine. Real-time monitoring of the time–frequency charac-
teristic quantity of the spindle vibration signal for ECG signals has been made possible
due to the online empirical mode decomposition (EMD) method, which is used to obtain
the time–frequency characteristic quantity of the spindle vibration signal based on HHT.
The experiment shows that the frequency doubling characteristic components in the time–
frequency distribution are obvious in the time interval without copper rod contact, but they
disappear in the time interval during which copper rods are in contact (0.3 1.1 s, 3 4s in the
figure). It has been demonstrated that the system is capable of not only accurately moni-
toring the characteristic quantity in the frequency domain of the vibration signal produced
by the NC machine tool spindle, but also of successfully implementing the monitoring of
the time–frequency characteristic quantity in real time.

1 INTRODUCTION

In the field of biomedical, electrocardiogram (ECG) machines
stand out to be one of the important machines for analysis
health of an individual. The analysis of ECG signals needs to be
handled with utmost care. In this paper the mechanical vibra-
tions of these machines are analyzed. Mechanical vibration is a
common phenomenon in modern industrial production. Strong
vibration will have an adverse impact on the normal operation
of equipment, lead to component loss, greatly shorten the ser-
vice life of mechanical equipment, and may have more serious
accidents, and even endanger the life safety of workers [1]. Any
structure or mechanical equipment will produce certain vibra-
tion under dynamic conditions. When the mechanical system
is running, if the excitation load is close to the natural fre-
quency component of the system, it will cause the resonance
of the system. This large-scale vibration may affect the normal
operation of the mechanical system, and even lead to system
damage and major accidents [2]. Large bridges, buildings and
other engineering structures will also produce vibration under
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the influence of various environmental excitation. Under the
action of natural factors such as earthquake, climbing wind, and
waves, as well as long-term fatigue and corrosion, its structure
will produce varying degrees of damage and damage. The eval-
uation of the state of the structure is of great significance to
ensure social economic security and personal safety. Through
the modal analysis method, the vibration components of each
mode in vibration are analyzed, and the modal parameters
are identified accordingly, which can better identify the natural
vibration characteristics of mechanical equipment and structure,
so as to evaluate its structural characteristics and working state
[3–6].

The ECG is a biomedical equipment that is used to analyze
the heart signals and electrical activity. It makes use of sen-
sors that are attached to various part of the human chest and
then electrical signals are captured each time the heart beats.
These electrical signals are then processed and analyzed through
a graph in order to check the condition of the human heart. In
this paper these signals are analyzed and features are extracted
in order to reduce the faults that can arise.
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FIGURE 1 Schematic diagram of mechanical manufacturing vibration system detection

Feature extraction is the core of fault diagnosis. The accuracy
of signal processing and feature extraction will directly affect
the reliability of fault diagnosis. Traditional fault feature extrac-
tion methods include wavelet transform, Fourier transform,
short-time Fourier transform and other methods [7]. Hilbert-
Huang transform (HHT) is an adaptive time–frequency analysis
method, which overcomes the defects of traditional spectrum
analysis methods. The HHT method is used to analyze the
signal, which has good time–frequency aggregation, can obtain
very high time–frequency resolution, and is very suitable for
analyzing the non-stationary signals that may be included in
the rotor vibration signal [8]. In this paper, taking the spindle
of mechanical manufacturing numerical control (NC) machine
tool as an example, the mechanical manufacturing vibration
monitoring system based on HHT feature extraction is studied.
Whether the spindle of NC machine tool operates normally
or not directly affects the machining quality and production
efficiency of the machine tool. The spindle vibration signal
contains a large amount of information reflecting its working
condition characteristics. The real-time monitoring of spindle
vibration is of great significance to ensure the machining quality
and production efficiency of machine tools. In recent years,
the vibration monitoring method of NC machine tool spindle
has been widely studied, and the corresponding monitoring
system has been developed. When the working conditions of
NC machine tool spindle change or faults occur, its vibration
signal has obvious non-stationary characteristics [9]. Therefore,
the strong non-stationary local characteristics in the spindle
vibration signal can characterize the change of working condi-
tions and the existence of some faults. Figure 1 is the schematic
diagram of mechanical manufacturing vibration system detec-
tion. Accelerometers, velocity sensors, proximity probes, and
laser displacement sensors are some examples of the various
types of sensors that can be utilized in the process of measuring
vibration. A built-in accelerometer can be seen in Figure 1; this

