
Radiation Physics and Chemistry 205 (2023) 110735

Available online 21 December 2022
0969-806X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Dose optimization of adult head computed tomography examination in an 
academic hospital in Ghana 

Samuel Anim-Sampong a, Benard Ohene-Botwe a,b,*, Esther Boatemaa Adom a, 
Samuel Nii Adu Tagoe a 

a Dept. of Radiography, School of Biomedical & Allied Health Sciences, University of Ghana, P.O Box KB 14, Korle Bu Campus, Accra, Ghana 
b Department of Midwifery and Radiography, School of Health & Psychological Sciences, City, University of London, Northampton Square, London, EC1V 0HB, UK   

A R T I C L E  I N F O   

Handling Editor: Chris Chantler  

Keywords: 
Patients 
Computed tomography 
Dose optimization 
Image quality 

A B S T R A C T   

The study investigated radiation doses and image quality of adult head CT and optimization options using an 
anthropomorphic RANDO phantom on the only available AquilionONE CT scanner in Ghana. Dose length 
product (DLP) and volume-weighted CT dose index (CTDIvol) dose descriptors were retrospectively obtained from 
402 adult head CT examinations performed (from 2020 to 2021) at a Ghanaian hospital, while the effective dose 
(Deff) was estimated from the product of the DLP and a convention coefficient (k = 0.0023). Using the same 
routine head CT protocol, the anthropomorphic RANDO phantom was scanned with the hospital’s 640-slice 
Toshiba AquilionONE CT scanner. Subsequently, exposure factors were varied to study their effects on the 
dose and image quality. The adult head and phantom images were obtained in Digital Imaging and Communi-
cations in Medicine (DICOM) format, and their signal-to-noise (SNR) ratios were analyzed with ImageJ software. 
The facility’s mean CTDIvol, DLP, and effective dose (Deff) were 86.00 ± 0.00 mGy, 1559.68 ± 197.18 mGy cm, 
and 3.57 ± 0.46 mSv respectively (SNR = 7.04). For a fixed tube potential, CTDIvol, DLP, and Deff of 51.30 mGy, 
1013.80 mGy cm, and 2.33 mSv were respectively achieved (SNR = 5.49) after optimization. Using automatic 
exposure control (AEC) in the optimization process, the respective CTDIvol, DLP and Deff values were 59.50 mGy, 
1176.00 mGy cm and 2.70 mSv (SNR = 5.62). We conclude that substantial Deff reductions of 40.4% and 31.0% 
using a fixed tube potential, and AEC while maintaining diagnostic image quality were respectively achieved. 
The protocols associated with these dose-reductions are, therefore, recommended as optimization measures for 
head CT on the AquilionONE scanner in Ghana.   

1. Introduction 

Computed tomography (CT) is a non-invasive medical imaging mo-
dality that utilizes ionizing radiation to produce cross-sectional and 
detailed images of parts of the body, as defined by the World Health 
Organization (2021). Advances in CT imaging technology and its 
extensive use in clinical practice have resulted in increased CT exami-
nations and reduced the need for emergency surgery from 13% to 5%, 
eliminating many exploratory surgical procedures (Power et al., 2016). 
In Ghana, Botwe et al. (2020) estimated that 204,760 patients undergo 
CT examinations yearly. High radiation doses delivered to patients un-
dergoing CT examinations are a major global concern due to the asso-
ciated biological effects and inherent risks compared to other 
radiological examinations (Anim-Sampong et al., 2016; Sackey, 2015). 

Although CT procedures deliver organ doses in the range of 10 mGy–100 
mGy which are generally below levels required to induce deterministic 
effects, according to the linear non-threshold theory, patient risk of 
stochastic effects is correlated with radiation dose at any level (Alm--
Carlsson et al., 2007; Shrimpton et al., 2016). It is thus, essential to 
reduce patient dose while maintaining diagnostic image quality, and 
consequently minimize the associated health effects. 

Several CT dose-reduction approaches including the alteration of 
exposure factors (lowering tube current and peak tube voltage), use of 
automated exposure control (AEC), monitoring, and integration of 
different iterative reconstruction software have been provided by 
various manufacturers. These approaches, however, have different ef-
fects on the image quality needed for a specific diagnosis or task (Demb 
et al., 2017). Hence, appropriate dose optimization measures are 
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required to ensure that patients presenting for a particular CT imaging 
including head scans receive optimized radiation doses to reduce the 
inherent risk but maintain diagnostic image quality (Smith-Bindman 
et al., 2019). 

