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ABSTRACT

The lattice code WIMS was used to generate a two-group 
macroscopic cross-section data base for all homogeneous zones of 
the prototype Miniature Neutron Source Reactor (MNSR) for radial 
and axial directions. The data base takes into account the effect 
of increments in burnup, temperature and reactor power. The error 
analysis has shown that the data base is accurate enough for the 
purpose intended. The maximum deviation from the actual value 

is 0.2%.
The two-dimensional two-group neutron diffusion eguation was 

solved numerically using the finite difference technique. A 

computer code called KWABEN is being developed to solve numeri­
cally the diffusion equation. The numerical methods and techniques 
used in the development of the code are presented in this work.

Preliminary calculations with the code using the data base 
were carried out at 2 0 kW thermal power and the computed zone 
average thermal fluxes in the radial direction follow the same 
trend of results available from experiments. The value of the flux
for the annular Be reflector where the inner irradiation sites are

11 2located was determined by KWABEN to be 7.7 8x10 n/cm -s as
11 2compared with the experimental value of 7.69x10 n/cm -s.
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CHAPTER ONE

INTRODUCTION

The physics design of nuclear reactors requires the determina­
tion of the gross statistical behaviour of the neutron population 
in the reactor system. This in turn calls for the solution of the 
Boltzmann equation of neutron transport theory which forms the 
subject matter of reactor theory. It is however not easy to solve 
this equation by a direct discretization process even on the 
largest computers because of the presence of too many independent 
variables, complicated energy variations of the macroscopic cross- 
sections and the complex geometrical arrangement of the core 
materials such as fuel, coolant, moderator, reflectors, etc, in a 
reactor. This thesis describes the mathematical model used to 
analyze the Miniature Neutron Source Reactor (MNSR) and the method 
of creation of a data base for the reactor.

In Chapter Two, a brief description of the reactor for which 
the present analysis is conducted is presented. Basic work in 
reactor theory which includes the study of the mathematical 
properties of the relevant equations is discussed. A review of 
the Boltzmann neutron transport theory and the neutron diffusion 
approximation to the transport theory, specifically to two- 
dimensional, two-group theory which is concerned with the depen­
dence of the neutron flux on spatial coordinates (radial and 
axial) and the direction of neutron motion, are presented. Finally 
the various methods of solution are also discussed.

1
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Chapter Three discusses different reactor parameters affecting 
group macroscopic cross-sections such as fuel burnup, coolant 
density, core temperature variations along the axial direction and 
xenon concentration. A two-group macroscopic data base is there­
fore created for the analysis of the MNSR based upon these 
observations. In Chapter Four, the numerical methods and tech­
niques applied in the solution of the two-dimensional two-group 
diffusion analysis is presented. Based upon this, a computer code 
called KWABEN is being developed for the analysis of the MNSR. The 
chapter also deals with preliminary results which are compared 
with those obtained experimentally.

The main conclusions and recommendations for future work are 
finally presented in Chapter Five.

2
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CHAPTER TWO

LITERATURE REVIEW

A nuclear reactor is a device in which materials are arranged 
so that a self-sustained nuclear chain reaction can proceed in a 

controlled manner.
Nuclear reactors in which most of the fissions are induced 

by thermal neutrons (neutrons with energies in thermal equili­
brium with the thermal motion of matter, i.e, less than lev) are 
called thermal reactors. Low power operating thermal reactors used 
mainly for research and training purposes in nuclear establish­
ments and other allied institutes are called research reactors.

A brief description of an example of a low power research 
reactor called the Miniature Neutron Source Reactor (MNSR) for 
which the present investigation is conducted is presented in the 
next section. The Ghana Atomic Energy Commission (GAEC) through 
the technical assistance of the International Atomic Energy Agency 
has planned to install this reactor at the National Nuclear 
Research Institute (NNRI), Kwabenya in the near future. In this 
chapter, the various mathematical models which describe the 
neutron flux distributions in a nuclear reactor shall be consi­
dered. The different methods of solutions will also be discussed.

3
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2.1 THE MINIATURE NEUTRON SOURCE REACTOR

The prototype Miniature Neutron Source Reactor (MNSR) is a 
thermal light water under-moderated and cooled (by natural convec­
tion) , pool-tank type low power research reactor built by the 
China Institute of Atomic Energy, Beijing. It has a low power 
rating of 27kW, low critical mass, low radioactive impact on the
environment but a high stable thermal neutron flux (of order

12 3 .10 n/cm s maximum) [1]. These parameters, together with its
inherent safety feature of a large negative temperature coeffi­
cient are important physical characteristics of the MNSR.

Primarily, the MNSR is designed for neutron activation 
analysis (NAA) in a large number of fields like geology, medicine, 
agriculture, environment, food and industry. It also finds use in 
other areas such as short-lived radioisotope production, research, 
teaching and training.

2.1.1 Structural Design of the Miniature Neutron Source Reactor

The MNSR facility consists of a reactor vessel, the reactor 
core and its supporting structures, beryllium reflectors, a 
control rod with an associated drive mechanism, irradiation tubes, 
water temperature and neutron detectors. Fig 2.1 is a schematic 
illustration of the vertical cross-section of the reactor.

4
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:;Be.' Shim Plates

Inner'

Lower Be Reflector 

Fig.2.1 Cross-section of MNSR

Be Shim Tray_
Control Rod Weight
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The long cylindrical reactor vessel made of aluminum (Al) 
alloy houses the reactor core. It is divided into two sections to 
ease reactor core installation and refuelling processes. Table 2.1 
shows the elemental composition of the Al alloy material used in 
the MNSR vessel fabrication. The main geometrical design 
parameters of the MNSR vessel and the reactor pool are depicted in 
Tables 2.2 and 2.3 respectively.

Element Composition
(%)

Mg 0.45 - 0.90
Si 0.60 -- 1.20
Fe 0.20
Cu 0.01
Mn 0.01
Ti 0.01
Zn 0.03
Ni 0.03
Cd 0.0001
B 0.0001

Parameter Dimension
(mm)

Total height 5.60

Total diameter 0. 60

Cylinder wall 
thickness

10.00

Upper section 4.70

Lower section 0.90

Table 2.1: Elemental
Composition of MNSR Al Alloy 
vessel and Control Guide Tube.

Table 2.2: Geometrical
Dimensions of MNSR Reactor 
vessel.

6
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Parameter Dimension
(mm)

Inner diameter 2.70

Depth 6.50

Wall thickness 0.40

Pool base
thickness 0.40

Table 2.3: Geometrical Dimensions 
of MNSR reactor Pool.