accelerometer measures the changing acceleration with a level of
accuracy that is satisfactory. The high-performance digital signal
processors that make up the VC-3100 vibration comparator
offer three fundamental capabilities: detection, measurement,
and evaluation. The accelerometer sends signals to the compara-
tor, and the comparator uses those signals to detect irregularities
in the machine (detection), measure vibration levels (measure-
ment), and judge vibration levels based on the measurements
(judgement). It is possible to listen to the vibration sound
by attaching a regular set of headphones to your device and
doing so. An output of the vibration sound is provided for
each band, which enables verification of specific vibration
occurrences.

Recent developments in medical and biological technology
have resulted in an explosion in the volume of data pertaining to
biological and physiological processes. Examples of this include
medical imaging, electroencephalography, genomic sequences,
and protein sequences. Understanding human health and dis-
ease is made easier by the use of this data as a learning resource.
As a result of developments in high-throughput technology, the
past several decades have seen a meteoric rise in the amount of
biomedical data, such as genomic sequences, protein structures,
and medical pictures. This expansion has been observed across
a wide range of disciplines. This flood of biomedical big data
makes it necessary to develop computational tools that are both
effective and efficient in order to store, analyze, and interpret
the data. The paper focuses on vibration monitoring systems;
however, in the previous researches there are three analysis
techniques, namely, acoustic analysis, vibration signal analysis,
and thermal imaging analysis. The acoustic and vibration signal
analyses stand out as two of the most common options avail-
able among these studies. This is due to the fact that numerous
issues can be found without the machine needing to be stopped
or taken apart. The variations in these signals frequently serve
as an early warning sign of the existence of a problem. In
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addition to its excellent recognition efficiency and non-
destructive testing capabilities, acoustic analysis benefits from a
relatively quick analysis time. However, it is extremely difficult
to capture the acoustic signals in an accurate manner due to a
number of elements including environmental conditions. Analy-
sis of vibration signals comes with its own set of benefits as well
as drawbacks. Vibration analysis is one method that can be uti-
lized to accomplish real-time machine monitoring, and there are
a variety of highly developed signal processing techniques that
can be utilized. Noise contamination and the correct mounting
position of the vibration sensors are two factors that prevent
vibration analysis from being completely accurate. Lastly, the
thermal imaging analysis method can be utilized for the purpose
of monitoring and diagnosing mechanical systems. For the pur-
pose of this investigation, an infrared camera is typically utilized
to identify several electrical defects in the machine on the basis
of the thermal irregularities. The thermal pictures that were
obtained are helpful in detecting and localizing the flaws that
are present in the equipment. However, this method is time-
consuming and costly, and it takes significantly more effort to
analyze thermal images than it does auditory or vibration data.
It is generally agreed that vibration analysis is the most accurate
way for determining the state of a machine. Based on the above-
mentioned reasons the paper focuses on monitoring vibration
signals for ECG machines using the HHT feature extraction
method.

Main contributions of the paper are:

1. The proposed model aims to monitor the running state
of spindle of mechanical NC machine tool of ECG
machine that is a vibration monitoring system based on
HHT.

2. The method that includes the design of spindle vibration
monitoring system of mechanical NC machine tool.

3. The experiment uses characteristic quantity in frequency
domain of vibration signal produced by NC machine tool
spindle and monitoring of time–frequency characteristic
quantity in real time.

4. The experimental results prove the disappearance and recur-
rence time points of frequency doubling characteristics
components in the time–frequency energy distribution are
consistent with the generation and termination time points
of external excitation.

The organization of this paper is as follows: Section 2
discusses the associated literature; Section 3 illustrates the
research methods by categorizing it into four parts: First
part explain the basic details of HHT method, second part
explains the overall design of spindle vibration monitoring
system of mechanical NC biomedical machine tool, third
part introduces the hardware development of the monitor-
ing system, and the last part discusses the software design
of monitoring system including the time–frequency feature
extraction method; Section 4 discusses and analyzes the results
obtained; Section 5 presents the conclusion and scope for future
work.

