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ABSTRACT 

The study explores the modelling of asset returns in portfolio as a stochastic process 

which exhibits mean reversion towards the long-term stationary mean. This can be 

thought of as if an asset return is connected to its long-run mean with a spring which 

pulls the asset return towards the long-run mean. The study investigates the stochastic 

nature of two assets returns by use of autoregressive and Ornstein-Uhlenbeck (OU) 

processes to illustrate the features of the assets weekly return series in Ghana from 

January 2011 to December 2017. The assets in the portfolio are assumed to include 

two major classes of investment: three-month Treasury bill and equity. The study 

elucidated from using the OU process to examine the mean reversion speed that the 

accumulated interest rate of equity approaches its long-run mean more quickly than the 

Treasury bill. The bivariate model revealed that the interest rate of each asset depends 

moderately on its interest rate of the past week and on a small portion of the interest 

rate of the other asset. For an investor to achieve an optimum portfolio of these assets, 

the investor should consider to invest in about 60% of equity and 40% of Treasury bill.  

One key recommendation is that the Ghana Stock Exchange should encourage the 

investing public to invest in stocks listed on the exchange because the rates of return 

are more stable.  
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CHAPTER ONE 

INTRODUCTION 

This study investigates the rates of return of assets in a portfolio as a stochastic process 

that depicts mean reversion towards a stationary point. Basically, estimation of assets 

returns in a multivariate framework is considered in this study. First, the Ornstein-

Uhlenbeck stochastic process is used in this study to capture the mean reversion of the 

accumulated rates of returns for the two different assets included in the portfolio. 

Second, these assets returns are estimated by a bivariate autoregressive process of 

order one. From the estimated results in this bivariate discrete time framework, an 

optimum portfolio of assets is created. 

 

Financial asset (simply referred to as asset or security) represents claims against the 

income or real assets of individuals and institutions issuing those claims at a future 

date. The collection of different assets held by an investor is called a portfolio. There 

are high chances that the assets held in a portfolio tend to correlate. To describe the co-

movements of the assets in a portfolio, a stochastic investment model can be studied. A 

stochastic investment model attempts to describe how returns on assets behave over 

time. It is, thus, probable to utilise a stochastic investment model to estimate how 

investing in different assets could impact returns in portfolio over time. The 

background of study, problem statement, research objectives, significance of the study, 

outline of research methodology, data source and scope, and organisation of the study 

constitute the sections of this introductory chapter. 
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1.1 Background of Study 

One of the most important and lasting question of financial time series modelling is 

whether asset prices are predictable. Perhaps, this is because the prices of assets in 

financial markets exhibit significant random fluctuations due to unexpected events. 

The fluctuations in prices of assets are usually as a result of unexpected set of new 

information, and as this new information is available to investors of securities, they 

instantly use the information and that lead to decisions as to buy or sell an asset. Future 

prices or returns on assets are uncertain or stochastic, but many investors still examine 

historical data of the returns on assets to see possible trends and patterns on which they 

make their investment decisions.  

 

There is a considerable attention in the literature that covers the forecasting of the rates 

of returns on assets. Surprising from these loads of publications, there is no consensus 

as to the sources of forecasting the returns on assets, but there is the growing belief 

that forecasting is an important characteristic of many assets. Investors are therefore 

interested in estimating the impact of modelling returns on assets in a portfolio. In 

particular, insurers, pension funds, and mutual funds give greater consideration to 

implementing investment strategies that will maximise the returns on the funds 

invested among the different asset classes. 

 

The price of a particular asset at any moment in time follows a stochastic process that 

depends on the state of the financial market (or world) it is traded. In finance and 

insurance, the focus is on the asset return process, so there is a need to investigate the 

return as long as the market exists. The effort of investment research focuses around 

pre-determination of return and measurement of risk. The investment risks mainly 
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depend on macroeconomic factors. In considering these investment risks, it is essential 

for investors to formulate a stochastic model that reasonably and accurately describes 

the random fluctuations in the asset prices. This has resulted in the estimations and 

applications of stochastic investment models to help explain the movement in financial 

asset prices.  

 

Modelling returns on assets plays significant roles in actuarial science. In actuarial 

analysis, a reliable stochastic investment model provides an actuary a clear picture and 

forecast for asset returns in both short and long investment horizons. Such forecasts are 

useful for pricing life insurance and pension products. Further, an accurate stochastic 

investment model for predicting asset return outcomes helps to estimate the future 

expenses associated with management of insurance and pension products. In addition, 

for actuarial analysis, a stochastic investment model can be useful in constructing an 

optimal portfolio and estimate the minimum capital requirement for selling insurance 

and pension policies. 

 

Stochastic models have been used to model rates of return on assets or portfolio over 

time for many years. The deterministic model for forecasting rates of return on assets 

is simple to use, but stochastic models are now largely used to fit the rates of return on 

assets, because of the fact that the noise terms are considered. The groundwork for 

modelling rates of return of securities is by Markowitz (1952); and following the 

footsteps of the stochastic investment model by Wilkie (1986), many stochastic 

investment models have been developed. The Ornstein-Uhlenbeck process as a class of 

stochastic process is widely used in finance and insurance to model returns of assets. 

Vasicek (1977) applied the Ornstein-Uhlenbeck process to model the instantaneous 
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interest rate over times. The Ornstein-Uhlenbeck process has other important 

applications such as forecasting currency exchange rates and commodity prices. 

 

One common feature of these stochastic models, including the Ornstein-Uhlenbeck 

process, is that most of these models considered are univariate models (one 

dimensional); these studies concentrates on the interest rates of a single asset. 

However, the problem is that for a portfolio, the use of the univariate models means 

that each asset is modelled separately under the assumption that the assets returns are 

uncorrelated. This assumption is unreasonable for most portfolios as the assets may be 

correlated.  

 

For a portfolio, each asset return has its own process, but importantly the returns of 

these assets may be correlated. In that case, to describe and forecast the return of the 

portfolio, a univariate model for each asset is inapt because the correlation between the 

assets cannot be captured. The overall return on a portfolio is greatly influenced by 

correlation between the assets. So, ignoring correlation in the asset return movement 

presents an error in the stochastic model that can lead to imprecise predicting. In view 

of this, a multivariate stochastic process is considered. The multivariate stochastic 

process provides a natural way to incorporate possible correlations of assets. It is also 

needed for optimal portfolio selection and risk management at the portfolio level.  

 

1.2 Problem Statement 

To the extent that the investors or portfolio managers are engaged in commitments 

whose returns lie in the future, the problem of constructing a comprehensive stochastic 

model that reasonably explains the movement of asset returns cannot be 
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overemphasised. Many decades ago, the asset portfolios of insurance companies, 

pension funds, and financial institutions were mainly fixed interest assets (loans) and 

money market securities. The asset portfolios of these institutions have changed 

significantly as these institutions have also largely invested in equities than previously. 

These institutions hold portfolio made of several assets and some of these assets tend 

to be correlated. Therefore, it is inappropriate to use a stochastic investment model 

without considering the correlation between the assets. Hence, a multivariate stochastic 

model to explain and forecast the return rates on assets over time is needed.  

 

Insurance buyers frequently ask what rate of return they earn on the money they save 

with a life insurer or a pension fund or a financial institution. The purchaser of pension 

fund or life insurance may choose from a vast array of companies and within each 

company the buyer is faced with a variety of plans which carry different premiums. 

Insurers determine these premiums on insurance policies that reflect expected 

investment returns; that is, insurers reflect expected investment income in premiums 

quoted to policyholders. The insurer collects a premium when the insurance contract is 

written and it is invested almost immediately. The horizon of these investments may be 

many years ahead. It is therefore desirable that an insurer obtain a reliable stochastic 

investment model that depicts the trends and patterns in which asset returns have 

behaved over time. It is also desirable for insurers or a financial institution to construct 

a stochastic investment model that is satisfactorily presentation of historical data and 

can produce stimulated returns close to the actual returns.  

 

In the light of the above considerations for pension funds and insurance companies, it 

is useful that the rates of asset returns are correctly predicted. The simple proposition 
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is that premiums collected by these institutions are invested to earn investment 

incomes which are then used to meet future contingencies. Pension funds and 

insurance companies that fail to maximise the returns on invested premiums may in the 

long run end up be insolvent. It is clear that one significant concern in actuarial 

analysis or asset portfolio management is the need for a stochastic investment model 

can satisfactorily describe and explain the long-term features of asset returns.  

 

1.3 Research Objectives 

The general objective of the study is to investigate the rates of return of two assets in a 

portfolio as a stochastic process that depicts mean reversion towards a stationary point. 

In essence, the specific objectives are threefold and are stated as follows: 

 To examine the mean reversion for each asset return in the portfolio. 

 To use a stochastic model to predict the assets returns in the portfolio. 

 To identify an optimum portfolio of these assets. 

 

1.4 Significance of the Study 

Modelling rate of returns of assets has been studied for many years. Except a couple, 

these studies consider modelling of interest rates of one asset, and as such, a univariate 

stochastic process is probably adequate to explain the empirical behaviour of the rates 

of return. In a portfolio of assets, each asset return has its own process, but importantly 

the returns of these assets maybe correlated. To describe and forecast the overall 

portfolio return, it is essential that a multivariate stochastic process is used. But, using 

a multivariate stochastic process to explain the empirical behaviour of asset returns is 

arduous. Yet, the study attempts to use a multivariate stochastic process to construct a 

stochastic investment model (for the return rates of two major asset classes traded in 
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Ghana) for use by an investor. Essentially, the findings of the study may probably 

guide the investment community on how to achieve an optimal portfolio of assets.  

 

A reliable and accurate stochastic investment model forms an important element in 

actuarial analysis that allows for possible simulations of asset returns in the future. It is 

necessary that stochastic models that can reasonably explain the movements in an asset 

returns are formulated for an actuarial use in an economy. Next to estimating the 

overall return on a portfolio, a stochastic model is necessary for actuarial uses that 

include projecting pension or long-term insurance payments, calculating required 

reserves to meeting future contingencies, and pricing insurance products. Finally, the 

desire is to formulate an optimal portfolio for investors. The construction of optimum 

portfolio is significant for the reason that an asset allocation strategy adopted by an 

investor has effect on the overall portfolio return. For example, pension funds pay 

crucial attention to the process of selecting an optimal investment strategy that benefits 

them and more specifically how they should split their funds into the different asset 

classes so that the risk in pension payments is minimised.  

 

1.5 Outline of Research Methodology 

A univariate AR(1) process estimated from the observed assets returns series is 

converted to its Ornstein-Uhlenbeck (OU) process under the principle of covariance. 

The OU process is then used to examine the mean reversion of each asset. Further, the 

estimated results given by the bivariate AR(1) process are used to identify an optimum 

portfolio. The parameters of the models are to be estimated by the method of 

maximum likelihood. 
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1.6 Data Source and Scope  

The three-month Treasury bill and equity are selected to correspond to major asset 

classes based on default risk as risk-free asset and risky asset respectively. The interest 

rate on the three-month Treasury bill will be used to calculate the rate of return on the 

risk-free asset, and the data is collected from the research section of Delta Capital 

Ghana. The Ghana Stock Exchange Composite Index (GSE-CI) for the last trading day 

in a week is used to calculate the rates of return on equity. GSE-CI data is collated 

from the online indices of the Ghana Stock Exchange. The sample data run from 2011 

to 2017, collected at weekly intervals.  

 

1.7 Organisation of the Study 

The rest of the study has the following chapters. Chapter 2 reviews the literature. Some 

known facts on stochastic processes for modelling asset returns as well as portfolio 

return and risk are reviewed in this chapter. Further, the basic properties of the 

autoregressive process of order one and some empirical evidences on the topic are 

provided. Methodology follows in Chapter 3, where more details of the investment 

models are discussed. It also describes the data. Chapter 4 covers the empirical results 

and analysis. Chapter 5 gives the conclusions and recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

The chapter focuses on a review of the literature on models for estimating asset 

returns. First, a review of the theoretical literature is carried on some classes of 

stochastic investment modelling, asset returns and some issues involved in statistical 

estimation of asset returns, portfolio, basic properties of the autoregressive process of 

order one, Brownian motion, and the use of the Ornstein-Uhlenbeck process in 

modelling asset returns. Then, the chapter concludes on a review of some empirical 

studies. It is important to mention that there are several studies on the use of stochastic 

model for the purpose of estimating asset returns. Most of these studies are, however, 

under the broad umbrella of univariate stochastic investment models. 

 

2.1 Stochastic Investment Modelling 

The time series analysis of a variable is to look for trends and patterns in the 

observations of the variable and derive 'rules' from them, and/or utilise all information 

extracted in the variable for a more precise prediction. The basic idea of a stochastic 

time series model is, thus, it takes useful historical data and combines it with the 

present to predict the future. Invariably, a statistical analysis of empirical assets returns 

gives valuable insights into the features of past experience that a stochastic model must 

capture.  

 

Stochastic investment modelling involves extrapolating assets prices under a large 

number of equally likely randomly generated asset paths. A stochastic investment 

model attempts to describe how returns on assets behave over time. It is, thus, probable 
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to utilise a stochastic model to estimate how investing in different assets could impact 

overall portfolio return over time. The pioneering paper in the area of modelling rates 

of return on an asset is by Markowitz (1952). Following this, Boyle (1976) presented a 

simple generalisation of the traditional compound interest and actuarial models to 

accommodate a stochastic return rate on assets. The investment model assumes that the 

return in a particular year is not related to the return in another year and that the 

probability distribution is unchanged over time. For most assets, this assumption is 

unrealistic. Though, equities may be quite unrelated from year to year. 