The region adjacent to the core is called the reflector. In 
general reflectors significantly reduce the quantity of nuclear 
fuel required for reactor criticality. The MNSR core is heavily 
reflected on both sides, top and bottom by metal beryllium (Be) 
alloy material as shown in Fig 2.1. The top Be plates are added to 
the shim tray to increase the excess reactivity after every 
1 . 5 - 2  years and thus extend the lifetime of each fuel cycle [2]. 
Beryllium is a good reflector with a small thermal neutron 
absorption cross-section of 7.0 barn. Tables 2.4 and 2.5 show 
respectively the geometrical dimensions and elemental composition 
of the MNSR Be alloy reflectors.

7
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Parameter Dimension
(mm)

Outside diameter 
(side) 435.00

Inner diameter 
(side)

231.00

Height (side) 238.50
Bottom plate 

diameter 290.00

Bottom plate 
thickness

50.00

Element ppm Element ppm

Fe 4000 Cu 200
Si 800 Eu 0.1
Mg 1000 Ni 100
BeO 25000 Co 10
Pb 3000 Sm 0.5
N 200 Mn 20
B 2.0 A1 3000
Ag 15 Cd 0.5
Li 1.0 Zn 150
Dy 1.0 Cr 20
C 0.1 Be 962298

Table 2.4: Geometrical Dimensions Table 2.5: Elemental
of MNSR Be Reflectors. Composition of MNSR Be

Alloy Reflectors.

The MNSR is equipped with ten irradiation tube facilities made 
of A1 alloy. Five of these are located in the side Be annuli 
with the remaining five located outside the side Be reflectors.

To detect and test the reactor characteristics and its asso­
ciated instrumentation, the MNSR is further equipped with several 
different detectors such as BF3 and gamma fission chambers for the 
detection and measurement of neutron flux and gamma radiation. The 
inlet and outlet temperatures are detected and measured by four 
thermocouples housed in the outer irradiation sites.

8
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An important structural component of a nuclear reactor is the 
control rod. The MNSR has only one central control rod. It is made 
of cadmium and cladded with stainless steel (type SS-3 04). The use 
of only one control rod in the operation of the MNSR is due to its 
inherent safety features and simplified drive mechanism. The 
control rod serves as a shim, safety and regulatory rod. A cold 
excess reactivity of 3.5mk at 2 0° C and a control rod worth of 
6.8mk is reported [2]. The design parameters of the MNSR control 
rod are shown in Table 2.6 . The elemental composition of the
control rod guide tube is illustrated in Table 2.1.

Parameter Dimension

Clad thickness 0.50mm

Total length 290mm

Total travelling length 250mm

Total diameter 5.00mm

Cd diameter 3.90mm

Control rod worth 7mk

Normal speed 11.4mm/s

Table 2.6: Design Parameters of the MNSR
Control Rod.

9
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2.1.1.1 MNSR Fuel Element Design

The MNSR fuel element is a thin-rodded element consisting of 
an A1 cladding tube, a highly enriched (90.12%) uranium-aluminum 
(U-Al) alloy with a low neutron absorption cross-section employed 
as fuel with two end plugs as shown schematically in Fig 2.2. 
Tables 2.7 and 2.8 show the geometrical dimensions and elemental 
composition of the MNSR fuel element and its cladding 
respectively.

Parameter Dimension
(mm)

Active length 250

Total length 270

Outer diameter 5

Fuel meat 4
diameter

Table 2.7: Geometrical
Dimensions of MNSR Fuel 
Element.

Element Composition
(%)

Si 0.16
Fe 0.24 - 0.40

Cu 0.012

Mn 0.01

Ti 0.01

Mg 0.01

Zn 0.03

Ni 0.03

Cd 0.0001

B 0.001
Li 0.0006

Table 2.8: Elemental Composition 
of MNSR Fuel Element Cladding.

10
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250mm

270mm

1
1

Fig 2.2: MNSR Fuel Element
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Below are the main design parameters of the prototype MNSR 

fuel element:

Reactor thermal power 
Maximum heat flux at 
Fuel element surface 
Inlet/Outlet coolant 
temperature 
Coolant velocity 
U-235 content/fuel element 
Enrichment factor 
Uranium weight fraction 
Fuel density 
Volume porosity

2.1.1.2 Core Configuration of the MNSR

The core of a nuclear reactor is the central part or heart of 
the reactor. The MNSR core is located at the bottom of the lower 
section of the cylindrical reactor vessel. It comprises the fuel 
cage, the fuel elements and a central control rod guide tube as 
illustrated in Fig 2.1. There are ten lattice rows concentrically 
arranged about the control rod guide tube. The arrangement of the 
control rod in its guide tube surrounded by the first ring of six 
fuel rods can be seen in Fig 2.3.

27kW

3.06E+06 kcal/m.hr

30°C/45°C 
15 - 30 mm/s 
2.75g 
90.12%
26.1%
3.305g/cm 
3%

12

University of Ghana          http://ugspace.ug.edu.gh



Guide tube

Fig.2.3 Layout of Control Rod with 6 neighbouring fuel rods
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The core assembly of the prototype MNSR consists of 355 fuel 
lattices in the fuel cage with an average radial pitch of 10.95mm 
between adjacent rows. There are four tie and six dummy rods 
uniformly located at the 8th and 10th rows respectively. The other 
lattices are used as fuel elements. Table 2.9 describes the 
geometrical parameters of the MNSR core configuration [1].

Ring
No.

Diameter
(mm)

No of 
Elements

Radial 
pitch(mm)

A 0.0 1 0.00
B 21.9 6 11.47
C 43.8 12 11.47
D 65.7 19 10.86
E 87.7 26 10.98
F 109.5 32 10.78
G 131.4 39 10.58
H 153.5 45 10.70
I 175.2 52 10.58
J 197.1 58 10.68
K 219.0 65 10.58

Table 2.9: Geometrical Parameters 
of MNSR Core Configuration.

Fig 2.4 is a schematic diagram of the MNSR core configuration.

14
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Fuel Element

Control Rod

Dummy Rod

Fig.2.4 Core Configuration of MNSR
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2.2 NUCLEAR REACTOR THEORY

Basic reactor physics is a broad field of physics covering 
cross-sections, transport and diffusion theory, reactor kinetics 
and multigroup theory [3]. In this work, the basic reactor physics 
will be restricted to light water reactors (LWRs).