2 LITERATURE REVIEW

In recent years, the vibration monitoring method of NC
machine tool spindle has been widely studied, and the corre-
sponding monitoring system has been developed. Teng et al.
analyzed the machine tool spindle signal based on the weak
feature extraction method of cascaded bistable stochastic reso-
nance system, and developed the condition monitoring system
[10–12]. Zhao et al. designed an optical fibre monitoring system
for collecting vibration signals during mechanical operation
to monitor the mechanical operation status in real time [13].
Huang et al. developed the spindle vibration monitoring system
of NC machine tool based on spectrum analysis on the basis of
analyzing the spectrum characteristics of vibration signal [14,
15]. Abdeljaber et al. described the vibration signal monitoring
system of medical equipment products based on servers, nodes,
and sensors [16]. Zafarani et al. designed the working condition
monitoring system of vibrating screen based on wireless com-
munication, and used the method of vibration signal analysis
to judge the working state of machinery [17, 18]. Wszoek et al.
applied the wavelet method to spindle vibration monitoring
and developed a spindle vibration monitoring system with
strong anti-interference ability [19]. Casamenti et al. studied the
influence of load, position, and instantaneous acceleration on
the measured signal, and proposed a machine tool condition
monitoring system that can trace the fault source [20, 21]. Yang
et al. developed the vibration monitoring system of spindle
bearing of NC machine tool with virtual instrument technology
based on LabVIEW [22]. Nazolin et al. used wavelet transform
to analyze the time–frequency characteristics of machine tool
spindle vibration signal, but the essence of wavelet transform
is Fourier transform with adjustable window. Once the local
feature scale of the signal is smaller than the feature scale of
the selected base wavelet, it is difficult to accurately describe
the local features with strong non-stationary in the spindle
vibration signal of NC machine tool due to working condition
change or fault [23, 24]. The authors of [41] are concerned
with the construction of a new fractional-order controller for
the autonomous rudder of underactuated surface vessels. This
controller is to be developed with the required gain and phase
margin. They offered two different models for USV course
control and discovered that the performance of their controllers
was superior to that of the other controllers that were already in
use. Reference [42] is an attempt to solve the issue of poor diag-
nosis effect, which is brought on by the mutual interference of
many fault responses. They proposed a unique new method for
the diagnosis of compound faults that they called MDSRCFD.
This method is based on optimal maximum correlation kurtosis
deconvolution (MCKD), and it uses sparse representation.
The findings of both the simulation and the actual application
demonstrate that the proposed MDSRCFD is able to effi-
ciently separate and extract the compound fault characteristics
of rolling bearings, which allows for the accurate diagnosis
of compound faults. Reference [43] investigated the clinical
outcomes of individuals with a high-risk diabetic foot who
had been provided with custom-moulded offloading footwear
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and who had been subjected to varying levels of adherence to
their treatment regimens. The suggested [44] approach has the
ability to successfully boost PS convergence and distribution
while also improving PF variety and distribution. An adaptive
crossover approach is intended to assure the development of
a high-quality offspring population while also weighing the
impact of two distinct techniques on the variety of decision
and object space. This is done by examining how two distinct
crossover procedures optimize their application to two distinct
environments. In [45], the authors suggest a novel defect diag-
nostic approach for rolling elements of rolling bearings based
on variational mode decomposition (VMD) and MCKD. This
method is called VMD-MCKD-FD. The goal of this method
is to improve the diagnosis accuracy and solve the problem
of a weak fault signal caused by the long transmission path of
the rolling element of the rolling bearing. The findings of the
experiments indicate that the VMD-MCKD-FD approach is
capable of accurately diagnosing rolling element faults in rolling
bearings and achieving higher levels of fault precision. The
authors of the paper [46] build hybrid machine learning (ML)
classifiers for biomedical data using a meta-heuristic feature
selection technique. The model is validated with data derived
from biomedical studies of cardiac disease. In conjunction with
the E-GWO feature selection technique, seven different types
of hybrid classifiers were applied, including NBBT, RFBT,
DTBT, KNNBT, NNBT, ABBT, and GBBT. The K-fold cross-
validation technique was utilized in order to verify the accuracy
of the produced models. The innovative E-GWO feature selec-
tion algorithm chooses important features from among all of
the available ones. The purpose of [47] is to analyze data using
ML classification algorithms so that heart disease can be pre-
dicted. It has been suggested that cloud-based IoMT diagnostics
could be used for cardiac disease. A rapid analysis of patient
data using ML classification methods can be performed with the
help of the fog layer. The performance of the healthcare model
is evaluated using a variety of simulations, which represents
a significant improvement in comparison to earlier models.
The proposed algorithm [48] classifies healthcare data, selects
appropriate gateways for data transfer, and improves transmis-
sion quality by considering throughput, end-to-end delay, and
jitter. Proposed algorithms classify healthcare data and deliver
high-risk data to end-user using best gateway. The goal of [49] is
to apply a variety of ML approaches to the data that was created.
For the purpose of early diagnosis of cardiac disease through
the Internet of Things, a ML framework has been developed.