 

The pioneering paper in the area of modelling rates of return is by Markowitz (1952), 

but the benchmark to stochastic model for modelling investment returns data is the 

Wilkie investment model. Wilkie (1986) built the first comprehensive stochastic 

investment model. The model covered annual series of inflation, share dividends, share 

dividend yields and long-term interest rates (the yield on consols) for the United 

Kingdom from 1919 to 1982. Wilkie used a first-order autoregressive stochastic 

process to stimulate and forecast inflation. The Wilkie's model portrays a cascade 

structure for the investment series. Inflation is assumed to influence the other 

investment series. Using the cascade modelling method, Wilkie interrelate inflation 

with the other series to develop a comprehensive model for use by insurance 

companies (life or general), pension funds, or any other financial institution.  

 

The Wilkie investment model recorded some critics. Therefore, Wilkie (1995) updated 

and extended the Wilkie investment model to a more comprehensive model to include 

short-term interest rates, property rentals and yields, yields on index-linked stock, and 

wages (earnings) index; used monthly data instead of annual data; considered other 
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countries in addition to the United Kingdom model; introduced a model for predicting 

currency exchange rates; extended some aspects of the model to several other 

countries; and used more complex time-series modelling techniques, largely the 

cointegrated and autoregressive conditional heteroskedastic (ARCH) models. Inflation 

series was then modelled as an AR-ARCH model. 

 

Stochastic time series modelling has since then received considerable attention. Many 

of these stochastic investment models (including the Wilkie investment models) are 

developed using the Box and Jenkins (1976) linear modelling techniques. In addition 

to the linear stochastic time series models, other non-linear approaches for building 

stochastic investment models have attracted appreciation. For example, Whitten and 

Thomas (1999) reviewed the Wilkie (1995) stochastic investment model and prior 

work in order to refine the model. They considered non-linear time series model to 

explain the investment series, where ARCH models and threshold model were used. 

They suggested a threshold autoregressive (TAR) process as a useful stochastic asset 

model to the Wilkie (1995) stochastic asset model.  

 

Others have used different classes of continuous time processes in modelling the rates 

of return of securities. Parker (1995) used a linear second order stochastic differential 

equation to explain the interest rates on securities. Parker computed the first two 

moment functions of the interest rates and the interest rates accumulation function as 

these are needed for studying actuarial functions with random interest rates. The class 

of a shot noise processes with Poissonian times and Brownian magnitudes for 

modelling the rate of returns of securities was used by Chobanov (1999). 
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Hardy (2001) revealed that the traditional stochastic approaches for predicting the 

returns on long-term securities are based on the general idea that these returns have a 

geometric Brownian motion. Thus, an investment return during any discrete time scale 

is a log normal distribution and the returns in each different interval are unrelated. It is 

straightforward and tractable to use the independent lognormal (ILN) model to model 

the rates of return on securities. The ILN model presents a sensible explanation to the 

random behaviour of the returns when used in predicting returns on short-term 

securities, but it is less appealing for predicting returns on long-term securities. 

Empirical studies on rates of return on securities indicate that the ILN model, in 

particular, fails to include extremely movements of assets prices and random noise. To 

capture the random noise, the regime-switching lognormal process (RSLN) is used, 

where it assumed that the noise takes one of some discrete values, switching between 

these values at random.  

 

The RSLN technique is simple like ILN model but it has added feature of precisely 

incorporates the extremely observed behaviour. The RSLN allows the price process of 

the security to randomly switch between (say) n states, where each state is 

characterised by different model parameters. The process that describes the state of the 

price process at a period is said to follow a Markov process; thus, the probability of 

changing state strictly depends on the current state, not on the history of the price 

process. The main reason for the use of the RSLN model is that the financial markets 

are likely to change from time to time. The financial market, for example, may switch 

between a stable low-risk state and a more unstable high-risk state. In particular, 

unstable high-risk state can result because of short-term economic or political 

uncertainties.  
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Hardy (2001) was first to use the Markovian regime-switching lognormal models to 

model returns on equities. The Standard and Poor (S&P 500) index and the Toronto 

Stock Exchange (TSE 300) index from 1956 to 1999, taken at monthly intervals, were 

utilised to fit the RSLN model. The fitted RSLN model was compared to other models, 

such as the generalised autoregressive and traditional lognormal models. The RSLN 

model was a much appealing fit to the S&P and TSE data compared to other models. 

However, she pointed out that estimated stock returns from the Wilkie stochastic 

investment model are much like the results from the lognormal model using the same 

data set. 

 

The class of RSLN models is simple and parsimonious. The class of RSLN models 

provides a better fit to monthly return series of major stock markets. But, empirical 

studies have revealed significant stylised facts of asset return data, such as trends, 

asymmetries, seasonalities, jumps, non-linearity, and many others (example, see Cont, 

2001) that it is not possible to have one particular class of stochastic investment 

models that can express and describe all stylised facts detected in the return series. 

Wong and Chan (2005) used the class of finite mixture Gaussian time series models to 

fit returns on long-term investments as an alternative to using the RSLN process to 

model returns on long-term investments. The mixture time series models are more apt 

in modelling tails and higher-order moments of asset return distribution. Wong and 

Chan (op cit) utilised the S&P 500 and TSE 300 indices (same dataset used by Hardy 

(2001)) to fit the returns series and compared the estimates to the RSLN and ILN 

models. It was revealed that the class of the RSLN models provides an overall good fit 

to the empirical returns data for the S&P 500 and TSE 300 indices.  
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Enlarging the set of stochastic models to fit returns on long-term investments, Lau and 

Siu (2008) used the class of the Bayesian infinite time series mixture models to fit 

returns on long-term investments. The Bayesian mixture models as a candidate for 

modelling returns on long-term investments present a flexible method to depict and 

explain important empirical features of the returns such as skewness, kurtosis of 

returns' distribution, and the conditional heteroskedasticity. It takes into account full 

information involved in the AR and ARCH processes with different orders by using 

Bayesian averaging or mixing. The model naturally incorporates a possible risk or 

uncertainty associated with it, provides a better way to partition and detects outliers of 

the investment returns. Lau and Siu (op cit) adopted a Bayesian sampling method 

based on a weighted Chinese restaurant process for clustering the asset returns to 

estimate the Bayesian mixture models. The TSE 300 index (the dataset as adopted in 

Hardy (2001) and Wong and Chan (2005)) was used to fit the models and the 

simulated results compared to the observed features of the TSE 300 data. The 

simulated results exhibited that the fitted BMAR and BMAR-ARCH models with 

Bayesian averaging can better capture some observed features such as the negatively 

skewed and heavy-tailed behaviours of the logarithmic returns and the probability of 

crash, of the TSE 300 data. 

 

These studies are to broaden the set of stochastic time series models for predicting 

investment returns. One common feature about most of these studies is that the 

investment returns are modelled as a Gaussian process; as a result, the discounting 

function or the accumulation function has a lognormal distribution. Finally, these 

classes of stochastic models for modelling returns talked about are univariate models. 
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Nonetheless, the Ornstein-Uhlenbeck (OU) process is a popular stochastic model in 

finance and insurance used to model return rates on assets. Modelling the rates of 

returns of assets with OU process has been studied for many years (see Vasicek, 1977; 

Panjer & Bellhouse, 1980, 1981; Beekman & Fuelling, 1990, 1991; & Parker, 1993, 

1994a, 1994b). The rates of return of a portfolio can be analysed and modelled by a 

separate univariate OU process for each asset included in the portfolio (that is, a 

univariate model) or a single multivariate OU process (that is, a multivariate model). 

The rationale of modelling with a multivariate process is to incorporate the correlations 

between the several assets returns in an entire portfolio, which is absent in the 

univariate modelling. Multivariate models are, thus, needed to study co-movements 

and spill over effects between several assets. The use of the class of multivariate OU 

model has been well studied in Wan (2010) and Qian (2010).  

 

Formulating stochastic investment models for assets returns plays significant roles in 

actuarial science. Stochastic investment model is useful in determining premium for 

any kind of policy contract written by pension funds and life insurance companies. The 

pension fund or the life insurance company can have a practical estimate about 

mortality and expenses (probably using inflation to estimate expenses), but then adopt 

a reasonable investment plan. On the basis of simulated return paths of the portfolio 

held, the actuary can reasonably estimate the level of premium which will be sufficient 

to meet the sum assured. This means that an empirical premium frequency distribution 

can be derived. 

 

A reliable and accurate stochastic investment model is useful in the valuation of 

insurance companies. Fundamentally, a stochastic model is needed to investigate the 
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solvency of a life insurance company having portfolio of assets and of liabilities. 

Indeed, one key task of actuary is ensuring that an insurer will not run out of assets or 

become ruined by not having sufficient assets to satisfy a statutory minimum valuation 

basis. 

 

Similarly, stochastic investment model is an important tool in pension fund for 

investigating the fund's solvency, or the adequacy of any chosen contribution rate or 

the effect of investment strategies adopted. In simple terms, a stochastic model is 

necessary tool for the estimation of contingency reserves of life insurance companies 

and pension funds.  

 

2.2 Asset Returns 

For lucid explanations, let us fix some notations for this study. Expressing return on an 

asset as a set of random variable over time gives a time series {
tX }. In this study, the 

price of an asset at time t  is denoted as 
tS  and the return period as dt , which can 

range from probably a few seconds to a year or over. The price 
tS  of a particular asset 

in any time moment 0t   is a random variable that depends on the state of financial 

market and/or on the macroeconomic environment. Security prices are the fundamental 

market observables but the object of most investors and empirical studies is the so-

called asset returns. This is attributable to the stationarity assumption of the asset 

return process. The return on asset can be calculated from many different formulas, but 

here the focus is on log-returns in modelling the assets returns. 

 

2.2.1 Simple Return of Asset 

The simple net return of an asset for one-period dt  is computed as: 
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    1

1

t t
t

t

S S
X

S






      (2.1) 

where 
tS  is specifically the end-of-period asset price (or market index) at time t . This 

(above) equation means that the gross asset return at time t  can be defined as 1 tX . If 

an asset is held for n  periods dt , then the n -period simple return can be computed as: 

      t t n
n

t n

S S
X t

S






     (2.2) 

Equivalently, Equation (2.2) can be stated as: 

      1t t n nS S X t      (2.3) 

 

2.2.2 Log-Return of Asset 

The log-return 
tY  of an asset is given as: 

       1

1

log log logt
t t t

t

S
Y S S

S




 
   

 
  (2.4) 

The log-return is simple to calculate. But, the important issue in considering 

logarithmic investment return series is the ability of the model to include extreme 

movements of the rates of return on an asset. The log-return (
tY ) is closely related to 

the simple return (
tX ) by 

    
 1 1

1 1

log log
t t tt

t

t t

S S SS
Y

S S

 

 

   
    

   
 

     log 1t tY X   

    2 3 41 1 1

2 3 4
t t t t tY X X X X       (2.5) 
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2.3 Asset Return Distribution 

There is no agreement as to a particular fashion that asset prices should exhibit. 

Nevertheless, the random variations of most assets prices share certain common 

nontrivial statistical properties, called stylised facts (Cont, 2001). Three of these 

statistical properties are: 

 Gaussian distribution: the distribution of return varies at different time 

ranges. But, by increasing the time range for which the assets return is 

calculated, the distribution appears more like a Gaussian distribution. 

 Slow decay of autocorrelation in absolute returns: the autocorrelation 

function of absolute asset returns decay at a slow pace over time; that is, long-

range dependence. 

 Gain/loss asymmetry: except for exchange rates, a large downward movement 

in stock prices and indices can be observed but not equally large upward 

movement.  

 

2.4 Some Issues about Statistical Estimation of Asset Returns 

Some issues are essential when interpreting statistical estimation of asset returns. Some 

of these issues relevant to this study are summarised as follows. 

 

2.4.1 Stationarity 

Observed returns on an asset do not essentially reflect future performance of that asset. 

But to estimate the moments of asset returns, the asset returns should be stable over 

time. In simple terms, to analyse asset returns, stationarity is required. An asset return 

series 
tX  is has a strict stationarity if the joint distribution of (

1 2
, , ,

kt t tX X X ) is equal 

under different time scales, where k  is any positive integer. This condition is difficult 
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to prove empirically (Tsay, 2005). So, a weaker form of stationarity is used. An asset 

return series 
tX  has a weak stationarity if its mean and its covariance do not depend 

on time. Specifically, 
tX  is weakly stationary if  tE X   for all t  and 

 ,t tCov X X   , where  is an arbitrary integer. Asset returns are generally 

assumed to be weakly stationary. This assumption enables us to draw inferences about 

future outcomes, such as prediction (Tsay, 2005). 

 

2.4.2 Covariances and Correlations 

The covariance matrix is used for analysing the dependence of asset returns in a 

portfolio. For two assets returns, the covariance matrix ijC  is: 

        cov , , ,ij i jX t T X t TC    (2.6) 

In general, the covariance between asset return 
iX  and asset return jX  is given as: 

       ij i i j jE X E X X E X           (2.7) 

The covariance of these two assets returns may also be computed as the multiplication 

of the two assets' volatilities and the correlation coefficient ( ij ) between them: 

     ij i j ij        (2.8) 

It is clear from Equation (2.8) that the covariance ij  can vary, either because the 

correlation coefficient between the assets changes or because an asset volatility (
i ) 

changes. The correlation coefficient is a measure of the strength of linear dependence 

between these two assets returns. It can be shown that  1,1ij    and ij ji  . The 

correlation coefficient has these special values: 

    
1 perfectly correlated

  0 perfectly uncorrelated
ij


 

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If ij  is close to +1 or -1, then the assets returns are more closely related. The two 

assets returns are unrelated if 0ij  , so if it is close to 0, it indicates a weaker 

correlation between the two assets returns.  

 

2.4.3 Autocorrelation 

Autocorrelation is a measure of the linear dependence between 
tX  and its past values 

tX 
. Thus, the correlation between an asset return series 

tX  and its lagged return 

series 
tX 

 over successive time scales is described by autocorrelation. In simple 

terms, the correlation coefficient between 
tX  and 

tX 
 is referred to as the lag-  

autocorrelation of 
tX . If the autocorrelation of the asset returns is zero, then the return 

series can be modelled as a random walk, that is, the asset returns are said to be 

independent random variables.  