The operation of a nuclear reactor depends fundamentally on 
the mode of neutron interactions with the atomic nuclei. Neutrons 
interact with nuclei in various ways such as fission, scattering, 
absorption and radiative capture. These nuclear reactions must be 
carefully accounted for in the design of nuclear reactors. It is 
convenient to describe each type of nuclear reaction in terms of a 
characteristic cross-section which defines the probability of 
occurrence of such reactions. A detailed knowledge of all the 
nuclear reactions or events taking place throughout a reactor can 
be attained provided the nuclear data base for constructing the 
various macroscopic cross-sections and the scalar flux density are 
available.

The neutron flux is a measure of the combined effects of the 
motion of neutrons, as evidenced by the interaction rates to which 
they give [4]. When the neutron flux (which is of central impor­
tance in this work and to which much attention will be given to 
finding this function) is known throughout a reactor, the total 
interaction rate can be computed. The problem of the computation 
of the scalar neutron flux is thus of prime importance in nuclear 
reactor design and analysis.

16
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In nuclear reactor design, it is therefore necessary for a 
prediction to be made about the neutron flux distribution in the 
reactor system. To make an effective prediction of this function, 
the motion of the neutrons at different positions or locations 
will have to be followed or analyzed. The analysis of the neutron 
motion is best described by mathematical or physical models. Two 
such models which provide solutions to the above problem shall be 
examined the next sections.

2.2.1 Transport Theory

A treatment of the neutron flux distribution problem in a 
reactor is generally difficult. This is due to the complicated 
random trajectories executed by the neutrons as a result of their 
repeated nuclear collisions. As a consequence of this motion, 
neutrons of some energy travelling in a certain direction in the 
reactor are transported to some other part of the reactor system, 
moving in another direction with some other energy . The mathema­
tical or physical model which studies this transport phenomena and 
rigorously treats the problems of neutron conservation and their 
interactions with their environment is the neutron transport 
theory.

The exact equation governing transport phenomena is called the 
transport equation. This theory considers as a variable, the angu­
lar distribution of the neutron velocity vectors which is equal to

17
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the number of neutrons at a given position per unit volume travel­
ling at a specified speed per unit velocity, in a given direction 
per unit solid angle. The transport equation which is credited to 
the German mathematical physicist Boltzmann, illustrates the 
fundamental property of neutron transport. In particular, the 
Boltzmann transport equation is an integro-partial differential 
equation embodying the physics of neutron particle transport [5]. 
It is a neutron balance equation in which the sum of the reaction 
rates inducing loss and the net neutron surface leakage is 
balanced by the source rate for a discrete volume, i.e 
sources(gains) = losses.

The one-speed Boltzmann transport formulation or equation is

+ vll.Vn + v£t;n(r,E,il,t) =

00
v'L^E'^E, JV-̂ ftJdfi'dE' n(r,E,il,t) + S(r,E,XI,t) (2.1)

J  !

where n(r,E,H,t) is the angular neutron density with energy E in 
dE in a direction in d!l , v is the velocity of the neutrons 
and £s and are the scattering and total cross-sections
respectively. In constructing the multigroup transport equation 
from the above one-speed time dependent Boltzmann formulation, our 
purpose shall be to reduce the energy dependence of the Boltzmann 
equation to a set of transport equations which are applicable to

18
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each group. It is assumed in this treatment that the angular 
neutron density is time independent.

The energy dependent linearized Boltzmann transport equation 
can be written in the form

.Q.V<Mrf E,J1) + 2^0 (r, E ,Cl) =

£s (r, E' -»E, ft'-»jQ,)0(r,E' ,ft.' )dQ'dE' +S(r,E,H) (2.2)
E' Q'

where the quantity <p(r,E,A) connotes the number of neutrons with 
energy E per unit energy crossing a unit surface at position r per 
unit time travelling in a unit solid angle centered in the direc­
tion ft. Es (r,E'-»E ,H'-j<Q,) is the scattering probability per unit 
path length that a neutron at r and travelling in a direction XV 
with energy E' is scattered into a unit solid angle centered at Xi 
with energy E. ^(r/E,^,) is the total cross-section at r with 
energy E and centered at £L and S(r,E,H) is the source term which 
defines the number of neutrons with energy E created per unit 
volume at r going in a unit solid angle centered at ft.

In developing the multigroup equation, the neutron energy 
spectrum is divided into a number of groups (say G) and Eq. (2.2) 
is integrated over the energy limits E , to E to obtain theg-i g
elegant expression

19
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H.V0g(r,n) + lt g (r,n)0g (r,fl) = Qg (r,A) + Sg (r,H) (2.3)

where

Qg = £s (r, E' -»E ,X2' -sfi.) <(> (r , E ,XL) dQ' dE' (2.4)

and the energy dependence has been eliminated. The group cross- 
sections are averaged over the appropriate flux. Since the total 
cross-section is nearly independent of XI, the angular depen-
dence of Ĵ _g is dropped arriving at the desired multigroup 
transport equation

Xl.V0g (r,n) + Etg (r)^g (r,n) = Qg (r,fl) + Sg (r,X2) (2.5)

Although calculations based on the transport theory gives more 
nearly exact results, its rigorous approach to the neutron flux 
distribution is however computationally expensive, tedious and 
long, leading to severe mathematical difficulties and to equations 
that are cumbersome to solve for most reactor systems. An approxi­
mate mathematical theory which leads to expressions for the 
neutron flux distribution variations with the geometrical coordi­
nates is called the neutron diffusion theory. This theory is 
examined below in the next sub-section.

20
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2 . 2.2 Multigroup Diffusion Theory

The diffusion theory approximation to neutron transport is the 
most useful primary technique for performing neutronic reactor 
core analysis. This approximation theory, if successively corrected 
for transport effects, is computationally less expensive to solve 
than the transport equation. The diffusion theory has two basic 
requirements. Firstly, it relies on the absence of large gradients 
of the neutron density or flux in any spatial region of the 
problem. Large gradients are implications of highly directional 
neutron migration and the diffusion theory does not include the 
direction-of-motion variables. Secondly for an accurate definition 
of the diffusion coefficient for the material, this theory demands 
that the migration process be scattering collision dominated [6].

The two conditions both relate to neutron leakage and it is 
in this description that the diffusion theory suffers most rela­
tive to the transport theory. The diffusion theory is thus inaccu­
rate at certain locations such as near a reactor boundary or near 
strong neutron absorbers, e.g. control rods where large gradients 
exist, or sources. In such cases, the more rigorous transport 
theory is resorted to. Indeed, the diffusion theory and the 
neutron diffusion equation which is a mathematical formulation 
transformed by Picks' law for neutron conservation, are reduced or 
simplified forms of the transport theory which can be adopted and 
used in the development of analytical models for reactor analysis 
and design [4].