The authors of [52] compared their suggested model to other
algorithms already in use for TSP in order to determine which
provided superior results in terms of solution quality, robust-
ness, and space distribution. The model serves as a reference
for resolving the large-scale TSP in order to get more desirable
path lengths. The problem of low reliability in the detection of
features and tracking boxes in visual object tracking is addressed
by [53]. The authors have provided evidence to demonstrate
that their proposed model may be incorporated into any track-
ing model by making use of a variety of attributes. The authors
of [54] present a method for calculating the amount of time
needed for travel by road for a variety of time periods. Tak-

ing into account time-varying vehicle speeds, fuel consumption,
carbon emissions, and customers’ time windows led to the uti-
lization of a satisfaction measure function based on a time
window as well as a measure function of the economic cost.
In conclusion, the results of the experiments demonstrate that
the recommended strategies are highly effective in lowering total
distribution costs, fostering energy saving, and improving cus-
tomer satisfaction. The proposed model in [55] would increase
the time–frequency energy aggregation of non-stationary sig-
nals as well as the immunity to cross-term interference. The goal
is to obtain a time–frequency representation of the signal while
also aggregating a significant amount of energy. The findings
of the experiment demonstrate that the proposed model is able
to process non-stationary signals successfully, despite the fact
that the simulated signal and genuine fault signals have changing
instantaneous frequencies (Table 1).

This paper analyzes the advantages of non-stationary data
combined with the HHT method. Based on the on-line EMD
method, a feature extraction method of NC machine tool spin-
dle vibration signal based on HHT is proposed and applied to
the developed NC machine tool spindle vibration monitoring
system to monitor the time–frequency characteristics of spindle
vibration signal on-line.

3 RESEARCH METHODS

3.1 Basic theory of HHT

In the traditional spectrum analysis, the global spectrum and
energy distribution of the signal are generally obtained. This
method is effective for processing stationary signals, but when
processing non-stationary signals, the information that the
frequency of the signal changes with time will be lost, so it
needs time–frequency analysis to process it. The frequency of
non-stationary ECG signal changes with time, which can be
regarded as a function of time. Therefore, in order to obtain the
frequency information of signal at a certain time, it is necessary
to define its instantaneous frequency. In the HHT method,
the Hilbert transform (HT) of the signal is generally used to
obtain the instantaneous frequency information [25, 26]. For
any time-series X (t), the definition of HT Y (t) is shown in
formula (1):

Y (t ) =
1
𝜋

P ∫
+∞

−∞

X (𝜏)
t − 𝜏

d𝜏 (1)

where P is the Cauchy principal value. HT exists for all
plant level functions. Different from Fourier transform, HT
is a transformation from time domain to time domain. As
can be seen from Equation (1), HT of a signal represents
the convolution of X(T) and 1/t, emphasizing the locality
of X(t).

An analytical signal can be constructed from the original time
series X (t) and its HT Y (r), as shown in formula (2)

Z (t ) = X (t ) + iY (t ) = a (t ) ei𝜃(t ) (2)



1108 YONGBO ET AL.

TABLE 1 Qualitative comparison with current state-of-the-art techniques

Related work Objective Model Advantages

Our paper To design and implement the mechanical
manufacturing vibration monitoring
system for ECG signal monitoring based
on HHT feature extraction

Proposed model Efficiently monitor the time–frequency
characteristics of spindle vibration signal
on-line

[50] To develop local frequency to extract the
limitation of traditional frequency