According to Bauhs et al. (2008), the CT dose index (CTDI) is the 
integral of the single scan radiation dose profile along the z-axis, 
normalized to the thickness of the imaged section and expressed 
differently for single-slice computed tomography (SSCT) and multi-slice 
computed tomography (MSCT) as: 

CTDISSCT =
1
T

∫+∞

− ∞

D(z)dz (1)  
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NT
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− L/2

D(z)dz (2)  

where T is the detector width or minimal beam collimation thickness, D 
is the dose profile, and N is the number of detectors. The volume- 
weighted CTDI (CTDIvol) is the pitch-corrected weighted CTDI (CTDIw) 
and is expressed as 
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where p is the scan pitch. According to Smith-Bindman et al. (2011), the 
CTDIvol and dose length product (DLP) are important CT dose de-
scriptors for estimating the average absorbed dose for a series of irra-
diated tissue sections. The DLP reflects the potential biologic effect as it 
represents the total energy produced by a given protocol in a complete 
scan acquisition and varies directly with the total scanned radiation dose 
(Kisembo et al., 2015; Strauss, 2014). It is calculated as the product of 
the intensity (CTDIvol) and the length of the scanned tissue (Nagel, 2007) 
via Eqn (4) as 

DLP=CTDIvolxL =
L
p

CTDIw (4)  

where L is the scan length for the examinations determined via 

L=
DLP

CTDIvol
(5) 

The effective dose (Deff) is an inference of an individual’s whole-body 
dose resulting from radiation exposures and relates to the risk resulting 
from the exposure to the individual organ and tissue contributions of the 
absorbed doses. It is determined to assess incidence rates for biological 
responses such as the stochastic effects. According to Semelka et al. 
(2007), Deff is the product of an organ’s equivalent dose (HT) and 
radiosensitivity which offers a whole-body dose with the same risk as a 
partial dose provided by a localized radiologic procedure. It is depen-
dent on patient size, imaging parameters and scanner technology, and is 
often clinically estimated from measured DLPs, as reported in the 
literature (Sodickson et al., 2009). 

Quantitatively, Deff for a patient can be calculated from the product 
of DLP and a conversion factor coefficient (k) for the specific body region 
(Brady et al., 2015; Postorino et al., 2021) as 

Deff =
∑

WtHt (6)  

and 

Deff = kDLP= k[CTDIvol] =
kL
p

CTDIw (7)  

where Wt is the tissue-specified weighting factor for tissue or organ (t) 
under examination, and k = 0.0023 for head CT scan according to the 
European guidelines on quality criteria for CT (Bongartz et al., 2000). 

The signal-to-noise ratio (SNR) is a measure of image quality and is 
defined as the ratio of the mean to the standard deviations of the pixel 
value of regions of interest (ROIs) (Chang et al., 2017). 

One of the central goals of medical radiation protection is to mini-
mize the risks of stochastic effects of radiation to levels considered as 
low as reasonably achievable (ALARA), while dose optimization ensures 
that minimum patient doses are administered to achieve the desired 
purpose and image quality. This study, therefore, investigated a method 
of optimizing the dose received by adult patients undergoing CT head 
examinations while maintaining the quality of the diagnostic image. 
This is important to minimize head CT doses and biological effects 
associated with high radiation exposures, provide new protocols for 
adult head CT examinations, create awareness and education of radi-
ographers in optimizing head CT doses, and thereby enhance patient 
radiation protection per the ALARA principle. 

2. Materials and methods 

A retrospective and quasi-experimental design which allowed for 
alteration of the scan parameters for head CT examinations and non- 
probability purposive sampling were used in this study which was 
conducted at the CT unit of the radiology department of a hospital in 
Ghana. According to Anim-Sampong et al. (2016), adult patients are 
more commonly referred for CT examinations of the head and other 
parts of the body than pediatric patients. Therefore, this study consisted 
of 402 adult patients who presented for head CT examinations at the 
hospital from January 2020–January 2021. 