21
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The one-speed diffusion model can be used on occasions to 
provide useful qualitative information such as in preliminary 
reactor design studies. The model however, has a principal draw­
back. It assumes that all neutrons can be characterized by only 
one speed or energy. This assumption is quite untrue since the 
spectrum of neutron energies in a nuclear reactor spans the range 
from an upper limit of lOMeV to a lower limit less than O.OleV. 
Furthermore it is also known that the neutron-nuclear cross- 
sections are dependent on the energies of the incident neutrons. 
The one-speed diffusion model is therefore inadequate for treating 
practical reactor design and computation problems. For such 
purposes, a rather more realistic multigroup treatment of the 
neutron energy dependence is required. A development of the 
multigroup diffusion model is thus presented in this section.

Multigroup diffusion equations are the most frequently solved 
equations in reactor design and analysis [7]. In developing this 
model and taking into account the behavior of neutrons in LWRs, 
the total neutron energy spectrum is divided or discretized into a 
number of energy groups (say G) as shown below.

JG-1 Eg-i

22
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In this treatment any one group of neutrons with energy between 
Eg and Eg-i are identified as being in one energy group g. The 
neutrons in each energy group are then lumped together and the 
various group interaction processes such as diffusion, absorption, 
scattering etc, are described in terms of averaged diffusion coef­
ficients and cross-sections known as group constants. Fig. 2.5 
shows a typical neutron energy spectrum for LWRs extending from 0 
to lOMeV.

Neutron Energy in Electron Volts 

Fig.2.5: Typical Neutron Spectrum for a LWR

23
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The form of the multigroup diffusion equation can be arrived at by 
applying the concept of neutron balance to a given energy group by 
balancing the ways in which the neutrons can enter or leave this 
group. The balance of neutrons reads as:

Time rate change due absorption Source
change of to in neutrons

neutrons in = - + + appearing
group g leakage group g in group g

neutrons neutrons
scattering scattering
out of + into

group g group g

An alternative and more satisfying way of arriving at this
equation is to integrate or average the diffusion equation for the
energy-dependent neutron flux #(r,E,t) over a given group interval
E < E < E .. It is assumed that the flux can be adequately g g-i
described by the energy-dependent equation:

i || - V.DV<fi + Et0(r,E,t) = Zs (E' -»E) <p ( r , E, t) dE'

*(E)
0
!>(E')Ef(E')*(r,E'.t)dE' + Sext(r,E,t) (2.7)

24
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Eliminating the energy variable from the above equation over 
the gth energy group characterized by Eg< E < Eg-i gives

r9"1 .g-i
a
at ^ <pdE - V. DV0dE +

r V l
Zj-̂ dE

Eg-1
£s (E'-»E)0(r,E,t)dE'dE

?g_1
SdE (2 .8 )

Eg 0

It is more convenient to discretize the energy group fluxes
to be integrals of 0(r,E,t) over the energies of each group. The
multigroup fluxes 0g (r,t) will then represent the total flux of
all neutrons with energy E in the group interval E < E < Eg g-1
The group neutron flux is then defined as
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A cross-section for the energy group g is similarly defined as

,.Eg-i
E(E)*(r,E,t)dE

E_

rEg-l
0(r,E,t)dE

(2 . 10)

The total cross-section for group g is then

E , -g-1
Et (E) 0 (r, E, t) dE

t̂cr g
E „ rg-l

0(r,E,t)dE

(2 .11)
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The diffusion coefficient for group g is

V i
D(E)Vi0(r,E,t)dE

9 F
rS-1
V.0(r,E,t)dE

E_

and the neutron speed characterizing group g as

1
v g

0(r,E,t)dE

The group transfer scattering cross-section is given as

?g-i ?g-i
y  =  —^sgg' (j>g

Y,a (E'^E)(t>(rrE rt)dE'dE

(2 .12)

(2.13)

(2.14)

27

University of Ghana          http://ugspace.ug.edu.gh



and the fission cross-section for group g is

?g-i

g
i>(E')£f (E')0(r,E',t)dE' (2.15)

while defining the group fission spectrum as

*<3 =

Jg-i
X(E)dE (2.16)

Assembling these purely formal definitions [Eqs.(2.9) - (2.16)]
into Eq.(2.8) yields the multigroup diffusion equation:

k ~ 4 r - V*DV* + Etg^(r ^) = > Esg'gV + *g > v zfg, u/ . + Srg g
g'=l g'=l 

g = 1,2, . . ., G (2.17)
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The scattering term can be re-written as

G G-l

sg g g sgg g (2.18)

where the in-group scattering term £ characterizes the probabi-sgg
lity that a neutron can suffer a scattering collision, lose 
energy and remain in the group. Transferring this term to the 
left hand side of Eq.(2.17) a removal cross-section can be 
defined as

which also characterizes the probability that a neutron will be 
removed from group g by a collision process. The assumption of no 
upscattering greatly simplifies the solution of the multigroup 
diffusion equation. In particular, further simplification can be 
achieved by choosing the group spacing such that the neutrons will 
scatter from a higher energy to the next lower energy group, i.e

(2.19)

( 2 . 2 0 )
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In this case, the multigroup equation is said to be directly 
coupled, as illustrated below:

_A— r  i A
_i__L_
i i

g-3
Eg-2
sg-i
E.

"g+i
g+2

E
"g-3
g-a
Sg-1

"'g+l
g+2

E

Jg-3
sg-2
g-1

E
E
g+1
g+2

No upscatter Direct coupling Non-direct coupling

Ignoring the time dependence of the neutron flux and the presence 
of an external source (e.g. in criticality calculations), the 
multigroup equation reduces to

-V.D Vtp + V d> g wg LRgvg ^sg'g^g' + k xg V g ' E f g ' t g ' (2.21)

where the criticality eigenvalue k has been inserted.
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In practice, the choice of the number of energy groups for 
reactor calculations depends on the problem under consideration. 
Normally one works with 2 - 2 0  energy groups. Such few group 
calculations can only be effective with reasonably accurate esti­
mates of the group constants [3]. In general it is sufficient to 
use two-group (fast and thermal) diffusion theory to analyze 
thermal LWRs since it is the simplest case of multigroup equations 
while retaining most of its mathematical properties. For such 
analysis the group constants in each group are calculated sepa­
rately. Below is a brief review of this model.

2.2.2.1 The Two-Group Diffusion Theory

In two-group diffusion studies, one neutron energy group 
characterizes fast neutrons and the other thermal neutrons. In 
ignoring upscattering of the thermal neutrons, the energy cut-off 
for the thermal group is usually chosen high, e.g. 0.5 - l.OeV for 
water moderated reactors. Consider below the schematic of a two- 
group energy structure.