 

2.5 Portfolio 

Portfolio is a collection of different assets held by an investor. In selecting these assets 

to form the portfolio, the key assumption is that an investor is a risk averse; given an 

option to select between two assets with same rates of return, the investor will select 

the asset with the least volatility. However, some investors are not risk averse. To 

construct a portfolio, investors must evaluate the risk involved in buying each asset 

under consideration. Decades past, there was no explicit expression to measure risk. 

So, in the 1950s, a basic portfolio model was built by Markowitz (1952), where he 

provided the expressions for expected return rate and expected risk measure for a 

portfolio of financial assets based on some assumptions. He actually showed that the 

variance of the rate of return is an important measure of portfolio risk. This 
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conventional risk measure formula shows the need to diversify assets to minimise a 

portfolio total risk and also shows how investors are to diversify assets effectively.  

 

The Markowitz portfolio model was built on some assumptions concerning how 

investors behave. Four such assumptions crucial to this study are: 

 Investors consider the different investment options as each option having a 

probability distribution of expected returns over some investment period. 

 Investors determine a portfolio risk on the basis of the dispersion of expected 

returns. 

 Investors' asset selection decision is based solely on expected return and risk. 

 For a certain level of risk, investors prefer the assets with higher returns to 

lower returns. Likewise, for a certain expected return, investors prefer asset 

with less risk to more risk. 

These assumptions implicitly implies that the combination of asset that gives the 

highest expected return for a given amount of risk is known as the investor's optimal 

portfolio. 

 

2.5.1 Portfolio Return 

For simplicity of exposition, 
iX  is denoted as the return on asset i  and its expected 

value is represented as 
i . The percent invested in asset i  is 

i . The overall portfolio 

return ( X ) is: 

     i iX X     (2.9) 

Each asset return (
iX ) and thus the overall portfolio return ( X ) are treated as random 

variables. That is, investors are assumed to really behave like they have probability 
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values of these variables. The 
i 's are arbitrary are set by an investor; 

i  is a percent-

weight of each asset included in the portfolio, so 1i  ; and further assumes 0i   

for all i . The overall portfolio return ( X ) is then a weighted sum of random variables. 

The expected return on the portfolio, therefore, is: 

       i i i iE X E X       (2.10) 

 

2.5.2 Portfolio Risk 

The basic formula for measuring portfolio risk that investors consider when combining 

assets is provided by Markowitz (1952). For n assets in a portfolio, the variance is:  

     2 2 2

1 1 1

2
n n n

i i i j ij

i i j

X    
  

      (2.11) 

Taking square root of the expression in Equation (2.11) gives the standard deviation of 

the portfolio, which is the portfolio risk. For two assets in a portfolio, the variance is:   

     2 2 2 2 2

1 1 2 2 1 2 122X            (2.12) 

From Equation (2.12), it can be deduced that if the assets included in the portfolio have 

equal variance, then the portfolio has a minimum variance (risk) when the percent 

invested in each asset is equal. This proposition is proved in the appendix. Hence, the 

formula to determine the percent weight of one asset (say the first asset) to achieve a 

minimum portfolio variance for a portfolio of two assets can be given as: 

    
2

2 1 2
1 2 2

1 2 12 1 2

2

2

  


    




 
    (2.13) 

 

2.6 Simple Autoregressive Models 

One important approach for statistical modelling of modelling asset return series is the 

autoregressive processes. An autoregressive (AR) model is a stochastic process that is 
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a linear combination of its past values plus a noise term. Suppose a simple model given 

as: 

    
0 1 1t t tX X a         (2.14) 

where the white noise (
ta ) has mean 0 and variance 2

a . The form of Equation (2.14) 

is the same as a complete simple linear regression equation; 
tX  is the dependent 

variable and 
1tX 
 is the explanatory variable. Equation (2.14) is called an 

autoregressive model of order one or simply an AR(1) model. Condition on the past 

asset return 
1tX 
, this gives: 

 1 0 1 1t t tE X X X            2

1t t t aVar X X Var a     

The AR(1) model can be generalised to an AR(p) model as: 

      0 0 1 1 2 2

1

p

t i t i t t t p t p t

i

X X a X X X a        



          (2.15) 

Equation (2.15) means that the p  values 
t iX 

 ( 1i  ) simultaneously give the 

conditional expected value of 
tX  given the previous data. The AR(1) model is 

effectively used in this thesis, so its basic properties are explored. 

 

2.6.1 AR(1) Model 

Suppose an asset return series 
tX  has a weak stationarity, then at each time t , 

 tE X  ,    0tVar X  , and  ,t t j jCov X X   , where   and 
0  are constant 

and j  is a function of j . The mean, variance, and autocorrelations of the asset return 

can be obtained. Taking the expectation of Equation (2.15) and because   0tE a  , the 

following result is obtained: 

       0 1 1t tE X E X     
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Under the stationarity condition,    1t tE X E X    and hence 

       0

11
tE X





 


.   (2.16) 

Equation (2.16) has two implications for 
tX :  tE X  exists if 

1 1   and   0tE X   if 

and only if 
0 0  . If the AR(1) process is stationary, we have  0 11    , which 

means Equation (2.14) can be restated as: 

     1 1t t tX X a         (2.17) 

By repeated substitutions, Equation (2.17) implies that 

   
2

1 1 1 2 1

0

i

t t t t t i

i

X a a a a   


  



        (2.18) 

This relation implies that 
tX   is a linear function of 

t ia 
 for 0i  . Using this 

property and the independence of 
ta ,   1 0t tE X a     . Thus, from the stationarity 

assumption,    1 1, 0t t t tCov X a E X a      . Taking the square, and then the 

expectation of Equation (2.17), this gives 

       2 2

1 1t t aVar X Var X   , 

where 2

a  is the variance of 
ta . The stationarity assumption means 

   1t tVar X Var X  , so  

     
2

2

11

a
tVar X







, 2

1 1   

From this prior expression and the assumed weak stationarity for the AR(1) model 

means 1 1   . Thus, the required condition for AR(1) model to be weakly 

stationary is 
1 .  If the AR(1) model in Equation (2.14) is a weak stationary 

model, then the autocorrelation function of 
tX  satisfies 

University of Ghana http://ugspace.ug.edu.gh



25 

 

    
1 1    , 0     (2.19) 

Given that 
0 1  , Equation (2.19) gives 1  . This indicates that the 

autocorrelation of a weakly stationary AR(1) process decays exponentially with rate 
1  

and its starting value is 
0 1  . For a positive 

1 , the ACF plot of an AR(1) process 

exhibits a nice exponential decay, but for a negative 
1 , the ACF plot exhibits two 

alternating exponential decays with rate 2

1 . 

 

2.7 Stochastic Processes 

The modelling of random asset returns is based on stochastic processes. Stochastic 

process is a set of observed random variables over time; so 
tX  is a random variable 

(asset return) that models the value of the stochastic process at time t . In statistical 

modelling, a sample of data from the process being modelled is collected. If 
tX  

models asset return at time t , and the asset returns for last 12 trading weeks are 

observed, these data can be used to describe the process and analyse the nature of its 

past behaviour. The data may also be used to estimate the parameters of a class of 

stochastic process models. The estimated model can then be used to predict the future 

behaviour of the asset return.  

 

It is the dependence between the random variables in the set that allows to make 

predictions by extrapolating past patterns into the future. For instance, a stochastic 

model might say that the current value of 
tX  depends on the values of the two past 

trading weeks 
1tX 
 and 

2tX 
. If this dependence does not change with t , then the 

model could be use to predict future values of 
tX . 
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2.7.1 Brownian Motion 

Before describing the Brownian motion as a stochastic process, a brief background to 

it is considered. Brownian motion gets its name from the British botanist Robert 

Brown who in the nineteenth century (1827) observed that tiny pollen grains move in 

small but incessant and random fashion. He posed a mathematical problem of 

describing the observed movement, but did not solve it. It was in the twentieth century 

(the 1920s) that Wiener (1923) gave the mathematical basis for Brownian motion as a 

class of stochastic process. For this reason, Brownian motion is mostly known as a 

Wiener process. 

 

The Wiener process is a simple stochastic process from which an understanding of a 

system that fluctuates is obtained. Brownian motion is a simple class of continuous 

stochastic process often utilised to model random behaviour evolving over time. 

Example of such random behaviour is the variations in the price of an asset. 

Mathematically, Brownian motion or Wiener process, commonly denoted  W t , is 

defined as a stochastic process, for 0t  , if it satisfies the following properties: 

  W t  is continuous function of t  with  0 0W  . 

      0,W t m W m N t   for 0 m t  . 

    W t m W m   is independent of any details of the process for periods 

before m . 

 

Brownian motion can be geometric or arithmetic. This is illustrated as follows. 

Different assets have different amounts of fluctuation. But, assume that an asset (in 

particular, Treasury bills) has no volatility, this result in accumulated value such as 
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  0

rtS t S e , where r  is a (constant) continuously compounded interest rate. 

Differentiating gives 
dS

rS
dt

 . This results in the ordinary differential equation for the 

asset price process as: 

     
t tdS rS dt     (2.20) 

One other main feature of the differentiation implies 
dS

r dt
S

  , thus the relative 

change in the asset price can be stated as 
S

r t
S


  . It can be assumed that this relative 

change has both a deterministic part and an additional stochastic part: 

S
t W

S
 


     

Rearranging and writing in terms of differentials, the asset satisfies the linear SDE: 

    
t t t tdS S dt S dW       (2.21) 

where   is a constant return rate of the asset price (the asset drift),   is a constant 

asset volatility, 
tW  is a Wiener process (Brownian motion) and 

0S  is the initial value 

(assumed to be 
0 0S  ). Equation (2.21) is said to be a geometric Brownian motion 

(GBM). 

 

On the other hand, the arithmetic Brownian motion (with drift) of an asset return 
tX  

can be given as the solution of 

    
t tdX dt dW       (2.22) 

with initial value 
0 0X x . This arithmetic Brownian motion (ABM) can be obtained 

by integrating the SDE: 

    
0t tX x t W        (2.23) 
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It is possible to use the ABM to obtain the GBM; defining tX

tS e  and using Itô's 

lemma: 

    
2

2
t t t tdS S dt S dW


 
 

   
 

  (2.24) 

Without loss of generality and using 
2

2


   , the GBM is described as: 

    
t t t tdS S dt S dW       (2.25) 

with initial value 
0S . The solution can then be determined by using the solution of the 

ABM 

    
2

0 exp
2

t tS S t W


 
   

    
   

  (2.23) 

Qualitative behaviour of this solution is as follows: 

 If 
2

2


   then 

tS   when t  , a.s. 

 If 
2

2


   then 0tS   when t  , a.s. 

 If 
2

2


   then 

tS  fluctuates between arbitrary large and small values as 

t  , a.s. 

 

2.8 Use of the Ornstein Uhlenbeck Process in Asset Modelling 

The class of stochastic process used to describe the characteristic of a process to revert 

to the mean is the Ornstein-Uhlenbeck (OU) process. This process is a model 

describing the velocity process of a Brownian motion. Uhlenbeck and Ornstein (1930) 

proposed the Ornstein-Uhlenbeck process, instead of the Brownian motion, in a 

physical modelling situation, where a mean-reverting tendency is captured in order to 
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explain the situation modelled. In contrast to the Brownian motion where the drift term 

is assumed constant, the drift term of the OU process is determined by the current 

value of the process: the drift is positive if the current value of the process is less than 

the long-run mean and it is negative if the current value of the process is greater than 

the long-run mean. In general, the advantage of the OU process is that its sample 

functions have a tendency to revert to the initial position, a situation characterised by 

many interest rate situations. The OU process as a class of continuous stochastic 

process is parsimonious but sufficient to include a wide range of processes. 

 

2.9 Empirical Evidence 

This section presents evidence from modelling and forecasting rate of returns on assets 

using the OU stochastic process. The process is best identified with the Vasicek (1977) 

interest rate model. In fact, the OU process is widely utilised for modelling assets 

returns, but has other useful applications such as modelling commodity prices and 

currency exchange rates. For example, Chaiyapo and Phewchean (2017) used the OU 

process to price Thai commodity.  

 

Panjer and Bellhouse (1980, 1981) studied stochastic modelling of the rates of return. 

The autoregressive, OU and white noise processes were the univariate models used in 

these papers to model the rates of return in continuous and discrete times. These 

stochastic models for the rates of return were used in computing net single premiums 

for both life annuity and whole life insurance policies. In the first paper, the results 

were derived under stationarity process, and in the second paper, the results were 

derived under a conditional autoregressive model for the rates of return. 
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Beekman and Fuelling (1990, 1991) introduced a model for use when the rates of 

return and future lifetimes are stochastic, for some annuities. In these papers, the OU 

process was utilised to model the accumulation function of interest rate, where they 

derived the mean and variance of life annuity functions. The motivation in these papers 

was deriving the moments to help estimate contingency reserves for a likely 

unfavourable interest and mortality occurrence for collections of life annuity policies. 

 

Parker (1993, 1994), also, provided methods to determine the first three moments of 

the discount value of accumulated values for a portfolio of insurance or annuity 

contracts by assuming interest rates follow white noise or OU processes. In 1995, 

Parker then used a second order stochastic differential equation to modelled interest 

rates and provided the first three moments of certain annuities. 

 

These univariate models are limited in that they failed to capture the correlation 

between individual assets in a portfolio, so a multivariate model is also studied. Wan 

(2010) modelled interest rates of three assets by both univariate and multivariate OU 

processes. He fitted both univariate and multivariate AR(1) models to the daily 

observed interest rates of 10-year long-term bond (a low-risk asset), three-month 

Treasury bill (a moderate-risk asset), and S&P 500 Index (a high-risk asset) for 35 

years of the US market spanning from early 1974 to June 2009. These models were 

converted to corresponding OU processes to model accumulated interest rates. The 

results from the univariate model showed that the interest rates for the bond and the 

Treasury bill were highly dependent on the previous day's interest rates. But, the 

equity's rate of return for one day was weakly related to its rate of return for the 
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previous day. Between the bond and the Treasury bill, the bond experienced lesser 

risk. However, the risk of the equity was much high these assets.  