Constant values of tube voltage, tube current, rotation time, and 
pitch were used for routine head CT examinations, while scan lengths 
depending on the coverage area planned on the scanogram and limited 
to head CT examination with a major focus on the brain varied. These 
and other head CT scan parametric (slice number, slice thickness, 
CTDIvol, and DLP) data, as well as patient demographics, were retro-
spectively retrieved from the Picture Archiving and Communication 
System (PACS) workstation of the hospital’s 640 multi-slice Toshiba 
Aquilon ONE TSX-301A CT scanner (Table 1) and recorded on the self- 
designed data collection sheet. The technical specifications of the 
Toshiba Aquilon ONE TSX-301A CT scanner are presented in Table 2. 
Quality control (QC) tests to validate the efficiency of the CT scanner 
have been reported in the literature (Botwe et al., 2021). 

The Deff for each patient was subsequently calculated from the 
product of DLP and a conversion coefficient for the specific body region 

Table 1 
Patient characteristics, exposure factors, and scanning parameters.  

Age 
(yrs) 

Male Female Total 

Number Percent, 
% 

Number Percent, 
% 

Number Percent, 
% 

18–27 27 6.5 21 5.2 48 11.7 
28–27 16 4.0 33 8.2 49 12.2 
38–47 37 9.2 26 6.5 63 15.7 
48–57 32 8.0 43 10.7 75 18.7 
58–67 44 11.0 41 10.2 85 21.1 
68–77 28 7.0 31 7.7 59 14.7 
78–87 7 1.7 12 3.0 19 4.7 
88–97 1 0.2 3 0.7 4 0.9 

Total 192 47.8 210 52.2 402 100.0 

Mean 51.83 ± 17.54  

Exposure factors and scanning parameters Value 

Tube voltage (kVp) 120.00 
Tube current (mA) 300.00 
Rotation time (sec) 0.75 
Pitch 0.66 
Scan length (cm) 18.14 ± 2.29 
Slice thickness (mm) 5.00 
Sequence(s) 1.00  
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(0.0023) proposed by the European Commission (Brady et al., 2015). 
Subsequently, the mean Deff was calculated for all 402 patients. 

With knowledge of the average dose output (CTDIvol and DLP) used 
for performing routine diagnostic head CT examinations at the study 
site, an optimization study was then conducted. The RANDO anthro-
pomorphic phantom was used for the optimization study by scanning it 
with the routine head scan protocols used at the facility and subse-
quently varying the exposure factors to study their effects on the dose 
and image quality. 

Image quality analyses were performed on the phantom images ob-
tained in DICOM format to identify the best modified protocol(s) that 
resulted in radiation dose-reduction while maintaining acceptable 
image quality for the intended purpose. Both objective and subjective 
image quality analyses were conducted. Objectively, four square ROIs of 
the same dimensions (10 mm × 10mm) were drawn on the homoge-
neous 5 mm cut brain tissue at the same slice number for each image, 
located about midway between the total number of slices for each 
image. The signal-to-noise ratio (SNR) values were estimated using 
ImageJ software version 1.53 (Wayne Rasband and Contributors, Na-
tional Institutes of Health, USA) to assess the objective image quality. 
Fig. 1 shows how the signal and the noise information were obtained 
quantitatively using ImageJ software version 1.53. Subjectively, image 
quality can be assessed via radiologists’ reviews of images. In this 

regard, radiologists at the hospital reviewed and approved the images as 
fit for diagnostic purposes for routine head CT examinations. The sub-
jective assessment provided information on whether the images were 
diagnostically acceptable (good) or not (bad) for the intended clinical 
task. 

The ethical clearance for this study was reviewed and approved by 
the Ethics and Protocol Review Committee of the School of Biomedical 
and Allied Health Sciences of the University of Ghana (Reference: 
SBAHS/AA/RAD/10680009/2020–2021). 

3. Results 

The highest and least number of referrals for head CT procedures 
were recorded among patients aged 58–67 years (21.1%), and 88–97 
years (0.9%). More females (52.2%) presented for head CT scans than 
males (47.8%). 

3.1. Dosimetry 

The mean CTDIvol and DLP values were 86.00 mGy and 1559.70 
mGy cm respectively, with associated 75th percentiles of 86.00 mGy and 
1613.60 mGy cm. The measured values at the CT unit exceeded values 
recommended by the ICRP 73, American College of Radiology (ACR) 
and other literature reports (ACR, 2008; Shrimpton et al., 2016). The 
mean Deff (of all 402 patients) obtained for the images of the adult head 
CT patients was 3.57 ± 0.46 mSv. 