E2=0 E1- lev EQ= lOMeV
|<  thermal group— >|<  fast group --- >|
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The group fluxes are identified as

*0
0(r,E,t)dE (fast flux) (2.22)

<t>2 ( r,t) = 0(r,E,t)dE (thermal flux) (2.23)

where 0^and <j>̂ are the fast and thermal neutron flux distributions. 
The group constants for this model can be simplified. In particular 
since all fission neutrons are born as fast neutrons (fast group), 
the group fission spectra can be writen as:

*1 =
*0
X(E)dE and *2 =

A
*(E)dE = 0 (2.24)

E„ E„

By this the fission source will only appear in the fast energy 
group equation as
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Sfi = v f e  1<P1 + »>2Ef2*2 (fast group) (2.25)

Sf2 = 0 (thermal group) (2.26)

Assuming no upscattering for the thermal group, we have

E1~leV
Es (E'^E)dE = IS (E'),

e2=°
E2  ̂E'^E^ (2.27)

Hence the thermal in-group scattering cross-section is obtained as

Js22
_1_ Es (E'-»E)0(r,E' )dE'dE

E„

1_
<t>.

Es (E') 0 (r, E) dE' Js2 (2.28)
E„
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Thus the group removal cross-section is just

Er 2 ^t2 “ ^s22 ^t2 ^s2 ^a2 (2.29)

If both the time derivatives and the external source terms are set 
to zero, the two-group diffusion equation is finally obtained as

where the multiplication factor k has been inserted in Eq.(2.30) 
for criticality determinations. The source term in the fast group 
corresponds to the fission neutrons, whereas the source term in 
the thermal group is due to slowing down of fast neutrons. The 
various methods of solutions available in the literature for 
reactor physics calculations shall be discussed in the next 
section.

[ u l^fl^l + v 2^f2^2 j (2.30)

(2.31)
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2.3 METHOD OF SOLUTION

In the previous section, the important problem of the neutron 
flux distribution in a nuclear reactor was first identified. 
Secondly, for a prediction of this function, different mathema­
tical theories that effectively describe and offer solutions to 
this problem were discussed. The multigroup diffusion theory 
approximation to the Boltzmann transport theory was formulated and 
found to be the most appropriate model commonly used for reactor 
analysis. Two different methods of solving the multigroup 
diffusion equation shall be considered in the next section.

2.3.1 Analytical Method

The analytical method for solving the multigroup neutron 
diffusion equation for the analysis of reactor cores exists and is 
available for multidimensional and transient cases. However in 
cases with complicated geometries or boundary conditions, such 
exact analytical solutions are either complex or non-existent. In 
practice many diffusion problems cannot be solved analytically and 
other appropriate methods are invoked. One such method of solution 
is numerical analysis. This review shall therefore be restricted to 
numerical methods only.
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2.3.2 Numerical Methods

Numerical methods is concerned with the mathematical deriva­
tion, description and analysis of obtaining numerical solutions of 
mathematical problems. Numerical computations can also be used 
even where the analytical solution is known simply because it may 
be less time consuming to solve the diffusion equation directly by 
numerical methods than to evaluate a complicated, albeit elegant 
analytical expression. This is particularly true when the calcula­
tions must be repeated many times in connection with parametric 
studies of reactors [8]. Numerical methods may fall into two 
different approaches:

(i) Probabilistic Monte Carlo Method
(ii) Numerical integration

2.3.2.1 Monte Carlo Technique

The Monte Carlo technique is a statistical method employed 
for special purposes. It is usually used as a means of checking 
appropriate procedures in reactor analysis. It is the most 
accurate way of computing the Dancoff correction. Indeed, the 
Monte Carlo model also finds use in 3-dimensional (3-D) reactor 
computations and complicated reactor geometries. However, it 
suffers a major drawback in that it requires long computation

36

University of Ghana          http://ugspace.ug.edu.gh



times. It is therefore not widely used in reactor calculations. 
Details of the technique applicable to reactor analysis are 
available in references [7-9].

2.3.2.2 Numerical Integration

Numerical integration consists of the finite element and 
finite difference techniques. The finite element method (FEM) was 
originally developed as a numerical technique for structural 
analysis [8,9]. It is based on the variational principle as a 
physical law and has become successful and is almost exclusively 
used in some fields such as mechanical stress and structural 
analysis.

The FEM is very versatile and powerful in dealing with domains 
of irregular shapes usually associated with structural analysis. 
This is due to the freedom of selecting an arbitrary distribution 
of mesh points. Recent developments have witnessed a rapid growth 
in the use of this technique. Reasons accounting for this are:

(i) the finite element approach is versatile in dealing with 
irregular geometries

(ii) it has a higher degree of accuracy over the finite diff­
erence method (FDM)

(iii) higher order approximations can be easily obtained 
(iv) treatment of boundary conditions with FEM is easier than 

with the FDM [7].
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The FEM has drawbacks, however. It does not compete well with 
others such as the FDM when the reactor core is to be modelled 
adequately with a regular mesh points array or discrete elemental 
volume of simple shape. Further the lower order form of the finite 
element formulation that must be used due to computation cost 
constraints can generate results inferior to those obtained with 
other methods. However, it could be attractive if large regions of 
the uniform properties or demands for improved modelling of mixed 
geometries or of deformations existed [10].

The finite difference form of discretization is the most common 
method of approximating differential and integral equations. It is 
widely employed as a powerful numerical tool in solving multigroup 
equations and in reactor core analysis. However, a difficulty in 
the use of the FDM occurs when the shape of the domain is 
irregular because the mesh points based on the cartesian 
coordinate system cannot fit boundaries of irregular shapes. In 
general the FDM proves to be a more economical and convenient 
numerical technique in reactor analysis. It may therefore be used 
in such analytical problems even though the exact analytical 
solutions exist.

In the Safety Analysis Report on the prototype MNSR [2] reactor 
submitted to the NNRI, Kwabenya, no detailed information is avail­
able concerning the nuclear design of the reactor. Few experimen­
tal measurements of the fluxes at 2kW were reported for some 
sections of the core. Experimental results were not compared with 
those available from theoretical analysis. It is important that an
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appropriate computational model is established for the analysis 
of the MNSR core to provide neutron fluxes at any point within the 
core. This information will be useful for the safe operational 
methodology for the MNSR and its maximum utilization for neutron 
activation analysis, reactor physics experiments and for radio­
isotope production.