 

In the multivariate model, interest rates for both bond and Treasury bill have effect on 

the return rates on equity. On the other side, the rate of return of equity did not affect 

the returns on bond and Treasury bill. For long-term bond, the current interest rate 

depends highly on its past day's interest rate and on a marginal portion of interest rate 

of the Treasury bill for the previous day. For equity, its return rate for the previous day 

has approximately no effect on the bond. The current interest rate of Treasury bill 

depends much on its interest rate for the past day and on a minimal percent of the 

bond's previous day interest rate, with close to zero impact from the equity. The 

current rate of return for equity is explained by the previous day interest rates of both 

bond and Treasury bill; but more dependent on bond than Treasury bill. Compared to 

the other two assets, the current interest rate of equity is marginally explained by its 

interest rate for the previous day. Wan (2010) mentioned that it is very difficult to use 

the multivariate OU process to model interest rates, and also emphasised that there is 

much that needs to be studied about the use of the multivariate OU process in 

modelling interest rate rates. From the univariate OU process, the result revealed the 

accumulated return rate on equity reverts faster to the long-run mean than the bond and 

the Treasury bill.  

 

Wan (2010) simulated 5000 sets of independent realisations. The result revealed that 

the three assets in shared one characteristic; the multivariate model takes extended 

time to revert to the long-run mean. In the short run, each model takes distinct time to 

revert to the long-run mean. For instance, the rate of return on equity takes almost 50 
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years to revert to the long-run mean, but not to a day to revert to the long-run mean in 

the univariate model. The interest rates were actually simulated to price annuities 

under several asset allocation strategies. For the asset allocation strategy to be adopted 

to realise the lowest price of annuity for a man aged 65, the models showed varied 

outcomes. 

 

Qian (2010) also used three different methods under AR(1) and OU processes to fit 

assets returns in a portfolio. In the first method, each asset return is modelled by a 

univariate process, called the univariate model. The global model, the second method, 

computes the overall portfolio return with a pre-assigned percent on each asset, in 

which a single univariate process is used to estimate the combined return. In the third 

method, a multivariate model is used to model the assets returns. The daily return rates 

on ten-year Constant Maturity Treasury bills (as long-term bond), three-month 

Treasury bills (as short-term asset), and S&P 500 Index (as equity) in the US spanning 

from January 1974 to December 2007 were used. The interest rates of equity were 

highly dispersed and weakly correlated. The author decided to summarise the daily 

interest rate of each asset into an annual rate in order to reduce the noise. These 

observed annual rates were utilised to fit the AR(1) processes. 

 

In the univariate model, the result showed that the current annual interest rates of the 

bond and Treasury bill depend greatly on the their interest rates of the past year. For 

equity, the current interest rate has a weak dependence on its interest rate for the past 

year. The three AR(1) processes were all stationary, and thus, were converted to their 

corresponding OU processes. From the OU processes, the result indicated that the 
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conditional expected values of bond, Treasury bill and equity will respectively takes 

about 42, 19 and 1 year to revert 95% closer to their long-run equilibrium points. 

 

To clearly examine the relationships among the assets in the multivariate context, three 

separate bivariate AR(1) processes were estimated taking two assets at a time. The 

three-dimensional AR(1) process was also estimated. In the bivariate AR(1) model for 

bond and Treasury bill, the results showed that the bond's interest rate depends on its 

last year interest rate (56.5%) and on last year interest rate (35%) of Treasury bill 

(35%). But, the Treasury bill's interest rate is much correlated with its past year interest 

rate (88%) and weakly correlated with last year interest rate of the bond.  

 

For the other two bivariate AR(1) processes involving equity, the results showed that 

the interest rate on equity is highly dependent on the past year interest rates of bond or 

Treasury bill but not on the last year interest rate of the equity itself. Conversely, the 

last year interest rate of equity has negligible effect on the rates of returns on these 

instruments. 

 

The three-dimensional AR(1) process exactly describes the same relationships as the 

bivariate AR(1) process involving the bond and Treasury bill. However, it revealed 

that the interest rate of the equity has mixed relationship forms using the past interest 

rates of bond and Treasury bill. It was thus complicated to directly explain how the 

rate of return of equity is related to the last year interest rates of the other instruments 

in the three-dimensional AR(1) process.  
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In the global model studied, the assets were combined for three portfolio cases: each 

portfolio altered by the percent weight of the assets. The results from these three 

AR(1) processes showed that the return and the risk of the portfolio increase if the 

portfolio has more percent invested in equity. Further, as more equity is included in the 

portfolio, the current rate of return has a weaker correlation with the rate of return for 

the past year.  

 

The results of the three investment models were compared in the study and it was 

concluded that to for accurate estimations of the return rates, the multivariate model 

should be used. Qian (2010) also illustrated how the estimated results can be used to 

find the prices of annuities and optimise asset investment strategies. The stochastic 

models gave varied conclusions for these two applications.  

 

2.10 Conclusion 

From the review of literature, it can be concluded that different univariate stochastic 

processes have been utilised to capture the most distinct features of the return process 

of an asset. In the multivariate context, modelling asset returns is arduous task. 

Besides, capturing the individual dynamics of the assets, the multivariate model needs 

to reproduce the correlations between the assets involved in the portfolio. For instance, 

knowing the correlation structure is critical to optimum portfolio construction or asset 

allocation strategy. The next chapter elaborates on the statistical techniques and 

properties of the AR(1) and OU stochastic processes. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

The approach of the autoregressive and the Ornstein-Uhlenbeck processes is well 

followed in this chapter. The formulas and methods for the AR(1) and OU processes 

described here closely follow Wan (2010) and Qian (2010). The OU process is an 

AR(1) process studied in continuous time. In modelling rates of return, either AR(1) or 

OU process can be used. However, the AR(1) process is first used for analysing the 

series because, in practice, series are collected at a certain discrete time interval. Then 

based on need, the AR(1) process can be converted to the OU process to study the 

return rates in different time intervals. Further, the chapter explains how to convert the 

AR(1) processes to OU processes under the covariance equivalence principle, which 

states that the first two moments of each process must be equal at all time. The data for 

the study is also expounded. 

 

3.1 Investment Models 

Three different stochastic models for fitting the assets return in a portfolio are studied. 

First, a univariate model which explains the each asset return in the portfolio by a 

univariate stochastic process is discussed. Second, instead of fitting a separate 

univariate process to each asset in the portfolio, the return rates of the assets in the 

portfolio are combined based on the percents invested in each asset. This is called a 

global model. Third, a multivariate model that describes a multivariate process to the 

assets returns in the portfolio is analysed. The accumulation functions of the rate of 

returns are also derived because it is used to determine the future value or present 
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value of a portfolio and also crucial for pricing insurance products. In the discussion, 

transaction costs involved in investing are ignored.  

 

3.2 Univariate Model 

Many studies have focused on the univariate AR(1) and OU processes for modelling 

rates of returns on assets, prices of commodities (such as oil prices), and currency 

exchange rates. This section gives the parametric relations between these stochastic 

processes. 

 

3.2.1 AR (1) Process 

From Equation (2.17), the univariate AR(1) process for the asset returns is stated as 

    1 ,     1, 2,3,t t tX X a t         (3.1) 

where   is the mean of the asset returns,   is the correlation coefficient between the 

current asset return and previous asset return, and 
ta  is a random error with a key 

assumption that the 
ta 's are independent and follow identical normal distribution. If 

1  , the asset return process is a random walk, and if 0  , it is a white noise. If 

0 1  , the asset return process satisfies mean-reverting and stationarity condition, 

and an OU process can be estimated.  

 

Assuming that the process is mean-reverting and stationary and given initial value as 

0X , some relations for the AR(1) process can be obtained. For 1,2,3,t  ,  

     
1

0

0

t
t j

t t j

j

X X a   






      (3.2) 

Therefore, 
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       0 0

t

tE X X X         (3.3) 

     
2

2

0 2

1

1

t

t aVar X X






 


   (3.4) 

    
 2min ,

2

0 2

1

1

t s
t s

s t aCov X X X


 



 

      
  (3.5) 

The assumption that the AR(1) process is stationary means that its first two moments 

will always exist as t  : 

      0lim t
t

E X X 


      (3.6) 

     
2

0 2
lim

1

a
t

t
Var X X




 


   (3.7) 

 

3.2.2 Ornstein-Uhlenbeck Process 

It is generally assumed that asset return tends to revert to its long-run stationary point, 

usually its historical average value. If the tendency of reversion towards a stationary 

point is needed, the OU process can be used. That is, the OU process is a stochastic 

process that tends to measure the speed of mean reversion, an important feature of an 

asset return. Its velocity and position processes are studied below. 

OU Velocity Process 

The OU velocity process is sometimes called the Vasicek model. The stochastic 

process 
tX  is a univariate Gaussian OU process if it satisfies the SDE: 

     ,     0t t tdX X dt dW t          (3.8) 

where  ,  , and   are all strictly non-negative constants and 
tW  is a standard 

Weiner process. In Equation (3.8),   is the asymptotic mean return rate of the asset 

(the long run mean, the asset return rate tends to revert to). The parameter   is the 

speed of reversion (growth or decay rate), and the larger the absolute value, the faster 
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the reversion is. If more time elapses, the process should be closer to its stationary 

point. The parameter   measures the instantaneous volatility of the asset return rate. 

The larger this value, the higher the asset return rate's volatility. The solution of this 

SDE is: 

      
0

0
,     0

t t st

t sX e X e dW t
  
       (3.9) 

Given the asset return rate at time 0 (
0X ), the following are obtained: 

       0 0 0
0

t t st

t s

tE X X E e X e dW e X
     
          

     (3.10) 

       
22

0
0

21
2

t t s

t s

tVar X X E e dW e
  



       
 
   (3.11) 

  
 

 
2

0

2 min ,
1

2
s t

t s
t s e

Cov X X X e







 
     

  
 

  (3.12) 

     0lim t
t

E X X 


      (3.13) 

     
2

0lim
2

t
t

Var X X



     (3.14) 

 

OU Position Process 

The OU process gives the formula that is use to determine the accumulated rate of 

return on an asset. The OU position process, 
tY , is derived as an integration of the 

process 
tX : 

     0
0

t

t sY Y X ds      (3.15) 

In the financial environment, 
0Y  is usually 0 and given that 

0X  is a known value, 
tY  is 

a Gaussian process as well. The first two moments of 
tY  are given as: 
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      0 0
0 0

1 t
t t

t s s

e
E Y X E X ds E X ds X t



 


      
     (3.16) 

      
2 2

2

0 2 3
3 4

2

t t

tVar Y X e e  

 

         (3.17) 

     
2 2

0 2 3
min , 2 2 2

2

t s t st s

s tCov Y Y X s t e e e e
   

 

             
 

 (3.18) 

 

3.2.3 Equivalent AR(1) and OU Process 

The parametric equations between the AR(1) process and the OU process can be found 

by matching the covariance for each process at all time. Suppose the process is 

observed at a time interval of   starting from 0, then the covariance between the asset 

return at time t  and k  past periods ( t k  ) is:  

   
 2

0

2
1

2
t t k

t kkCov X X X e e
 


  

         
 

 (3.19) 

Now, using Equation (3.5), the covariance in the form of Equation (3.19) for a 

conditional AR(1) process is: 

    
 2

0 2

2
1

1

a
t t k

t kkCov X X X


 




  
    

  
 (3.20) 

From Equations (3.19) and (3.20), these results are derived: 

    e      or 
ln







   (3.21) 

and 

     
2 2

21 2

a 

 



.    (3.22) 

It is required that  , 
a ,  , and   in Equation (3.22) have equal time scale. Equally, 

the relation between   and   can be determined by matching the first moment of 

Equation (3.3) to that of Equation (3.10). From these equations, e    . It is clear 
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from their parametric relations that to satisfy Equation (3.21), 0   is required. This 

study is limited to stationary processes, so it is also required that 1   and 0   to 

satisfy Equation (3.22).  

 

3.2.4 Portfolio Return under Univariate Model 

The overall portfolio return in time t  is sum of each asset return where each asset's 

percent-weight forming the portfolio is considered. For only two assets in a portfolio, 

we have two OU processes as: 

      
, ,0

0

ii
t t st

i t i i i iX e X e ds
  
 

       (3.23) 

where ,i tX  is the instantaneous return rate of asset i  ( 1,2i  ) at time t ; ,0iX  is the 

instantaneous return rate of asset i  at initial time 0; 
i  and 

i  are the parameters of 

the univariate OU process to explain the behaviour of the return rate of asset i . The 

overall portfolio return can then be calculated as a combination of the rates of return of 

the two assets taking into consideration their corresponding percentage weights in the 

portfolio as: 

   
2

, , 1 1, 2 2,

1

P t i i t t t

i

X X X X  


         (3.24) 

where ,P tX  is the accumulated rate of return of the portfolio, 
i  is the percent-weight 

of each asset in the portfolio, and 
2

1

1i

i




 . Further, t , this gives: 

      1 2

, 1 1,0 1 1 2 2,0 2 2

t t

P tE X e X e X                      (3.25) 

       2 2 2

, 1 1, 2 2,P t t tX Var X Var X         (3.26) 

      2 2

, , 1 1, 1, 2 2, 2,, , ,P t P s t s t sCov X X Cov X X Cov X X       (3.27) 
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The use of a separate univariate model to fit each asset return in the portfolio is based 

on the idea that there is no correlation between these two assets. Thus, in Equation 

(3.25),  1, 2,, 0t tCov X X  . From Equation (3.15), we know that the accumulation 

function of 
tX  is defined as 0

0

t

t sY Y X ds   . Based on the univariate model, the 

following formulas for the accumulation functions of the return on the portfolio ( ,P tY ) 

are obtained:  

    , 1 1, 2 2,P t t tY Y Y         (3.28) 

        , 1 1, 2 2,P t t tE Y E Y E Y        (3.29) 

        2 2

, 1 1, 2 2,P t t tVar Y Var Y Var Y       (3.30) 

       2 2

, , 1 1, 1, 2 2, 2,, , ,P t P s t s t sCov Y Y Cov Y Y Cov Y Y      (3.31) 

where , ,0 ,
0

t

i t i i sY Y X ds    for 1,2i  .  