3.2. Dose optimization of routine protocol for head scans 

Eight phantom head CT images were assessed to determine the image 
quality and mean dose descriptor values were obtained for different 
exposure parameters (Table 4). Image A was obtained using the mean 
routine adult CT head parameters with a DLP of 1699.60 mGy cm. A DLP 
of 1037.30 mGy cm was obtained from scanning Image B with the same 
tube potential (120.00 kV) and pitch (0.66) but with a reduced tube 
current of 200.00 mA. Images C and D were acquired with the same tube 
current and pitch as Image A, but with reduced tube potentials of 
100.00 kV and 80.00 kV respectively, resulting in DPL of 1013.80 mGy 
cm (Image C) and 553.80 mGy cm (Image D). Image E was acquired with 
the same scan parameters utilized in the study except that a higher pitch 
of 0.84 was used, yielding a DLP of 792.90 mGy cm. Other phantom 
Images F, G and H were obtained using different tube potentials of 

Table 2 
Technical specifications of Toshiba Aquilon CT scanner.  

Design parameter Value (quantity, volume, etc) 

CT scanner mode: Multislice Multislice 
Slices per rotation 16-cm volume (320 × 0.5 mm) 
Other rotation speed options (sec) 0.35, 0.375, 0.4, 0.45, 0.5, 0.6, 0.75, 1, 

1.5 
Minimum rotation speed 350msec 
Gantry diameter 72 cm 
Minimum temporal resolution (msec) 16 cm full volume 350 msec 
Maximum beam width 16 cm 
Minimum room size (length x width x 

height) 
Site dependent 

Table weight limit 660 lb 
Table movement range 33–98.8 vertical/20–195 cm 

longitudinal 
X-ray generator kV range 80-135 kVp 

Maximum scan range 200 cm 
X-ray tube heat capacity 7.5 MHU 
Power requirement 480 VAC, 135 kVA  

Fig. 1. Analysis of image quality using ImageJ software.  
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120.00 kV, 100.00 kV and 80.00 kV respectively with the AEC standard 
(Sure Exp. 3D) switched on. The resulting DLP values were 1227.70 
mGy cm, 1176.00 mGy cm and 778.80 mGy cm, respectively. 

In accordance with the Rose model criteria (Burgess, 1999; Hsieh 
et al., 2022), a signal must be five standard deviations from the above 
background to be detectable. This means that diagnostic images with 
SNR >5 are adjudged as having acceptable image quality. In this study, 
the calculated SNRs for all the phantom images at the different param-
eters exceeded 5 except for Images D, E and H. The highest SNR of 6.88 
was found for Image A, which was acquired with the routine scan pro-
tocol for adult head CT. A reduced tube current of 200.00 mA for Image 
B resulted in reduced SNR of 5.25. Also, using reduced tube potentials of 
100.00 kV and 80.00 kV for Images C and D resulted in reduced SNR 
values of 5.49 and 3.50 respectively. Accordingly, Image D was declared 
unfit for diagnostic purposes. An increased pitch factor of 0.84 for image 
E resulted in an SNR of 4.9 and hence was also regarded as unfit for 
diagnostic purposes. Images F, G, and H were obtained with the AEC 
switched on which yielded SNRs of 6.11, 5.62, and 4.63 respectively. 

A comparison of DLP and SNR as well as the Deff and SNR of the 
various studied protocols for head CT imaging are presented in Figs. 2 
and 3 and showed that 5 out of 8 phantom images (Images A, B, C, F, and 
H) satisfied the Rose model’s acceptance criteria for good image quality. 

The lowest DLP (1013.80 mGy cm) and Deff (2.33 mSv) were esti-
mated for Image C which was subsequently, selected as the best option 
among the optimized images. This was achieved by reducing the tube 
potential from 120.00 kV to 100.00 kV while keeping other parameters 
unchanged. This resulted in a 40.4% reduction in Deff through the 
optimization process without deteriorating image quality. 

4. Discussions 

4.1. Patient characteristics 

According to the age distribution (age range: 18–94 years; mean age: 
51.83 ± 17.54 years), the majority of patients were younger and middle- 
aged (58.2%) compared to older adults (41.8%). However, the largest 
referrals for head CT examinations were recorded among patients aged 
58–67 years (21.2%), of whom the majority were males (11.0%). This 
finding may be associated with a higher incidence of dementia as well as 
Parkinson’s disease with old age as suggested by Orozco-Arroyave et al. 
(2014) for which head CT examination may be the first line for diag-
nosis. Hernández et al. (2015) observed that the proportion of in-
dividuals that undergo medical imaging procedures increased with age. 