Hybrid adaptive waveform
decomposition and normalized
Lempel-Ziv complexity method

Accurately distinguish the different fault
states of rolling bearings

[51] To facilitate an appropriate distribution
selection in a specific application

Multidimensional form Could be used to generalize the existing
approaches defined in either the Fourier
or the DCT domain

The amplitude function is shown in formula (3):

a (t ) =
[
X 2 (t ) +Y 2 (t )

]1∕2
(3)

The phase function is shown in formula (4):

𝜃 (t ) = arctan

(
Y (t )

X (t )

)
(4)

The instantaneous frequency can be defined as the deriva-
tive of the phase function of z(t), as shown in formulas (5)
and (6):

𝜔 (t ) =
d𝜃 (t )

dt
(5)

f (t ) =
1

2𝜋
d𝜃 (t )

dt
(6)

It can be seen from Equations (5) and (6) that the instan-
taneous frequency of the signal obtained by HT is a single
value function of time, so it can only reflect the frequency
value of one component of the signal. To use the instanta-
neous frequency to analyze the signal, it is required that the
signal is a single component. Therefore, Cohen introduced the
concept of ‘single component’ function to make the instan-
taneous frequency have physical meaning. However, there is
still no clear definition of ‘single component’ function. Nar-
row band condition and symmetry condition are usually used
to judge ‘single component’ function. The preceding investi-
gation demonstrates that the HT cannot directly supply the
entire frequency information of a complex signal. As a result,
Huang established the concept of intrinsic mode function. The
intrinsic mode function he invented fulfils two conditions: the
whole data set has the same number of extreme points and
zero crossings. The envelopes created by the local maximum
and local minimum are locally symmetrical along the time axis,
which means that the upper and lower envelopes have the
same mean value. These two limitations ensure that the imme-
diate frequency of the natural mode function is meaningful
[27, 28].

FIGURE 2 Structural block diagram of spindle vibration monitoring
system of mechanical NC machine tool

3.2 Overall design of spindle vibration
monitoring system of mechanical NC
biomedical machine tool

Combined with the characteristics of spindle vibration signal
of mechanical NC machine tools, and based on the study of
a large number of rotating machinery condition monitoring
systems, this paper designs the spindle vibration monitoring
system of NC biomedical machine tools. The structural block
diagram is shown in Figure 2. During the working process of
NC machine tool, the spindle vibration acceleration signal is
transmitted to the upper computer through the data acquisi-
tion module. The upper computer software system includes two
modules: time domain waveform monitoring and characteris-
tic data monitoring. The characteristic data monitoring module
has the function of monitoring frequency domain character-
istic quantity and time–frequency characteristic quantity. The
power spectral density of vibration signal is selected as the fre-
quency domain characteristic of vibration response of machine
tool spindle [28, 29]. The time–frequency distribution based on
HHT is selected as the monitored time–frequency characteristic
quantity, which describes the time and frequency domain infor-
mation of the vibration response of the machine tool spindle at
the same time, and can effectively reflect the variation law of the
characteristic frequency with time.
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FIGURE 3 Hardware structure block diagram of spindle vibration monitoring system of NC machine tool

3.3 Hardware development of monitoring
system

The real-time and accuracy of the data collected by the system
hardware and the speed of data transmission are the primary
premise to realize the spindle vibration monitoring of NC
biomedical machine tools. Based on the above requirements,
this paper divides the hardware of CNC machine tool spin-
dle monitoring system into sensor, signal conditioning module,
data acquisition module, and data communication module.
The system hardware structure block diagram is shown in
Figure 3. Among them, the sensor converts the spindle vibra-
tion displacement and speed into electrical signals, the signal
conditioning module regulates the sensor electrical signals to
meet the data acquisition requirements, the data acquisition
module converts the electrical signals into A/D, and the data
communication module uploads the real-time data to the upper
computer [30].

3.4 Software design of monitoring system

The spindle vibration monitoring system of NC biomedical
machine tool generally adopts the classical signal process-
ing method based on stationary process, which is difficult to
accurately describe the local characteristics with strong non-
stationarity caused by working condition changes or faults.
Therefore, the spindle vibration monitoring system of NC
biomedical machine tool needs to be able to monitor not only
the time domain waveform and frequency domain character-
istic quantity of vibration signal, but also the time–frequency
characteristic quantity that can reflect the local characteristics of
vibration signal [31, 32].