The univariate stochastic model is sufficient to use to fit the rates of returns on assets 

in a portfolio if the assets are highly uncorrelated. In modern financial market, there 

are high chances that the assets in a portfolio are correlated. It is, thus, inappropriate to 

use a univariate model if the assets are really correlated. 

 

3.3 Multivariate Model 

The stochastic processes for modelling different assets returns included in a portfolio 

by the multivariate AR(1) and OU models are considered in this section. The rationale 

of introducing a multivariate model is to incorporate the correlations between asset 

returns, which is absent in the univariate model. The parametric relations are also 

studied. 
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3.3.1 Multivariate AR (1) Process 

The multivariate AR(1) process, denoted as VAR(1), can be given as: 

  

1, 1 1, 1 1 1,11 12 1

2, 2 2, 1 2 2,21 22 2

, , 1 ,1 2

t t tn

t t tn

n t n n t n n tn n nn

X X a

X X a

X X a

   

   

   







       
       
       
      
      

       

 (3.32) 

In vector form, the VAR(1) process is restated as: 

    1 ,     1,2,t t t t    ΦX μ X μ a   (3.33) 

In Equation (3.33), Φ  is a square matrix of numerical values that describes the 

dependences between ,k tX  and  , 1s tX  ( 1t  ). Vector ta  has a multivariate Gaussian 

distribution with mean 0  and covariance matrix a . For an initial value given as 

vector 0X . The VAR(1) process can be stated as: 

    
1

0

0

,       1
t

t j

t t j

j

t






    X X a     (3.34) 

From Equation (3.34), the conditional mean and variance of tX  are as follows: 

      0 0

t

tE    X X X     (3.35) 

      
1

0

0

Tt
i i

t a

i

Var




 X X       (3.36) 

The conditional covariance of Equation (3.34) is derived as: 

     
1 1

0 0 0 0

0 0

,  
t t k

t j t k i

t t k j i t k i

j i

Cov Cov
  



   

 

 
        

 
 X X X X a X a X    

           
1 1

0 0

,  
t t k

j i

t j t k i

j i

Cov
  

  

 

 
  

 
 a a   

                    
1 1

0 0

,  
t t k

j i

t j t k i

j i

Cov
  

  

 

 a a   

University of Ghana http://ugspace.ug.edu.gh



43 

 

                         
1 1

0 0

t t k T
j i

t j t k i

j i

E
  

  

 

 a a   

      
1

0

0

t k T
k i i

t t k a

i

Cov
 







   X X X      (3.37) 

In Equation (3.37),  
T

i
  is defined as the transpose matrix  of 

i
 . 

 

3.3.2 Multivariate Ornstein-Uhlenbeck Process 

The multivariate OU process for modelling rates of return is useful for describing the 

multivariate dynamics of the assets involved in the portfolio.  

 

Multivariate OU Velocity Process 

The multivariate OU process is stated in the form of SDE as: 

     ,     0t t td dt d t   X X W     (3.38) 

In this expression,   is a fully generic square matrix that describing the continuous 

change of every asset return depending on its current level and the levels of other 

assets returns;   is a vector of the expected values;   is a diffusion matrix indicating 

dispersion of the process); and tW  is a vector of independent Gaussian Brownian 

motions. Equation (3.38) can be restated in matrix representation as: 

1, 1, 1 1 1,11 12 1 11 12 1

2, 2, 1 2 2,21 22 2 21 22 2

, , 1 ,1 2 1 2

t t tn n

t t tn n

n t n t n n tn n nn n n nn

X X W

X X W
d dt d

X X W

     

     

     







        
        
         
        
        

        

(3.39) 

The solution of the SDE in Equation (3.38) is  

     
0

0
,     0

t

t s

t st
e e d t


    

AA
X X W     (3.40) 
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In Equation (3.40),   is the time (speed) that the process times to revert to its long run 

mean from a given start value. Here, the speed of the mean reversion is a pooled effect 

of all assets returns involved in the portfolio; and   measures the instantaneous 

volatility from all assets returns. 

 

For an initial value of 0X , the following results are obtained: 

      0 0

t

tE e   AX X X     (3.41) 

        
1 1

0
0

T
T

t

t OU

t u u t
Var e e e du e

   
    

   


A A A A
X X    (3.42) 

        
1 1

min ,

0
0

,

T
T

s t

s t OU

s u u t
Cov e e e du e

   
    

   


A A A A
X X X   (3.43) 

where 
T

OU      

 

Multivariate OU Position Process 

The integration of tX  gives the multivariate OU position process tY : 

    0
0

t

t sds  Y Y X     (3.44) 

Equally, considering the SDE  

   
tt

Y

tt

t
d dt d

t t

    
           

XX W
B

YY W





   (3.45) 

where 
 

  
 

0

0

A
B

E
, E  is identity matrix of size n, and Y

 
  
 

0

0 0


 .  

The solution of Equation (3.45) is: 

   
 0

0
0

tt

Y s

t

t st
e e d

t

     
       


X X BB

W
Y Y

 



 (3.46) 
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3.3.3 Equivalent VAR(1) and Multivariate OU Process 

It is difficult to derive the parametric equations in the multivariate process. To obtain 

these relations, however, the covariance equivalence that exists between the matrices 

 ,  and  , a  must be found. Supposing an VAR (1), the matrices   and   must 

be found to estimate the multidimensional OU process. 

 

Matrix   

From the covariance principle, the first moment of Equation (3.41) should be equal to 

that of Equation (3.35). t , this means 

       0 0 0

tt

tE e      AX X X X    , 

which implies that 

     e A      (3.47) 

Estimating eA  is sufficient for the velocity process, but   is needed if the multivariate 

OU position process is of interest. The eigenvalues and eigenvectors of matrix   are 

largely used to obtain teA . If the eigenvalues of    are 
1 2, , , n    with 

corresponding eigenvectors       11 21 12 22 1 2, , ,1 , , , ,1 , , , , ,1
T T T

n nv v v v v v , then 

  

1

2

11 12 1 1

21 22 2 2
0 0

1 1 1 n

u t

n

u t

nt

t

u t

n

v v v c e

v v v c e
E e

c e

  
  
    
  
  
    

AX X X    (3.48) 

where 
1 2, , , nc c c  are constants. From Equation (3.48) with 0t  , this gives 

   

111 12 1

221 22 2

0 0

1 1 1

n

n

t

n

cv v v

cv v v
E

c

  
  
    
  
  

   

X X X   (3.49) 
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The simultaneous linear equation in Equation (3.49) is solved to get 
1 2, , , nc c c . 

Equation (3.49) gives 
1

0


c V X .  Putting c  into Equation (3.48) and matching the 

coefficients of 0X  on each row on both sides of the matrices gives the expression teA . 

 

To obtain  , the eigenvalues and eigenvectors of matrix   must also be calculated. 

Suppose that matrix   has n  eigenvalues 
1 2, , , n   . If e A  , then the 

eigenvalues of   are  lni i   ( 1,2, ,i n ) with its eigenvectors as same as those 

of  ; this gives the simultaneous linear equation:  

      v Av     (3.50) 

where   is one eigenvalue of   with v  as its eigenvector.   is expressed as: 

     
1

A V V     (3.51) 

In Equation (3.51),   is defined as a diagonal matrix formed by eigenvalues of   and 

each column in the n n  matrix V  is the resultant eigenvector. If all the eigenvalues of 

  lie between 0 and 1, then the multivariate OU process is stationary. 

  

Matrix   

To get matrix  , first solve for 
T

OU      where   can be defined as a lower 

triangular matrix in order to make it easily solved using the idea of Cholesky 

decomposition. 

 

3.3.4 Portfolio Return under Bivariate Model 

In this study, one main object is to use a bivariate AR(1) process to fit the two assets 

returns involved in the portfolio. Based on need, the estimated bivariate AR(1) process 
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may be converted to its bivariate OU process. In the bivariate OU process, the mean 

and the variance of tX  are obtained as follows. 

 

First, a bivariate AR(1) process is fitted on the historical assets returns in the portfolio 

to explain the instantaneous interest rate tX  as: 

   
1, 1, 1 1,11 12

2, 2, 1 2,21 22

,   1
t t t

t t t

X X a
t

X X a

 

 





      
        
      

  (3.52) 

where ta  has a bivariate Gaussian distribution with 0  and a 2 2  covariance 

matrix a . Suppose initial value of 0X , then 

  
1

1,1, 1,011 12 11 12

0 2,2, 2,021 22 21 22

.

t j
t

t jt

j t jt

aX X

aX X

   

   




 

       
          
        

  (3.53) 

 

Second, the bivariate AR(1) process is used to compute the parameter   of the 

equivalent bivariate OU process. Explicit expression for teA  is also obtained. The 

eigenvalues (
1 2,  ) and the corresponding eigenvectors (  11,1

T
v , 12 ,1

T
v ) of matrix ̂  

is solved numerically. From Section (3.3.3) and Equation (3.47), the eigenvalues of   

are    1 1 2 2ln , ln     . The eigenvectors of matrices   and   are the same. So, 

matrix   is solved using Equation (3.51), that is: 

  
 

 

1

1 111 12 11 12

2

ln 0

0 ln1 1 1 1

v v v v





     
      

    
A V V  (3.54) 

If matrix   is obtained, its eigenvalues and eigenvectors are used to derive the explicit 

expression for teA . This is sketch as follows. Using Equation (3.48): 

  
1

2

11 12 11 12 1 11
0 0

2 22
1 1 1 1

u t t

t

t u t t

v v v v cc e
E e

cc e





      
         

      

AX X X  (3.55) 
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where 
1 2,c c  are constants. For 0t  , Equation (3.53) becomes 

   
1,0 111 12

0

2,0 21 1

X cv v

X c

    
     

    
X     (3.56) 

From Equation (3.56), 
1

0


c V X . So, 

1 2,c c  can be expressed in term of 0X  and V  

as: 

    
1,0 12 2,0

1

X v X
c



 
     (3.57) 

    
1,0 11 2,0

2

X v X
c




     (3.58) 

where 
12 11v v   ;   is the determinant of the eigenvector matrix V . Now, if putting 

1 2,c c  into Equation (3.55), the formula for teA  can be obtained as:  

   
 12 2 11 1 11 12 1 2

2 1 12 1 11 2

1
t t t t

t

t t t t

v v v v
e

v v

   

    

  
  

   

A   (3.59) 

Engaging in symbolic calculation and using Equation (3.43),  ,cov s tOU Cov X X  

can be computed. Letting 

11

12

21

22

OU

OU

OU

OU

OU



 
 
 

  
 
  

  and simplifying, the elements of 
covOU  are: 

  
         

11

2

1 2 1 2 1 2

1,1
2log log log log

OU
covOU

v v   

 


 

 
 

  
         

12

2

1 2 1 2 1 2

1,2
2log log log log

OU
covOU

v v   

 


 

 
 

  
         

21

2

1 2 1 2 1 2

2,1
2log log log log

OU
covOU

v v   

 


 

 
 

  
         

22

2

1 2 1 2 1 2

2,2
2log log log log

OU
covOU

v v   

 


 

 
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where 

   

   

   

   

   

   

   

  

  

  

  

1 2 1 2

1 2 1 2

1 1 2

2 1 2

1 1 2

2 1 2

2

1 2

2

2 1

2

1 2

2

2 1

log log

log log

log log

log log

log log

log log

log

log

log

log

s t

t s

t s

t s

t s

t sT

t s

t s

t s

t s

   

   

  

  

  

  

 

 

 

 

















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

   

   

2 2 2 2

1 2 1 2 1 2 1 2

2 2 2 2

1 2 1 2 1 2 1 2

2 2 2

1 2 1 1 2 1 2 1 2 1 2

2 2 2

2 1 2 1 2 2 1 1 2 1 2

2 2 2 2 2

1 1 2 1 2 1 2

11 2 2 2 2 2

2 1 2 1 2 1 2

2 2 2 2 2

1 1 2 1 2 1 2

2 2 2 2 2

2 1 2 1 2 1 2

2 2 2 2

2 2 2 2

2 2

2 2

v v v v v v v v

v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

 

 

  

  

 


 

 

 



2 2 2 2 2

1 1 2 1 2 1 2

2 2 2 2 2

2 1 2 1 2 1 2

v v v v v v v

v v v v v v v

 
 
 
 
 
 
 
 
 
 
 
 
 

  
   

 

  

   

   

2 2

1 1 1 2 1 2

2 2

2 2 1 2 1 2

2

2 1 2 2 1 1 2 1 2

2

1 2 1 1 2 1 2 1 2

2

1 1 2 1 2 1 2

12 2

2 1 2 1 2 1 2

2

1 1 2 1 2 1 2

2

2 1 2 1 2 1 2

2

1 1 2 1 2 1 2

2

2 1 2 1 2 1 2

2 2 2 2

2 2 2 2

2 2

2 2

v v v v v v

v v v v v v

v v v v v v v v v

v v v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

v v v v v v v

  


 

   

   

 


 

 

 

 

 







 
 
 
 
 
 
 
 
 
 
 
 



 

University of Ghana http://ugspace.ug.edu.gh



50 

 

  

   

   

2 2

2 1 2 2 1 2

2 2

1 1 2 1 1 2

1 1 2 1 2 1 1 2 1 2

2 1 2 2 1 2 1 2 2 1

2

1 1 2 1 2 1 2

21 2

2 1 2 1 2 1 2

2

1 1 2 1 2 1 2

2

2 1 2 1 2 1 2

2

1 1 2 1 2 1 2

2

2 1 2 1 2 1 2

2 2 2 2

2 2 2 2

2 2

2 2

v v v v v v

v v v v v v

v v v v v v v v v v

v v v v v v v v v v

v v v v v v v
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  

These expressions for the solution are lengthy and difficult. So, OU  (given as 

T

OU     ) is solved numerically. Letting 1s t  , this gives the  1Var X  of the 

OU process, which is then equated to the covariance matrix of the bivariate AR(1) 

process element by element. This can result in a simultaneous linear equation 

involving four equations to determine the four elements in OU . If there is unique 

solution to this system of linear equations, OU  can be calculated and   of OU 

process can be determined by a Cholesky decomposition from OU .  