More female patients (52.2%) presented for head CT examinations. 

Consistent with the literature, Akyea-Larbi (2015) reported that more 
females (67.6%) than males (32.4%) presented for CT procedures in a 
Ghanaian health facility, while Shrimpton et al. (2016) indicated that 
more females (60.0%) presented for head CT examinations than males 
(40.0%). In the context of cumulative radiation exposures, the findings 
of this study suggest that females are more liable to medical radiation 
exposures and associated risks from CT examinations, and are thus, 
more likely to develop radiation-induced stochastic and non-stochastic 
damages as well as diseases such as cancer (Smith-Bindman et al., 2011). 

4.2. Dosimetry 

Constant values of CTDIvol for adult head CT were recorded at the CT 
unit irrespective of patient age or gender. This may be attributed to the 
use of fixed exposure factors and pitch. The mean value of the CTDIvol 
was 86.00 ± 0.00 mGy. The DLP values however varied depending on 
the area of coverage selected by the radiographer, with corresponding 
recorded mean and 75th percentile values of 1559.68 ± 197.18 mGy cm 
and 1613.60 mGy cm respectively. This yielded a substantially high 
mean Deff of 3.57 ± 0.46 mSv compared with the ICRP international 
standards. 

The measured CTDIvol and DLP values obtained in this study were 
comparatively higher than reported elsewhere in the literature 
(Table 3), necessitating actions to reduce the radiation doses. In a 
Kenyan study conducted on 50% of CT facilities in that setting, Korir 

Fig. 2. Comparison of DLP and SNR values associated with the studied protocols.  

D
ef

f (
m

Sv
), 

SN
R

 

Phantom images 

Fig. 3. Comparison of Deff and SNR values associated with the stud-
ied protocols. 
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et al. (2016) reported optimized mean CTDIvol and DLP doses of 55.00 
mGy and 1274.00 mGy cm respectively. Although a lower average 
CTDIvol value of 28.80 mGy was reported in an Egyptian study con-
ducted on a cohort of 900 patients undergoing head CT examination, 
Salama et al. (2017) concluded that further actions were needed to 
reduce the DLP of 1000.50 mGy cm. Tsapaki et al. (2006) also reported 
mean CTDIvol and DLP values of 39 mGy and 527 mGy cm in a 
dose-reduction head CT scans study. Substantial dose-reductions in CT 
examinations are achievable through dose optimization strategies. In 
particular, Sakhnini (2017) recorded a 44.3% reduction in CTDIvol and a 
37.6% reduction in DLP after optimization. In a dose optimization study 
employing the use of tube current modulation (AEC), Gharbi and Labidi 
(2017) also stated a 20.1% reduction in average Deff without loss of 
image quality. 

From Table 3, the 75th percentile values for the CT dose descriptors 
were also higher than the ICRP 73 recommendations of 60.0 mGy for 
CTDIvol and 1050.00 mGy cm for the DLP. Toori et al. (2015) reported 
large scales of CT dose for the same examination among 7 different 
Iranian hospitals and, therefore, established optimized CTDIvol and DLP 
doses of 59.5 mGy and 750 mGy cm respectively, which were relatively 
lower compared to the ICRP 73 reference doses. Other studies (Bongartz 
et al., 2000; Shrimpton et al., 2016) have demonstrated similar and 
lower findings concerning dose-reductions. The difference between re-
ported values in this study and the literature is explained by the use of 
higher exposure parameters at the study site, which required 
dose-reduction strategies to keep the patient dose ALARA. 

4.3. Dose optimization for adult head CT examination 

According to Power et al. (2016), several dose optimization strate-
gies are available. Optimization methods for Images C and G were 
considered suitable and acceptable for this study site, subsequent to a 
16.7% reduction in tube potential (Image C) with a slight increase in 
noise (20.20%) as shown in the SNR value. However, this increase did 

not sufficiently degrade the image quality for the intended clinical 
purpose since the subjective assessment or radiologists reported the 
images as good for the task (as shown in Table 4). Therefore, the asso-
ciated exposure parameters (Table 4) are recommended for head CT 
examinations using the only AquilionOne 640-slice scanner currently in 
use in Ghana. Meanwhile, it was also found that AEC may be used in 
circumstances where image quality may have considerably deteriorated 
while employing fixed tube potential. This will also result in a significant 
dose-reduction, as predicted by Zarb et al. (2011) and confirmed with a 
31.0% Deff reduction (Image G) with a good radiologist comment. The 
results of this study are further supported by Khan et al. (2013) who 
indicated that a reduction in tube voltage from 120.0 kVp to 100.0 kVp 
reduces radiation dose by 33.0%. Smith-Bindman et al. (2019) also 
suggested that a 50.0% dose-reduction is achievable without reducing 
its diagnostic purpose. 