2.4 DISCUSSIONS AND SUGGESTIONS

A brief description of the prototype MNSR has been presented 
in this chapter. In particular, attention was paid to its fuel 
element and structural designs and also to the core configuration. 
This was followed by mathematical theories, namely the Boltzmann 
transport theory and the multigroup diffusion theory approximation 
which are used to provide solutions to the problem of the neutron 
flux distribution in nuclear reactors.

It is expected that fluxes will vary radially along the core. 
Since the temperature distributions along the axial direction of 
the core varies, one would expect that the group constants along 
the axis will be affected. As already stated in Section 2.1, the 
small core of the MNSR is enclosed with Be reflectors in order to 
minimize neutron leakages from the core. In the light of this dis­
cussion, the neutron flux will vary along the radial and axial 
directions of the reactor. A multigroup two-dimensional (2-group, 
2-D,in r-z geometry) analysis of the MNSR core is preferred to the
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one-group diffusion model which is inadequate in performing more 
accurate reactor analysis.

With this in mind, the objectives set for this work are as 
follows:

(1) creation of a two-group, two-dimensional (r,z) data base 
for the MNSR. This will require an appropriate model taking 
into consideration all the known parameters which influence 
group constants

(2) development of a computer package to solve the two-group, 
two-dimensional neutron diffusion equation using the 
created data base. The values obtained using the model 
will be checked against experimental values obtained using 
the prototype MNSR.
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CHAPTER THREE

TWO-GROUP MACROSCOPIC DATA BASE

In general changes in certain nuclear parameters such as fuel 
burnup, U-238 temperature which in turn causes Doppler broadening 
of the U-238 neutron absorption resonances and in the concentra­
tions of boron(B) and xenon (Xe) can induce changes in macroscopic 
group constants.

Thermal-hydraulics calculations performed by Akaho et al [11] 
on the MNSR core show significant changes in the coolant and fuel 
temperatures along the flow channel as graphically depicted in 
Fig 3.1. This plot suggests that changes in coolant density and 
temperature will affect group macroscopic cross-sections. An 
investigation of the variation of the neutron spectrum with burnup 
of the U-Al fuel elements reveals no significant change up to 
10,000 MWd/tU (1.1%) burnup as shown in Fig 3.2. However, the fuel 
burnup curve illustrated in Fig 3.3 shows that the infinite multi­
plication factor is strongly burnup dependent. The k^ value can 
be computed using the correlation equation fitted to the data:

k (T) = 1.8019 - 2.4114E-06T - 7.2635E-11T2 (3.1)

where t is burnup(MWd/tU)
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Based on the above observations, it has been decided to 
examine the effects of these parameters on the group constants 
which will lead to the creation of an appropriate two-group 
macroscopic data base for the prototype MNSR. This data library 
will be helpful in the analysis of the reactor and will in 
particular, be used in performing reactor physics calculations for 
fast and thermal neutron fluxes at any point in the reactor core. 
In general, the complex problem of generating group constants is 
performed with sophisticated transport codes which take into 
consideration the influence of neutron spectrum, geometry and 
material composition.

In this presentation, a brief description of the lattice code 
for generating the two-group constants (D^ D2, EalfEa2» 

v 2 ^ f 2  '̂ sl-»2̂  ;''S 9-*-ven‘ Macroscopic cross-sections referred to as
basic will be calculated for the various homogeneous zones of the 
MNSR reactor at a reference level and their dependence on burnup 
correlated. Correction terms to these cross-sections which account 
for the spatially varying thermal hydraulic effects and operating 
power of the reactor will be discussed.
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3.1 Mathematical Model

In the analysis of nuclear reactors, the basic portion of the 
reactor that is studied is the fuel unit cell. It consists of a 
single fuel rod, its cladding, the coolant and moderator. The 
overall behaviour of a reactor is the result of an interaction 
between the neutronic and thermal hydraulic properties relating to 
the fuel unit cell or assemblies.

A mathematical model for generating macroscopic group constants 
for a lattice cell of the MNSR [12] can be represented in terms of 
certain physical parameters as:

£j9 - p z , Tfz, Tmz, Tolz, P, Xe] (3.2)

group macroscopic constant of reaction type x at 
energy g for zone 1

burnup, reactor power and Xe-135 concentration 
respectively
coolant and moderator density at axial position z 
fuel, moderator and cladding temperatures 
respectively at axial position z.

Considering a lattice cell of the MNSR core as shown in Fig 3.4, 
the group constants can be classified into two groups:

where =

x ,  P, Xe =
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(1) basic cross-sections determined at a chosen reference level 
at nominal power (27kW). For this work, the reference level 
was fixed at the middle of the core.

(2) the correction terms to the basic cross-sections due to the 
axial temperature variations along the flow channel, 
operating power and xenon effect.

Basic macroscopic cross-sections (BMCs) were determined for a 
fresh core at nominal power P^. It was assumed here that the group 
constants for the various homogeneous zones of the reactor at the 
reference level are functions of burnup only. These cross-sections 
will change from the reference level as the fuel and moderator 
temperatures change along the axis. In the precalculation of the 
cross-sections, it is assumed Xe-135 is absent and that only the 
thermal absorption cross-section would be affected. A further 
assumption is that the fuel, cladding and coolant temperatures 
will vary linearly with reactor power as stated by Mele et al[13].

On the basis of these assumptions, Eg.(3.2) can be expressed as

z, P'] (3.3)
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where

X^g^(x) = burnup dependent cross-section at the 
reference level

(2) = axial incremental change caused by changes in the 
coolant density, the fuel, cladding and moderator 
temperatures from reference level conditions and 
expressed as a function of z.

The thermal absorption group constant E j , is corrected for Xe-135 
effect by the relation:

Ejg [r, z, p] = [e^ 2 (t ) + AEj2 (z)J [-J-] + AE*2 (Xe) (3.4)

0 2where AE2 (Xe) defines the incremental change due to Xe-135 
concentration. In the next section, the methods of computing the 
BMCs and the correction terms needed for the evaluation of 
Eqs.(3.3) and (3.4) shall be presented.
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3.1.1 Basic Macroscopic Cross-sections

In determining the burnup dependent macroscopic cross-sections 
at the reference level conditions, it is assumed that the 

burnup term can be separated from the other variables and its 
influence described by the function b(r) as

Efg (T) = E*?i,o f1 + bXg(T) ) (3-5)

where E" , connotes the group constant at the reference level ^  , 1 , 0
for zero burnup. The parameterized cross-section for Eq.(3.3) can 
be written in the form:

p] - [ ^ , 0 (l + ) + a f ( z > ]  (3.6)

The functions bx^(x) and a^(z) , considered as polynomials of 
second order are defined as:
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and

aV (z) - z a^g z11 1 ,n
xg
1,0 + a?g z + a?g„z2*1,1* 1/2 (3.8)

n=0

respectively.