 

Once the estimated parameters of the model and the values for matrices A  and   are 

obtained, the overall portfolio return at general time t can be estimated: 
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2

, , 1 1, 2 2,

1

P t i i t t t

i

X X X X  


         (3.60) 

where ,i tX  signifies the ith row of tX , given by the bivariate OU process. The first 

two moments of the accumulated rate of return for the overall portfolio at time t  are 

derived as: 

        , 1 1, 2 2,P t t tE X E X E X        (3.61) 

       2 2

, 1 2 1 211 22 12
2t t tP tVar X Var Var Var              X X X  (3.62) 

       2 2

1 2 1 211 22 12
, , , 2 ,t s t s t sPt PsCov X X Cov Cov Cov    X X X X X X (3.63) 

where  , ,0i t iE X X  signifies the ith row of [  0tE X X ], obtained from Equation 

(3.41).  0t ij
Var   X X  is the element in row i  and column j  of  0tVar X X , and 

   
1

0

0

t T
i i

t a

i

Var




 X X     in Equation (3.36).  0t s ij
Cov    X X X  is the 

element in row i  and column j  of the 2 2  matrix   0t sCov  X X X , and 

 0t sCov  X X X  is solved from the AR(1) process of Equation (3.36) or OU process 

of Equation (3.43).  

 

The conditional values of the mean and variance of the accumulated return rate of an 

overall portfolio are conveniently calculated using the equations in the AR(1) process. 

But, in practice, one may want to use the OU position process for these values. This is 

due to the assumption that the rate of return is accumulated in a continuous way.  

 

3.4 Global Model 

For this method, the two assets in the portfolio are combined as one asset and the 

combined rate is fitted by a univariate OU process. The combined rates at each 
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moment are considered as the historical return rates used to fit a univariate AR(1) 

process from which a univariate  OU process can be estimated. Then, one can estimate 

P  and 
P  of the OU process as: 

     
, ,0

0

PP
t

P t P P P s

t st
X e X e dW

  
 

       (3.64) 

It can be seen that ,P tX  is univariate OU process, so the expressions for the mean and 

variance of ,P tX  and ,P tY  are like the univariate model.  

 

3.5. Data Description 

The variables selected in this study correspond to major asset classes as risky asset and 

risk-free asset. These two assets will form the universe of the securities held in the 

portfolio. The two assets are Treasury bill and equity. Treasury bill represents the risk-

free asset and equity represents the risky asset. Treasury bills (TBs) are short-term debt 

instruments issued by a government. TBs pay a predetermined sum at maturity (called 

par or face value) and have no periodic interest payments. TBs effectively pay interest 

by originally selling at a discount; at a price less than the predetermined sum to be paid 

at maturity. The par value minus the discount price is the gain or income. TB is the 

safest money market instrument because the probability of default is zero. Government 

is largely capable of paying off its debt obligations, because it can raise taxes or even 

print more money in order to pay off its debts. By law, TBs must have an original 

maturity of one year or less; hence they are typically issued in maturities of 91 days 

(13 weeks), 182 days (26 weeks), and 364 days (52 weeks). TBs of the government of 

Ghana are issued in 91- and 182-day maturities.  
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Equity (stock) is an investment instrument that represents a fractional ownership 

interest in a corporation. It gives the holder the right for a claim on a portion of the 

corporation's earnings and assets. There are two basic types of stock: common stock 

and preferred stock. Shares of stocks are bought and sold on stock markets (called 

stock exchange, a regulated marketplace for the trading of stocks). This buying and 

selling activity gives rise to stock prices. Stocks are only traded on days called trading 

days, which are weekdays. Thus, stocks are not traded on weekends or holidays, and 

so, there can be a varied number of trading days per year. The price of a stock can 

change as many times each trading day. Nonetheless, the price is typically quoted in 

time series of stock prices as the price it has at the close of each trading day.  

 

The performance of a group of stocks can be measured by a stock market index (
tI ); 

the index calculates the collective movements of a group of stocks. In essence, a stock 

index provides an overview of the performance of a group of stocks and also guides 

investors in decision making. Market capitalization (cap) of a company, stock price 

times the number of its outstanding shares, affects the stock index. Companies with 

high market capitalization add much to the stock index than those with low market 

capitalization. To avoid a stock with a very high market capitalization accounting for 

large movements of the index, an equally weighted index is calculated to provide a 

better measure for the performance of a group of stocks. The GSE-CI is a stock index 

which measures the performance of all listed stocks on the exchange. It is a 

capitalization-weighted index; thus, the contribution of each stock to the index is not 

equal but depends on the market capitalization of each listed company. The calculation 

of the GSE-CI takes into consideration all listed stocks (ordinary stocks) on the 

exchange except stocks listed on other stock markets. Each stock index has a base, 
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which is set arbitrarily as the starting value. All future index values are compared 

against the base index to determine the overall performance of the stock market. The 

GSE was incorporated in July 1989 with trading commencing in 1990 with index value 

of 10,000 points. The GSE-CI was rebased on December 31, 2010 with index value of 

1,000 points. 

 

3.6 Data Collection 

The two secondary time series data for the study run from January 2011 to December 

2017; collected at a weekly frequency, giving a sample size of 364 observations. The 

rationale for the 2011 start date is that the Ghana Stock Exchange Composite Index 

was rebased at the end of December 2010. The data set for the three-month Treasury 

bill (risk-free asset) is collected from the research section of Delta Capital Ghana. The 

interest rate on the three-month Treasury bill is used to calculate the rate of return on 

risk-free asset. The rate of return on equity (the risky asset) is calculated using the 

GSE-CI. Closing index prices are used which do include dividends. So, if the GSE-CI 

closed at 
tI  on week t  and at 

1tI 
 on previous week, then the rate of return for equity 

on week t  is calculated as    1log logt tI I  . The GSE-CI data set is collected from 

the online dataset of the Ghana Stock Exchange. 

 

3.7 Estimation Method 

If an asset price is observed at high frequencies, large data set can be collected to 

estimate the parameters of the price process. High-frequency data can cause significant 

bias in parameter estimation because such data is greatly affected by the microstructure 

disturbance in the market. For this reason, the maximum likelihood (ML) method 
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which is robust to the market disturbances is used in this study to estimate the models' 

parameters. 
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CHAPTER FOUR 

EMPIRICAL RESULTS AND ANALYSIS 

4.0 Introduction 

The chapter presents the empirical analysis carried out on the real data gathered for the 

purposes of the study. Using historical data, the autoregressive models of order one (in 

forms of univariate, multivariate, global) for the weekly return rates of the two assets 

in the portfolio are estimated in discrete time. If these AR(1) models are mean-

reverting, they can be converted to OU processes based on need. The general concepts 

of the stochastic processes considered in Chapters 3 and the discussions are utilised in 

this chapter.  

 

4.1 Displaying Observed Assets Returns Data 

When taking observations on a process, one obtains a sample of each of the random 

variables in the set making up the stochastic process. In displaying the assets returns 

data, this is normally to convey information about three features: to give an idea of the 

means of the assets returns in the data set; to give an idea of the variances of the assets 

returns in the data set (the volatility of the rates of return); and to give an idea of the 

covariances between the assets returns in the data set (the relationships between the 

assets returns). This can simply be done by plotting the assets returns (
tX ) against 

time ( t ).  

 

Figure 1 shows the observed weekly rates of returns of the two assets that are 

considered. The data consist of 364 weekly observations between January 2011 and 

December 2017. First, looking at the graphs in the time-series plot, it seems that each 

asset interest rate series sometimes rises and sometimes falls but that each asset return 
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rate series seems to revert to some mean level. Each graph in Figure 1 suggests a 

stationary process with a constant mean and variance. Second, it is unclear if these 

rates of return of the assets are correlated or not. This accounts for the key object of 

studying the bivariate model to fit the assets returns as an improvement over using the 

univariate model to fit the assets returns.  

 
Figure 1: Time series plots of the weekly returns of the two assets 

 

It is also difficult to see from the graphs in Figure 1 which asset return has the highest 

volatility for the period. However, Table 4.1 gives summary statistics of the assets 

returns where it can be seen that the weekly interest rate of the Treasury bill has the 

highest volatility when compared to that of the equity. The results obtained from Table 

4.1 depicts that Treasury bill has average weekly return rate of 0.010123%, but its 

weekly return rate ranges between –4.279472% and 4.7312089% from January 2011 to 

December 2017. Similarly, the equity has average weekly return rate of 0.113069%, 
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but the weekly return rate ranges between –3.465042% and 3.1513412% from January 

2011 to December 2017. 

Table 4.1: Summary statistics for the two asset returns 

Asset Mean Minimum Maximum Std Dev. Skewness 

TB 0.0001012 -0.042795 0.0473121 0.00858065 0.57189194 

Equity 0.0011307 -0.034650 0.0315134 0.00674804 0.54032680 

 

Because dependence plays a significant role in using a multivariate stochastic model to 

estimate, the correlation between the two different assets is shown in Table 4.2. Figure 

2 shows the scatterplot of the weekly return rates of the two assets in the portfolio.  

Table 4.2: Empirical correlation matrix for the returns of the two assets 

Asset Treasury Bill Equity 

Treasury Bill 1 0.023919969 

Equity 0.023919969 1 

 

 
Figure 2: Scatterplots of the weekly returns of the two assets 

 

From Figure 2, the weekly rates of returns are not strongly correlated. This is 

confirmed by the estimated result in Table 4.2 that shows that the returns on the two 
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assets are correlated, even though the correlation coefficient ( 0.0239SE  ) appears 

statistically to be marginal.  

 

4.2 Fitting the Models 

This section is divided into two major parts: checking for the proposed AR(1) models 

and analysing the estimated models. The estimated models are often displayed in 

equations. From the results of the estimated models under the OU processes, the speed 

of the mean reversion for the two assets is discussed. 

 

4.2.1 Model Identification 

To achieve the objectives, the first step is to choose an AR(1) process to fit the 

observed returns in discrete time. To see if an AR(1) model is appropriate, the 

autocorrelation function (ACF) plot and the partial autocorrelation function (PACF) 

plot for the weekly assets returns rates depicted in Figure 3 is examined.  In Figure 3, it 

can be seen that the ACF for the Treasury bill decays exponentially; but the 

autocorrelation still exist even after a 12-week lag. Thus, the autocorrelation for the 

Treasury bill is significant after a three-month lag. In the PACF plot for the Treasury 

bill, the first partial autocorrelation coefficient is approximately 0.5 and the others are 

relatively small; it can be said that the PACF of the Treasury bill has a significant 

spike at lag 1. So, the ACF and PACF plots suggest that an autoregressive process of 

order one seems a reasonable model to use to the interest rates for the Treasury bill. 

 

The ACF of equity's returns also tails off exponentially. In the PACF plot for the 

equity, it can also be seen there is a significant spike at lag 1. This suggests that the 

process to fit the rates of return of equity is likely to be generated by an AR(1) model 
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as well. Goodness-of-fit test is not conducted, but it is assumed that univariate and 

bivariate AR(1) processes are appropriate. 

 
Figure 3: Plots of ACF and PACF for the weekly assets returns 

 

4.2.2 Parameter Estimation 

Using the maximum likelihood (ML) estimation procedure in R package, the 

parameters of two univariate AR(1) models, bivariate AR(1) model, and three global 

AR (1) models are first estimated in that sequence at weekly interval as that is the 

interval of the data set. Second, these discrete time AR(1) processes are then converted 

to their continuous time analogues, the OU processes. The mean reversion of the asset 

returns from the univariate OU processes is then studied. The estimates for the two 

assets using the three models are presented. 
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Estimated Parameters of Univariate Model 

Table 4.3 and Table 4.4 give the model outputs for the two separate AR(1) models.  

Table 4.3: AR(1) model output for Treasury Bill  

Treasury Bill Coefficient Standard Error 

Intercept 0.00010124 0.00073738 

AR(1) 0.45921717 0.04640834 

 

Table 4.4: AR(1) model output for Equity  

Equity Coefficient Standard Error 

Intercept 0.00112807 0.00052489 

AR(1) 0.37405980 0.04849968 

 

Each table presents the coefficients and standard errors of the AR model for each asset 

return. From these results and expressing the AR(1) in the form as stated in Equation 

(3.1), the estimated AR(1) stochastic processes for the risk-free asset (Treasury bill) 

and the risky asset (Equity) are presented in Equations (4.1) and (4.2) as follows: 

 Treasury Bill 

       1
0.00018721008 0.45921717 0.00018721008

S t S t S t
X X a


         (4.1) 

where 0.00018721008 is the Treasury bill's long-run mean weekly return rate and the 

random error term 
   0,5.7856572e-05

S t
a N .  

 Equity 

       1
0.00180220091 0.37405980 0.00180220091

E t E t E t
X X a


         (4.2) 

where 0.00180220091 is the equity's long-run mean weekly return rate and the random 

error term    0,3.9027209e-05
E t

a N .  

 

Between these two assets, the Treasury bill (risk-free asset) has the least mean weekly 

rate of return (0.018721%) in the long run and equity (risky asset) has the highest 

mean weekly rate of return (0.18022%) in long run. The risks of weekly rates of 
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returns for these assets are measured by the volatility. Equity that has the least risk 

( 53.9027209 10 ) compared to the risk ( 55.7856572 10 ) of Treasury bill. The 

implication of this result is that the return rates for equity are more stable compared to 

the return rates of the Treasury bill. However, this result refutes the hypothesis in the 

literature that the returns on assets tend to be positively correlated with the risks 

involved.  