3.4.1 Time–frequency feature extraction
method

The HHT approach is used to extract time–frequency infor-
mation from the non-stationary properties of an NC machine

tool’s spindle vibration signal. The HHT method is a non-
stationary signal analysis method based on empirical mode
decomposition (EMD), in which the frequency domain signal
is decomposed into several IMF frequency components rang-
ing from high to low frequency, and then HT is applied to each
IMF component to describe the time–frequency characteristics
of non-stationary signals. HHT incorporates both EMD and
HT. EMD decomposition of signal x(t).

The basic idea of the proposed algorithm is as follows:

Step 1: All the maximum and minimum points of x(t) are
interpolated by cubic spline curve to obtain the upper
and lower envelopes of x(t).

Step 2: Calculate the mean m(t) of the upper and lower
envelopes.

Step 3: Remove the mean m(T) in the signal and extract the
detailed components of the signald (t ) = x(t ) − m(t ),
and use it to extract the first-order IMF.

Step 4: Remove the first-order IMF from x(t), repeat steps
1 to 4 as a new signal, and extract each order IMF suc-
cessively. During extraction, d(t) screening operation in
step 3 is required [33]. When d(t) satisfies the IMF def-
inition and iteration termination conditions at the same
time, the screening operation is terminated. After EMD
decomposition, x(t) can be expressed as the sum of
each order of IMF and trend term [34–36], as shown
in formula (7)

x (t ) =
k∑

k=1

dk (t ) (7)

where K is the number of IMF components;
dk(t )(k = 1 ∼ (k − 1)) is the kth order IMF component
and is recorded as the kth order IMF [37, 38].

HT is performed for each order of IMF, as shown in formula
(8):

Dk (t ) =
1
𝜋

PV ∫
+∞

−∞

dk (𝜏)

t − 𝜏
d𝜏 (8)
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where PV is Cauchy Principal component. Form dk(t ) and
Dk(t ) into the analytical form of the kth order IMF [39, 40],
as shown in formula (9):

Zk (t ) = ak (t ) exp
[
i𝜃k (t )] (9)

Among them

ak (t ) =
√

d 2
k

(t ) + D2
k

(t ) (10)

𝜃k (t ) = arctan

[
Dk (t )

dk (t )

]
(11)

where ak(t ) is signal amplitude; 𝜃k(t ) is the signal phase.
The instantaneous frequency of the signal is defined as the

derivative of D, as shown in formula (12):

𝜔k (t ) =
1

2𝜋
d𝜃k (t )

dt
(12)

The original signal x(t) is expressed as shown in formula (13):

x (t ) = (reat )
k−1∑
k=1

ak (t ) exp

(
i ∫ 𝜔k (t ) dt

)
(13)

As a function of time t, the frequency components of non-
linear and non-stationary signals at each time can be accurately
described by the signal x(t), amplitude ak(t ), and instantaneous
frequency 𝜔k(t ) of Equation (13).

4 RESULT DISCUSSION

In order to verify the effectiveness of the spindle vibration
monitoring system of CNC biomedical machine tools, the spin-
dle vibration of Takumi vertical machining centre is monitored
by the system [25]. In the test, the sampling frequency of the
system is 1280 Hz, and the time-domain waveform displayed by
the original data monitoring module is set to 0.2 s. Adjust the
spindle speed of the NC machine tool to 3840 r/min. after the
spindle runs stably for a period of time, contact the spindle with
a copper rod to make the speed fluctuate. The system monitors
the time domain waveform of spindle vibration signal when
there is no copper rod contact, as shown in Figure 4. The time
domain waveform of the spindle vibration signal monitored by
the system when the copper bar contacts is shown in Figure 5.
Comparing Figures 4 and 5, it is difficult to see the difference
between them from the time domain waveform. The power
spectral density reflects the average energy distribution charac-
teristics of the frequency components of the energy signal in a
certain time interval, and can be used as the frequency domain
characteristic analysis of the monitored signal. The stationary
characteristic quantity (power spectrum) monitored by the
system is shown in Figure 6. The frequency conversion (64 Hz)
characteristic quantity and frequency doubling (128 Hz)

FIGURE 4 Time domain waveform of spindle vibration of NC machine
tool without copper bar contact

FIGURE 5 Time domain waveform of spindle vibration of NC machine
tool when copper bar contacts

FIGURE 6 Frequency domain distribution of system monitoring
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FIGURE 7 Time–frequency distribution of system monitoring

characteristic quantity are obvious, and the high-order fre-
quency doubling characteristic quantity is small. However, the
occurrence time and duration of external excitation (copper rod
contact) of rotor system cannot be judged from the monitored
stationary characteristic quantity.