3.1.2 Correction to the Xenon Effect

The basic cross-section for computing the thermal absorption 
cross-section is affected by the presence of xenon. This effect is 
taken into account by first calculating the correction term 
&Ejg (Xe) in Eq.(3.4). The term is calculated using the relation­
ship [12]

AEjg (Xe) = ta 2 
I,*

1--p/pj

1 M + [p /p*) [ •2  /> J J (3.9)

a2where ^ depicts the thermal macroscopic correction correspon­
ding to the equilibrium poison buildup which can be expressed as

i + *xe/

va XeIExg^ =  X [ _   (3>10)
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where

*Xe = total ctiain yield of Xe-135 (0.066)
. . 3P, P^ = operating and nominal power densities (kW/cm ) 

respectively
-5 -1\  =  Xe-13 5 decay constant (2.1x10 s )

A G

a.2<rv = macroscopic thermal absorption correctionA6
for Xe-135 (1.7xl06 barns).

A method of computing the group constants from the parameterized 
functions bx^(T) and ax^(z) is addressed below.

10X = fission/watt-sec(3.1x10 )

3.2 METHOD OF ANALYSIS

In this section, a description of the method of computing the 
group constants from the parameterized functions for variations in 
burnup and axial effects shall be considered. Emphasis will be 
laid on the theory of the WIMS lattice code. We shall then look at 
a method of preparing input data for the MNSR by using transport 
calculations based on the WIMS lattice code.
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3.2.1 Theory of the WIMS Lattice Code

WIMS is an acronym for Winfrith Improved Multigroup Scheme. 
It is a general lattice cell program which uses transport theory 
to calculate neutron flux as a function of energy and position in 
the lattice cell. It also provides solution to the linear trans­
port equation in multigroup (69 groups) for arbitrary cell or 
multicell geometry.

The WIMS program involves two major steps in the calculation 
of the neutron flux. It first calculates neutron spectra for few 
spatial regions in the full number of energy groups of its library 
and uses these spectra to condense the basic cross-sections into 
few groups. A few group calculation is then finally carried out 
using a much more detailed representation. The resulting fluxes 
are then expanded using the previous calculation so that the 
reaction rates at each spatial point can be calculated in the 
library group structure [14]. The group structure required by the 
WIMS code from the library tape is arbitrary. However, basic 
libraries are available in 58- and 69-energy groups. The 69-energy 
group has an increased number of fast and resonance groups and is 
generally recommended.

The WIMS program treats a number of basic geometries namely;
(1) homogeneous
(2) slab array including plate bundles
(3) regular rod arrays
(4) rod clusters in cylindrical (r,z) geometry
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In addition to basic cell calculations the code may be used 
in point fuel burnup analysis and solution of multicell problems. 
The multigroup integral transport equation is written in the form

where p is the optical distance or the mean free path. The term 
exp[-p(r - r') ] defines the probability of a neutron starting from 
a unit isotropic source at position r' to reach r uncollided. The 
source term Q(r') accounts for contributions from fission and sca­
ttering from other groups. Assuming a flat flux approximation and 

that the cross-sections ^gEfg, Eag, £sg'->g] are constants in
a homogeneous zone, the following equations can be derived from 
Eq.(3.11) for energy group g in region i as:

(3.11)

(3.12)

with
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and the total source in region i

Q
f 1 g '

keff

S?'^g0?'+ F?'^g (3.14)

with the scattering and fission terms written explicitly. The 
fission fraction is ^g and the fission yield is denoted by 
The effective multiplication constant is keff> Eq.(3.12) is multi­
plied by the total cross-section in region and the collision 
probability or probability density is then introduced to give
the number of collisions in region i caused by the source in the 
jth region:

Pij = P ■ • = Ig EgM ••]X X] (3.15)
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yielding the set of equations for the neutron flux

y y v . 6 9  =  ^1 1*1 >?
1

E -

P?.Q .
2j_2 ( 3 . 1 6 )

The factor C? connotes the number of secondaries per collision. In 
solving Eq.(3.16), one needs to determine the one-group probabi­
lities which define the probability that a neutron appearing
uniformly and isotropically in region i will have its first colli­
sion in region j. Methods for calculating the macroscopic cross- 
sections which are described in the literature [15] are used in 
solving Eq.(3.15) for each group g. The equation is written in 
matrix notation as:

<p = P$

$ = S<p + XF

(3.17)

(3.18)

or alternatively as:

' <p ■ 0 p ' ' < p '

. * .
s 0

. * .

(3.19)
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where <t> and V  are the column flux and emission rate vectors of NxG 
elements ( i= l,2,...,N, region index; g= 1,2,...,G, group index).

ning the probabilities inside each energy group g. The scattering 
matrix of NGxNG elements in S and F is the fission factor and X is 
an eigenvalue.

The solution is provided for the fuel and the coolant regions 
with a special correction applied to obtain a solution for the can 
region. An approximate technique based on the diffusion theory is 
used to determine the fluxes in the bulk moderator region where 
the equation for the neutron current is

P is the probability block diagonal matrix with matrices Pg defi-

J , — J. “ J , — Qnet in out nm (3.20)

where

(3.21)

leading to

(3.22)
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where the total collision probability on entry to the moderator 
region is denoted by P^N - The matrix equation Eq.(3.18) is solved 
to determine the average flux in the moderator using the diffusion 
boundary condition at the internal boundary of the moderator

r = rN :

90(r„,E)
= 2?TrD ---- ^ ----  (3.23)net N m 9r ' '

where the flux derivative is performed at the inner moderator 
boundary rN and the diffusion coefficient in the moderator is Dm - 

Using the one-group asymptotic diffusion theory, the neutron 
flux is related to the energy as:

0(r,E) = 0 (a,E) + a<p(a,E)
d r v2 2b — a

-In
H )  -

2 2 r - a
2 (b2 - a2)

(3.24)

where a=rN * and b=rm are boundaries of the diffusion equation. 
Integrating Eg.(3.23) across the moderator and dividing by the 
moderator volume and using Eq.(3.22), the mean flux is obtained 
in the region as:

=m N + 3£. J h(y)
tr net 2 n (3.25)
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where

and

My) = y4ln(y) 
2(y2 - 1)

3y2 -1 
4(y2 - 1)

(3.26)

The neutron current Jnet is calculated using Eqs.(3.20) - (3.22) 
A formula is thus obtained which gives the mean flux in the 
moderator as a function of the solution for the internal regions.