 

From the estimated AR(1) model shown in Equation (4.1), the centred interest rate of 

Treasury bill at week t  is a sum of 0.45921717 times of previous week's Treasury bill 

interest rate and a random term. This means that the three-month TB interest rate 

depends on 46% of its interest rate of the past week. In the estimated AR(1) model in 

Equation (4.2), the centred return rate of equity at week t  is a sum of 0.37405980 

times of past week's equity return and a random term. Thus, the rate of return on equity 

for the current week depends on 37% of its interest rate of the past week. It can be 

concluded that there is dependence between the return rate for the current week and the 

past week for each asset in the portfolio. But, when compared, the current weekly rate 

of return for Treasury bill is more depended on its rate of return of the past week than 

that of equity.  

 

Estimated Parameters of Bivariate Model 

The estimated bivariate model for the two assets is represented in Equation (4.3) as 

follows: 

 

 

1

1

0.0001872 ˆ0.0001872 0.460064347 0.02174525

ˆ0.0018022 0.029140549 0.37571820 0.0018022

S tSt St

Et EtE t

XX a

X aX





     
              

 (4.3) 
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The covariance matrix for 
ˆ

ˆ

St

Et

a

a

 
 
 

 is 
5.8477148e-05 1.7721875e-06

1.7721875e-06 3.9374954e-05
a

 
  
 

 . 

From the estimated bivariate AR(1) process, the centred return rate of Treasury bill at 

week t  is 0.460064347 times the past week's Treasury bill return rate and 0.02174525 

times the past week's equity return rate plus a random term. The Treasury bill depends 

on 46% of its interest rate for the past week and on 2% of the return rate of equity for 

the past week. Therefore, it can be stated that the interest of the three-month TB is 

dependent on its previous week's interest rate and on a small percent from the previous 

week's equity's return. The centred return rate of equity at week t  is 0.37571820 times 

the past week's equity return and –0.029140549 times the past week's Treasury bill 

return plus a random term. The return rate for equity depends on 38% of the equity's 

return rate in last week and almost –3% of the interest rate of the Treasury bill last 

week. Equity is thus affected by the previous week's return of itself and inversely 

affected by the Treasury bill. This seems plausible resulting from the fact that the 

three-month Treasury bill interest rate is a crucial factor considered in setting the 

interest rates of most instruments especially money market instruments. Interest rates 

on Treasury bills tend to be the anchor for all other money market interest rates. 

Following an increase in interest rate for especially three-month Treasury bill, the 

interest rates on most other instruments also rise. In particular, risk-averse investors are 

likely to discount some holdings in equities (risky asset) to buy a safe instrument in 

form of Treasury bill or any other money market instrument following an interest rate 

rise in the three-month Treasury bill. 

 

The univariate model fits the assets returns independently, but the bivariate model 

considers the covariance between the assets returns in the portfolio. This makes the 
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variance of a bivariate model more than the variance of a univariate model. If an asset 

return is highly uncorrelated with the other assets returns, then it is sufficient to use a 

univariate model to fit the assets returns. But if the assets returns are truly correlated, 

the existence of these correlations cannot be captured by a univariate model. Table 4.5 

shows the variance for the two assets with different models. From this table, it can be 

seen that the variance in the univariate model is lower compared to the bivariate 

model, because the bivariate model is incorporating some covariances with other 

assets. 

Table 4.5: Variance of univariate and bivariate models for the two assets 

Asset Univariate Model Bivariate Model 

Treasury Bill 5.7856572e-05 5.8477148e-05 

Equity 3.9027209e-05 3.9374954e-05 

 

Estimated Parameters of Global Model 

In the proposed global model for fitting the return on the portfolio, the rates of return 

of the two assets are split into three classes of asset portfolios where the rate of return 

on each portfolio is estimated by a univariate AR(1) model. The components of these 

asset portfolios under the global model are constructed as follows: Portfolio 1 is 

assumed to be 70% invested in Treasury bill and 30% invested in equity, Portfolio 2 is 

60% invested in Treasury bill and 40% invested in equity, and Portfolio 3 is 30% 

invested in Treasury bill and 70% invested in equity. The ACF and PACF of each asset 

portfolio is plotted in Figure 4. In Figure 4, the ACF of each asset portfolio tails off 

exponentially. But in the PACF plot of each asset portfolio, it can be seen there is a 

significant spike at lag 1. It is, therefore, reasonable to model each asset portfolio using 

an AR(1) model. The univariate AR(1) models for the three portfolios are: 

 Portfolio 1 

  
1 11, ,, 10.00073636459 0.44414764 0.00073636459P t P tP tX X a           (4.4) 
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where 0.00073636459 is the long-run weekly mean return of Portfolio 1 and the 

random error term  
1, 0,3.258497e-05P ta N .  

 Portfolio 2 

  
2 22, ,, 10.00090183956 0.43246003 0.00090183956P t P tP tX X a          (4.5) 

where 0.00090183956 is the long-run weekly mean return of Portfolio 2 and the 

random error term  
2 , 0,2.7903467e-05P ta N .  

 Portfolio 3 

  
3 33, ,, 10.00133514407 0.38585654 0.00133514407P t P tP tX X a          (4.6) 

where 0.00133514407 is the long-run weekly mean return of Portfolio 3 and the 

random error term  
3 , 0,2.5035617e-05P ta N .  

 

The estimated results in Equations (4.4), (4.5), and (4.6) illustrate that as the percent of 

the portfolio invested in equity increases, the average return rate of the asset portfolio 

increases, while the volatility of the asset portfolio decreases. Also, the weekly 

dependence decreases when the percent-weight of equity included in the portfolio is 

increased. Further, as more percent of equity are included in the portfolio, the 

estimated global model behaves like the estimated univariate model for equity. 

Equally, if the percent-weight of the Treasury bill is increased, the estimated global 

method gets closer to the estimated univariate model for Treasury bill. 
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Figure 4: Plots of ACF and PACF for weekly return rates of portfolios  

 

4.3. Equivalent AR(1) and OU Processes 

The AR(1) models for the univariate, bivariate, and global processes are estimated and 

presented in the last section. The estimated results in Equations (4.1) and (4.2) indicate 

that all univariate AR(1) processes are stationary and mean-reverting;   for each asset 

lies between 0 and 1. This condition is sufficient to use to convert the AR(1) processes 

to the corresponding OU processes. From the OU processes, the mean reversion is 

studied. To estimate the univariate OU process,   and   must be computed. The 

general expression is: 

      
0

0

t t st

t sX e X e dW
  
       (4.7) 

From Section 3.2, it is given that e   , which means ln   . The parameter   

is also much easier to determine; it is given as: 

University of Ghana http://ugspace.ug.edu.gh



67 

 

    
 

2

2

2

1

a






     (4.8) 

In Equation (4.8), 
a  and   come from the AR(1) process. In the univariate models, is 

found that 0 1   for all the assets, so each AR(1) process is converted to its 

corresponding OU process. The estimated univariate OU stochastic processes for the 

risk-free asset (TB) and the risky asset (Equity) are respectively presented in Equations 

(4.9) and (4.10). 

 Treasury Bill 

    
0

0
0.00018721008 0.00018721008 SS

t t st

St S sX e X e dW
 
 

       (4.9) 

where 0.7782320436S   and 0.01068253886S  . 

 Equity 

    
0

0
0.00180220091 0.00180220091 EE

t t st

Et E sX e X e dW
 
        (4.10) 

where 0.9833396013E   and 0.00944671054E  .  

The results of the parameters for the OU processes in Equations (4.9) and (4.10) can be 

summarised; and this is shown in Table 4.6. In the OU process, the parameter   gives 

the how fast it takes the process to go back to the long-run mean ( ). Specifically, the 

larger the absolute value of   is, the faster the process reverts to the long-run mean. 

The summarised results in Table 4.6 show the rate of return for equity reverts to the 

long-run average very fast than the rate of return for Treasury bill. The current interest 

rate of equity will revert very fast to its long-run mean than the current interest rate of 

Treasury bill. The parameter   describes the volatility of the return rate of the asset. 

The larger its value, the higher the volatility of the asset return rate. From the results in 

Table 4.6, the return rate of Treasury bill has higher volatility compared to that of the 

return rate of equity.  
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Table 4.6: Univariate OU velocity process:    and   for two assets 

Asset     

Treasury Bill 0.7782320436 0.01068253886 

Equity 0.9833396013 0.00944671054 

 

Generally, to express the length of time a process takes to revert to its long-run mean, 

1


 is used, which explains that after 

1


 units of time the process to be about 63% 

( 11 e ) close to its long-run mean. It will, thus, take 
3


 (or 

5


) weeks to determine 

the distance that the asset return takes to revert to its long-term mean by 95% (or 99%) 

on average. From Table 4.7, the results indicate that it will take about 4 and 3 weeks 

for the conditional expected values of Treasury bill and equity to revert approximately 

95% close to corresponding long-run mean; and also about 6 and 5 weeks for the 

conditional expected values of Treasury bill and equity to revert approximately 99% 

close to their long-run mean.  

Table 4.7: Mean reversion for the assets in portfolio 

Mean reversion  63% 95% 99% 

Treasury Bill 1.2850  3.8549  6.4248 

Equity 1.0169 3.0508 5.0847 

 

It is needed to compute  eA  and   for the bivariate OU process. In Chapter 3, eA  is 

easily determined as e A  . Hence, 

  
0.460064347 0.02174525

0.029140549 0.37571820
e

 
  

 

A
    (4.11) 

Estimating eA  is sufficient for the bivariate OU velocity process, but   is needed if 

the bivariate OU position process is of interest. Matrix   is find by using the 

eigenvalues and eigenvectors of  . The eigenvalues and the corresponding 

eigenvectors of matrix   are: 
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Eigenvalues: 

  
1 0.4517276395  , 

2 0.3840549075     (4.12) 

Eigenvectors: 

  
0.9337313461

0.3579745428

 
 
 

, 
0.2750516775

0.9614294434

 
 
 

   (4.13) 

In Equation (4.12), because 0 1i  , the bivariate OU process is stationary. Using 

Equation (3.13), this gives 

  
0.8316048988 0.03448181215

0.1342622265 0.9200406977

 
  

 
A    (4.14) 

In Equation (4.14),   relates to the time that it takes the process to revert to its long-

run mean from a particular start value. The speed in the bivariate model is a pooled 

effect of the rates of returns of each asset involved in the system. Depending on the 

rate of return of the asset itself for the previous week, and starting from a given value, 

the rate of return for equity will revert to its long-term mean very fast than the rate of 

return for Treasury bill after an extended time in the multivariate process. The equity 

depending on the rate of return of Treasury bill last week reverts faster to its long-term 

mean than that of the Treasury bill as depending on the return rate of equity last week. 

 

From the estimated results in Equations (4.4), (4.5) and (4.6), the AR(1) processes 

under the global modal are all converted to their corresponding OU processes because 

these processes are each stationary and mean-reverting ( 0 1  ). 

 Portfolio 1 

    
1 1

11 1 0
, ,00.000736365 0.000736365P P

t

P s

t t s

P t PX e X e dW
 


  

         (4.15) 

where 
1

0.8115982493P   and 
1

0.00811724561P  . 

 

University of Ghana http://ugspace.ug.edu.gh



70 

 

 Portfolio 2 

    
2 2

22 2 0
, ,00.00090184 0.00090184P P

t

P s

t t s

P t PX e X e dW
 


  

         (4.16) 

where 
2

0.8382653731P   and 
2

0.00758569474P  . 

 Portfolio 3 

    
3 3

33 3 0
, ,00.00133514 0.00133514P P

t

P s

t t s

P t PX e X e dW
 


  

       (4.17) 

where 
3

0.9522896366P   and 
3

0.00748487622P  . 

The results of the parameters for these OU processes in Equations (4.15), (4.16) and 

(4.17) are summarised and presented in Table 4.8. 

Table 4.8: OU velocity process under the global modal 

Portfolio 
P  

P  

Portfolio 1 0.8115982493 0.00811724561 

Portfolio 2 0.8382653731 0.00758569474 

Portfolio 3 0.9522896366 0.00748487622 

 

From Table 4.8, the rate of return of Portfolio 3 has a larger reverting speed coefficient 

( 0.95  ) than that of the rates of return for Portfolio 2 ( 0.83  ) and Portfolio 1 

( 0.81  ). To be clear, the portfolio rate of return reverts to the long-run mean very 

fast when the percent of equity in the portfolio increases. This can be attributed to the 

larger reverting speed of the equity as depicted in Table 4.5. Even for Portfolio 1 with 

only 30% invested in equity, the reverting speed coefficient ( 0.81  ) is larger than 

the reverting speed coefficient ( 0.78  ) of investing solely in Treasury bills.  

 

On the hand, as more percent of the portfolio are invested in equity, the volatility of 

the rate of return in the portfolio reduces. From Table 4.9, the expected value of 

Portfolio 3 takes about 3 weeks and 5 weeks to revert 95% and 99% closer to their 

corresponding long-run mean, while both the expected values of Portfolio 1 and 
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Portfolio 2 take 4 weeks and 6 weeks to revert 95% and 99% closer to the 

corresponding long-run mean. 

Table 4.9: Mean reversion for asset portfolio 

Mean reversion  63% 95% 99% 

Portfolio 1 1.2321 3.6964 6.1607 

Portfolio 2 1.1929 3.5788 5.9647 

Portfolio 3 1.0501 3.1503 5.2505 

 

 

4.4 Optimum Portfolio 

The covariance matrix, 
5.8477148e-05 1.7721875e-06

1.7721875e-06 3.9374954e-05
a

 
  
 

 , is used here to 

identify the optimum portfolio. In Chapter 2, it is stated that the combination of assets 

that has the less risk for a given expected return is the optimum portfolio. Table 4.10 

shows the risks calculated for the case of changing the percent weights of the assets in 

the portfolio.  