The time–frequency distribution obtained by the HHT
method can reflect the variation law of characteristic frequency
with time. The time–frequency distribution of vibration signal
HHT is shown in Figure 7. To describe the time–frequency
properties of non-stationary signals, the frequency domain sig-
nal is first decomposed into several IMF frequency components,
going from high frequency to low frequency, and then the HT is
performed for each of those IMF frequency components. The
components with a frequency doubling feature can be found
in the time–frequency distribution. A frequency multiplier is a
non-linear circuit that, when it receives an input signal, distorts
that signal and, as a result, generates harmonics that are related
to the original signal. After that, a bandpass filter picks the har-
monic frequency that is needed and eliminates the undesirable
fundamental as well as any other harmonics that are present in
the output.

It can be seen from Figure 7 that the frequency doubling
characteristic components in the time–frequency distribution
are obvious in the time interval without copper rod contact
and disappear in the copper rod contact time interval (0.3–1.1
s, 3—4 s in the Figure). The disappearance and reappearance
time points of frequency doubling characteristic components
in time–frequency energy distribution are consistent with the
occurrence and termination time points of external excitation.
According to the subharmonic resonance theory, when the spin-
dle frequency is close to 1/2 of the radial first-order natural
frequency of the spindle system, the double frequency com-
ponent of the frequency conversion will be excited. There are
obvious frequency conversion (64 Hz) and double frequency
(128 Hz) components in the time interval of 0 to 0.3 s. It is
inferred that the machine tool spindle has subharmonic reso-
nance due to misalignment. In the time interval of 0.3 to 1.1
s, due to the friction between the copper bar and the spindle,

the machine tool speed fluctuates slightly, so that the frequency
doubling frequency is far away from the radial first-order nat-
ural frequency of the spindle system, and the subharmonic
resonance phenomenon disappears. In the time interval of 1.1
to 3 s, because the copper rod leaves the spindle, the spin-
dle rotation frequency is stabilized at 1/2 radial first-order
natural frequency again, and the subharmonic resonance phe-
nomenon reappears. In the same way, it can be explained that
the frequency composition of vibration signal when copper rod
touches the main shaft within 3 to 4 s interval. Therefore, the
time–frequency characteristic monitoring sub-module of CNC
machine tool spindle vibration monitoring system based on
HHT can not only describe the frequency domain information
of CNC machine tool spindle vibration signal, but also track the
change of frequency component with time, which can provide a
basis for analyzing the causes of no stationarity of CNC machine
tool spindle vibration signal.

5 CONCLUSION

HHT is a very suitable analysis method for analyzing non-linear
and non-stationary signals. In this paper, the mechanical man-
ufacturing vibration monitoring system for ECG signal moni-
toring based on HHT feature extraction is designed and imple-
mented. The combination of main control module and PC104
bus can ensure the real-time performance of data acquisition
and the accuracy of data transmission. The test results of spindle
vibration signal of mechanical NC machine tool show that while
monitoring the time-domain waveform and spectrum distribu-
tion of signal, the system can use the instantaneous frequency
description characteristics of HHT to realize the real-time moni-
toring of time–frequency distribution of spindle vibration signal
of NC machine tool. The goal is to develop and implement
a system for monitoring ECG signals based on HHT feature
extraction, and this system will be utilized in mechanical produc-
tion vibration monitoring. The system will be used in mechan-
ical production vibration monitoring. As can be seen from the
results of the experiments that were carried out, the suggested
model has the capacity to monitor the time–frequency char-
acteristics of the spindle vibration signal in an efficient and
effective manner while it is being transmitted online. The pro-
posed work is limited in that it cannot be applied to further
biomedical tools that include signal analysis and processes like
MRI machines. This is one of the limitations of the study.
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