Vetter (2008) reported that dose-reduction strategies using AEC 
systems significantly reduced radiation dose in CT imaging. However, 
Greess et al. (2000) emphasized that the use of AEC as a dose-reduction 
approach was dependent on the scanned body region and certain cir-
cumstances. According to Singh et al. (2011), the use of AEC may not be 
recommended in CT head scans due to the fact that the variations of 
patients’ brain sizes and shapes are expected to be small. Also, relatively 
different lesser attenuations in the head compared to other regions may 
attribute to the poor recommendation of AEC in head CT scans. Gener-
ally, AEC systems reduce patient dose; therefore in cases where image 
quality may be significantly deteriorated using fixed tube current and 
tube potential, AEC may be incorporated (Greess et al., 2000). If the use 
of AEC is prevalent, then the optimization method adopted for image G 
in this study will be deemed suitable for diagnostic purposes, even 
though it is expected that the dose-reductions by using AEC would be 
small for these patients. 

5. Conclusion 

The measured CTDIvol and DLP values were higher than the ICRP 73 
recommended values and other published studies. The consideration of 
tube potential alteration and utilization of AEC as dose optimization 
protocols for adult head CT examinations resulted in reductions in the 
DLP and Deff without affecting image quality sustancially for diagnostic 
purposes. Therefore the study recommends optimization methods C and 
the associated exposure parameters (Table 4) for scanning CT head 
when using the only AquilionOne-640 slice scanner currently in Ghana. 
However, due to the small variations in patients’ head sizes and shapes, 
the AEC approach is not strongly recommended and may be utilized 
when fixed tube potential significantly deteriorates image quality. 
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Table 3 
Exposure parameters and dosimetry.  

Reported studies Mean values 75th percentile 

CTDIvol (mGy) DLP (mGy.cm) DLP (mGy.cm) 

This study 86.00 1559.68 1613.60 
Shrimpton et al (7) – – 787.00 
Bongartz et al (22) – – 1050.00 
ACR (24) – – – 

Korir et al (29) 55.00 1274.00 1612.00 
Salama et al (30) 28.80 1000.50 1358.60 
Tsapaki et al (31) 39.00 527.00 544.00 
Sakhnini (32) 43.80 760.00 – 
Gharbi et al (33) 46.79 837.25 – 
Toori et al (34) – – 750.00 
Moifo et al (35) – – 1151.00 
Najafi et al (36) – – 700.00 
Brix et al (42) 60.60 1016.00 – 
ICRP 73 (43) – – 1050.00 

- = No available data given in the publication. 

Table 4 
Mean phantom dose descriptor values, SNR and subjective assessment of images obtained with different exposure parameters.  

Image ID SL (cm) Tube voltage 
(kV) 

Tube current 
mA 

Pitch CTDIvol 

(mGy) 
DLP (mGy. 
cm) 

Deff 

(mSv) 
AEC SNR Radiologist quality assessment 

comment 

A 18.00 120.00 300.00 0.66 86.00 1699.60 3.91 No 6.88 Good 
B 18.00 120.00 200.00 0.66 52.50 1037.30 2.39 No 5.25 Good 
C 18.00 100.00 300.00 0.66 51.30 1013.80 2.33 No 5.49 Good 
D 18.00 80.00 300.00 0.66 28.00 553.80 1.27 No 3.50 Bad 
E 18.00 100.00 300.00 0.84 39.90 792.90 1.82 No 4.96 Bad 
F 18.00 120.00 124.00 0.66 62.10 1227.70 2.82 Yes 6.11 Good 
G 18.00 100.00 191.00 0.66 59.50 1176.00 2.70 Yes 5.62 Good 
H 18.00 80.00 315.00 0.66 39.40 778.80 1.79 Yes 4.63 Bad  
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