 

From Table 4.10, it is seen that increases in percent weights of equity, the risk of the 

portfolio decreases, but to where about 60% is invested in equity. With more than 60% 

invested in equity, the risk of the portfolio starts to increase. It can be said that for a 

given expected return of the portfolio, the minimum portfolio risk 

(  , 0.004937811P tX  ) occurs when about 60% of the portfolio is made up of 

equity. Using the expression in Equation (2.13), the weight for Treasury bill is 

estimated to be 0.381717078938; that is, about 40% should be invested in Treasury 

bill. 
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Table 10: Portfolio risk for different weights 

Cases TB  
E   ,P tX  

1 0.00 1.00 0.006274947 

2 0.05 0.95 0.005987524 

3 0.10 0.90 0.005726908 

4 0.15 0.85 0.005496913 

5 0.20 0.80 0.005301524 

6 0.25 0.75 0.005144687 

7 0.30 0.70 0.005030009 

8 0.35 0.65 0.004960415 

9 0.40 0.60 0.004937811 

10 0.45 0.55 0.004962840 

11 0.50 0.50 0.005034791 

12 0.55 0.45 0.005151699 

13 0.60 0.40 0.005310595 

14 0.65 0.35 0.005507846 

15 0.70 0.30 0.005739501 

16 0.75 0.25 0.006001575 

17 0.80 0.20 0.006290268 

18 0.85 0.15 0.006602089 

19 0.90 0.10 0.006933919 

20 0.95 0.05 0.007283023 

21 1.00 0.00 0.007647035 

 

 

4.5 The Ornstein-Uhlenbeck Position Process 

The accumulation function of the instantaneous asset return rate (
tY ) in the univariate 

OU process is described in Chapter 3. Using Equations (3.16) and (3.17) and the 

results in Table 4.6, the conditional expected value and variance for the accumulated 

rate of return for each asset at time t  are estimated as: 

 Treasury Bill 

    
0.77823204

0 0

1
0.0001872 0.0001872

0.77823204

t

St

e
E Y X X t


       (4.18) 

    2 0.7782320.778232

0 1.88422e-04 1.210582e-04 3 4
tt

StVar Y X e e
          (4.19) 

 Equity 
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    
0.98333960

0 0

1
0.00180220 0.00180220

0.98333960

t

Et

e
E Y X X t


     (4.20) 

    2 0.98333960.9833396

0 9.22899e-05 4.69268e-05 3 4
tt

EtVar Y X e e
         (4.21) 

 

4.6 Conclusion of Empirical Results 

The findings and empirical results realised from the sections of this chapter are 

concluded in this section. To recap, the key objects of this study are to investigate the 

mean reversion speed for each asset return in the portfolio, to use a multivariate model 

to predict the assets returns in the portfolio, and to identify an optimum portfolio of 

these assets. The analysis of the series employed in this study revealed that all assets 

returns are stationary and mean-reverting. The asset portfolio included two assets: 

three-month Treasury bill and equity. 

 

Evidence from the descriptive analysis indicates that the return rates for the assets 

appear to be stationary. This is supported by both the univariate and bivariate 

autoregressive processes of order one that revealed the existence of stationarity and 

mean-reverting.  

 

Second, for the two assets included in the portfolio, Treasury bill (risk-free asset) has 

the lowest average weekly rates of return and equity (risky asset) has the highest 

average weekly rates of return over the long-term. For risk as measured by volatility, 

Treasury bill has more volatility in the weekly rates of return than that of equity. This 

means that the return rates for equity are more stable compared to the return rates of 

the Treasury bill. This result refutes the hypothesis that the larger the risk, the higher 
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the possible profit of the asset. In the literature, the returns on assets tend to be 

positively correlated with the risks (volatilities) involved.  

 

Third, dependence plays an important role in a bivariate stochastic model, so the 

correlation between the two different assets is estimated. The empirical result shows 

that the weekly returns on the two assets are correlated, even though the correlation 

coefficient appears statistically to be marginal. 

 

Fourth, the study revealed that both the rates of returns on Treasury bill and equity are 

(moderately) dependent on their rates of returns for the past week. Also, from the 

bivariate model, the result depicted that the interest rate of equity for the past week has 

a small positive effect on the current rate of return of Treasury bill. In contrast, the rate 

of return of Treasury bill in the past week has a small negative effect on the current 

rate of return of equity. 

 

Fifth, a rise in interest rate of the three-month Treasury bill during the week has an 

inverse effect on the rate of return of equity for the following trading week. The three-

month interest rate is a crucial factor considered in setting the interest rates of most 

instruments especially money market instruments. For most countries, the short-term 

interest rate (interest rate on three-month Treasury bill) tends to be an anchor for all 

other money market interest rates. Following a rise in the three-month Treasury bill 

interest rate, the interest rates on most other instruments also rise. Investors are, 

therefore, likely to trade in Treasury bills and/or other money market instruments; so 

there will be fall in demand for equities which can lead to a decrease in the rates of 

return for equities. Or, some investors are likely to discount holdings in equities to buy 
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a safe instrument in form of Treasury bill and/or other money market instruments due 

to a rise in the interest rate of Treasury bill. Most investors are risk averse. 

 

Further, the study elucidated from the three models (univariate, global, and bivariate) 

of using the OU process to examine the mean reversion speed that the accumulated 

interest rate of equity has a higher reverting coefficient than that of the Treasury bill. 

The interest rate of the equity approaches its long-term stationarity more quickly. It 

takes about few weeks for the conditional expected value of equity to revert closely to 

its long-run mean, but for Treasury bill, it will need about an additional week to also 

revert closely to its long-run mean. 

 

One other key result revealed in this study is that to obtain an optimum portfolio of 

these two assets, an investor should consider investing in about 60% in equity. For a 

given level of an expected portfolio return, a portfolio made of 40% invested in the 

three-month Treasury bill and 60% in equity will give the minimum portfolio risk.  

 

Finally, the study derived the mean and variance of the accumulated rate for investing 

in Treasury bills and equities in general time t, though expenses involved in trading 

were ignored. Thus, a mathematical framework for accumulation functions of rates of 

returns for the two assets in the portfolio has been proposed to allow for many 

investing applications.  

 

 

 

 

University of Ghana http://ugspace.ug.edu.gh



76 

 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.0 Introduction 

The concluding observations, recommendations and possible considerations for future 

studies are provided in this final chapter of the thesis. 

 

5.1 Conclusion 

The main goal of the study is fitting the rates of return of assets in portfolio as 

stochastic processes showing mean reversion toward their stationarity points. The 

study used two different assets: three-month Treasury bill and equities. The interest 

rates on the Treasury bill and the Ghana Stock Exchange Composite Index were 

respectively used to calculate the rates of return on Treasury bill (risk-free asset) and 

equities (risky asset). The sample period for the study runs from January 2011 to 

December 2017 at a weekly frequency. The autocorrelations of the assets returns were 

investigated. This was helpful in specifying stochastic investment models that explain 

the movements in the asset returns to include autocorrelation, by fitting an 

autoregressive process of order one. These discrete stochastic processes were then 

converted to equivalent continuous stochastic processes, called Ornstein-Uhlenbeck. 

The maximum likelihood was used for estimating the parameters of these models. The 

main conclusions are as follows: 

 

The first objective of the study is considering the property of mean reversion of the 

two assets returns in the portfolio. The OU process is often used in finance to capture 

time series data that depict mean reversion; tend to move to their mean values over 

time. The empirical results of the OU processes show that mean reversion appears to 
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be in financial data. From the OU processes, the interest rate of the equity has a larger 

reverting speed coefficient compared to that of the Treasury bill. The interest rate of 

the equity approaches its long-term stationarity more quickly. The empirical results of 

the univariate OU process indicate that it will take about 3 weeks for the conditional 

expected value of equity to revert to 95% closer to its long-run mean, but about 4 

weeks for the conditional expected value of Treasury bill to revert to 95% closer to its 

long-run mean. It will take about 5 weeks for the conditional expected value of equity 

to revert to 99% closer to its long-run mean, but about 6 weeks for the conditional 

expected value of Treasury bill to revert to closely 99% to its long-run mean. In the 

global OU process, the overall portfolio return goes towards the long-term mean very 

fast when the percent of equity invested in the portfolio increases.  

 

The second objective is estimating a bivariate model to explain the individual 

movements and the co-movements of the assets returns in the portfolio. The interest 

rate for the three-month Treasury bill depends moderately on its previous week's 

interest rate as well as on a small portion from the previous week's equity's return. The 

rate of return for Treasury bill depends on 46% of the Treasury bill's return rate of last 

week and on 2% of the return rate for equity last week. On the other side, the rate of 

return of equity for the current week is positively influenced by the rate of return of 

equity for the past week and inversely influenced by the Treasury bill. The rate of 

return for equity depends on 38% of the equity's return rate in last week and almost –

3% of the return of the Treasury bill last week. The bivariate model has been able to 

capture the serial dependences between the assets involved in the portfolio, though the 

coefficients are very small.   
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The third object is to identify the best combination of the two assets (three-month 

Treasury bill and equity) that gives the lowest volatility; that is to find the optimum 

portfolio. Twenty-one (21) cases of changing the weights of the portfolio were 

considered. The findings revealed that as the equity's percent-weight increases, the risk 

of the portfolio reduces, but to the point where approximately 60% are invested in 

equity. After this, the portfolio starts to experience increase in volatility as more and 

more percent of equity is included. Hence, to achieve the optimum portfolio of these 

assets, an investor should consider investing 40% of his/her investment funds into the 

three-month Treasury bill and 60% into stocks. But, in considering forming the 

optimum portfolio, an investor might also wish to consider the kind(s) of stocks 

trading on the Ghana Stock Exchange to invest in. 

 

Different stochastic approaches for investment modelling are used in modern-day 

financial analysis to explore the underlying dynamics of assets. Statistical modelling 

and inferences within this aspect is an important concern because pricing errors in 

assets could lead to serious economic losses for an investor. In this thesis, statistical 

estimation motivated by bivariate model is fitted, though the rates of return of assets in 

the portfolio are also modelled by univariate model and global model. The univariate 

stochastic process for modelling the asset returns do not take into account the 

correlation between the individual assets in the portfolio and this can result in 

imprecise estimate of the total returns on the asset portfolio. The global model for 

fitting the rates of return in the portfolio combined the two assets and described the 

asset return rates as a univariate OU process where it was also unable to capture the 

co-movement of the assets of the portfolio. The advantage of fitting the bivariate 

model for asset returns is that, it captured the correlation between the two assets in the 
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portfolio. This means that the bivariate model presents a more precise estimate of the 

overall return of the portfolio. The empirical results in the bivariate model explained 

that for each individual asset in the portfolio, there is a correlation between the current 

interest rate and the previous interest rate. Most importantly, the model showed that 

the rate of return of each asset depends marginally on the rate of return of the other 

asset.  

 

5.2 Recommendation 

From the conclusions and to recommend for effective investing decisions, it is 

important to empirically investigate the predictive ability of the bivariate model. But, it 

must be noted that it is largely unsatisfactorily to clearly describe the random 

behaviour of interest rates of assets in a univariate stochastic model. The study showed 

that the interest rates on the assets are correlated, though it appears statistically to be 

marginal, can have serious consequence. Therefore, it is recommended that in practice, 

investors should use a multivariate stochastic investment model in order to obtain a 

more estimate of assets returns process because there are high chances in modern day 

that the returns on assets tend to be correlated. It is also recommended that the Ghana 

Stock Exchange should encourage the investing public to invest in stocks listed on the 

exchange since the returns are more stable.  

 

5.3 Future Research Studies 

There are many opportunities that the topic can be extended or enriched. In this study, 

the portfolio consisted of the three-month Treasury bill and the GSE-CI which 

respectively represented a risk-free asset and a risky asset. It will be useful that long-

term bonds, Treasury bills, and equities are analysed if data can be obtained for these 
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variables. Equally, it is also important for a study to use Ornstein-Uhlenbeck stochastic 

processes to model the rates of returns on other assets such as mutual funds or any 

investment instrument held by pension fund or insurance companies or any financial 

institution and then analyse the results. Such analysis plays significant roles in 

actuarial analysis; it can help in pricing life insurance and pension products, can be 

useful in constructing optimal portfolio and can help in estimating the minimum 

capital requirement for selling insurance and pension policies.  

 

The sample period involved for the empirical investigation means weekly data set is 

obtained for large data points. Most insurance products are sold on annual basis; this 

makes it simpler to use annual intervals for simulation purposes. But, in particular, 

pension and life insurance products are for long-term; the premiums on these products 

are usually collected monthly or quarterly. Besides, portfolios performances are often 

reviewed quarterly, so it is necessary to explore quarterly data in modelling the rates of 

returns of the portfolios. One other possible avenue for enriching this study is to 

demonstrate how to use the estimated results of the stochastic models to price annuities 

sold by an insurer or pension funds. 
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APPENDIX 

Minimum Portfolio Variance 

Preposition: Suppose the two assets in portfolio have equal variance, then the 

minimum portfolio risk occurs when the percent weight of each asset is equal.  

 

If 2 2 2

1 2    , then Equation (2.12) gives 

        2 2 2 2 2 2

1 1 1 1 121 2 1X              

    2 2 2 2

1 1 1 12 1 122 1 2 2 2X               

 2 X  is a minimum if it satisfies the first order and second order conditions for 

minimisation. 

For  2 X  to be a minimum, 

   
 

 
2

2

1 12 1 12

1

4 2 2 4 0
X

    



    


 

Assuming that 2 0  , 

    
1 12 1 124 2 2 4 0        

       1 12 124 1 2 1 0       

    
 

 
12

1

12

2 1 1

4 1 2







 


 

The second order condition is satisfied because 
 

 
2 2

2

122

1

4 1 0
X

 



  


. 

We have shown that if 2 2

1 2  , the portfolio risk will be minimised by choosing 

1 2

1

2
    regardless of the numerical value of 

12 , except 
12 1   . Given 

12 1   ,  2 2 2

1 2X    .  
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