3.2.2. Transport Calculations for Group Constants

The effective group constants needed for diffusion calcula­
tions were computed using WIMSPC [16], the PC version of the WIMS 
lattice code. This version is adapted to IBM 286/386 AT PC from 
WIMS-D/4 [17]. The present analysis is restricted to two-group 
theory. Hence only the cross-sections , D2, ^2Ef2, Esl 2
were computed for the various homogeneous zones of the core.

The 69-energy group structure of the WIMS library consists of 
fourteen fast groups (lOMeV - 9.118KeV), thirteen resonance groups 
(9.118KeV - 4eV) and forty-two thermal energy groups (4eV - OeV) . 
These group divisions are sufficient to analyze a wide range of 
nuclear reactors. However, the 28-group structure recommended by
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Fayers et al [15] for LWRs was selected for this analysis because 
core calculations for the MNSR using this group structure yielded 
a control rod worth of 7.1mk [18] which compared favourably with 
the measured value of 6.8mk [2].

The unit cell types that were considered in the analysis are:

(1) fuel element + water
(2) Al dummy/tie rod + water
(3) control rod guide tube + water
(4) Be reflectors

Instructions for the preparation of standard input data for 
WIMS-D/4 were followed. Material compositions for the unit cells 
of the core listed above and the physical properties such as 
density and temperature form part of the WIMS input data.

The material card of the WIMS code requires the densities and 
temperatures of the fuel, its cladding material, the coolant and 
the moderator at the position of interest (reference level or 
axial position z) . This is followed by weight fractions of the 
various elements comprising the material. The prevailing condi­
tions at the middle of the MNSR core is shown in Fig 3.5. The 
physical quantities p Q = 0.99329g/cc, TfQ = 374°K, T ^  = 355.2°K, 
and Tm0 = 309.77°K were used in the computation of the reference 
level macroscopic cross-section for zero burnup condition.Jl r ±  f U
The operating conditions corresponding to the axial position z 
from the reference point (pz, Tfz, Tclz, Tmz) were also invoked in
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the determination of the group constants. In particular, the 
densities of the coolant and moderator were computed as functions 
of the coolant temperature at the position z by using the 
correlating equation:

^z ̂Tmz ̂

y a . T^ Z_ 1 mi

Z/3 .T̂  m
(3.27)

The coefficients are listed in reference [18].
The U-235 content(gu-235 in grams) in a fuel rod is calculated 

from the equation:

U-235 = PuV(l - e%) Xf.m (3.28)

where is the fuel density, X is the weight fraction of uranium, 
e% is the volume porosity and fm is the weight enrichment of 
uranium in the U-Al alloy. The volume V of the fuel is given by

V = (7rdQ/4)h (3.29)
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where h is the active height of the fuel rod. The weight 
enrichment of uranium is given by

“u-235f = ---  —
mU-235e + mU-238^1-E^

(3.30)

where e is the enrichment factor. The density of the fuel is 
calculated using the expression:

, 3,3596(l-e%) (3>31)
1.2443 - X

In the determination of the polynomial for bx^(x), burnup 
values were determined using the POWERC card in the WIMS input 
data. The card is specified by specific power, Pg and the 
residence time t . The specific power, sometimes called power 
rating is defined as the thermal power produced per unit of the 
fuel loading:

Ps =
103P
nfgU

(3.32)

where P is the reactor power, nf is the total number of fuel
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elements and gy defines the fuel loading (U-235 + U-238).
The burnup of the core, B MWd/tU is needed for residence time 

t computation. The maximum burnup according to the neutronic
design calculations of the core is 1% [20]. From burnup physics 
calculations

1 MWd/tU = 1 g U-235 (3.33)

thus, an estimation of the maximum burnup of the MNSR fuel element
can be made. By using Eqs.(3.28) - (3.31), an amount of 2.5g of
U-235 out of the total weight of 2.75g which is equivalent to a 
burnup of 9090.9MWd/tU corresponding to the maximum value of 1% 
was computed for the fresh fuel. The core was then depleted from 0 
to 9090.9MWd/tU in ng steps. The residence time of the fuel was 
determined using the relationship

B/n
t = ---—  days (3.34)

Ps

where B is specific burnup (MWd/tU) and ng is the number of burnup 
steps. With the various specifications for the WIMS input cards, 
cross-sections were obtained from which the parameterized equa­
tions are derived.
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3.2.3. Parameterized Polynomials

In order to evaluate Eq.(3.6), the parameterized polynomials 
axg(z) for the axial effects and bxg(x) for burnup variations at 
the reference condition must be determined. For nominal power of 
27kW, the conditions at position z were used to obtain the group 
constants. The difference between values at the reference level 
and position z yields

- J3T..O - (3.35)

where 0 is the cross-section at position z for zero burnup.
A curve fitting program called DEM4 was used to fit the 

computed values to obtain the coefficients a^ Q, a^ ^ and a^ 2 of 
Eq.(3.8) . For the burnup variation, the polynomial bxg(x) was 
correlated using data within the range 0 -10,000 MWd/tU comprising 
ten burnup steps. The percentage burnup is within the range of 
0 - 1.1%. The two-group constants were also fitted with the DEM4 
program for the burnup coefficients bxg and bxg for the evaluation 
of Eq.(3.7) .
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3.3 DISCUSSIONS AND CONCLUSIONS

The results of the evaluation of the various equations of the 
mathematical model are used to create a library which can be used 
to solve either a two-dimensional, two-group transport or diffusion 
equation in radial-axial (r-z) geometry. The BMC n for the

27 r  X  f  U

various zones at the reference position and zero burnup and coef­
ficients bxg and bxg are contained in a file called BMC.LIB. Data 
for the coefficients axgQ, a2^i' and a ^ 2  accountin9 for axial 
effects are also contained in a file called AXIS.INP. A listing 
for the two files can be found in the Appendix.

The computed values of the macroscopic cross-sections under 
conditions prevailing at the nominal power for different burnup 
values at fixed positions along the flow channel are plotted in 
Figs. 3.5 - 3.11. Graphical representations of the variations of 
the various group constants with positions of the flow channel are 
also depicted in Figs. 3.12 - 3.17.
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The correction term due to Xe-135 computed using the 
operating characteristics of the MNSR in Eg.(3.9) was found to be 
very small in comparison with axial and burnup effects on the 
thermal absorption cross-section value. In order to check the 
accuracy of the polynomial representation of the group constants 
calculated by the present method, the calculated forms of the BMCs 
J^(cal) were compared with the accurate values obtained using 
the WIMSPC code and designated £j^(acc).

The accuracy is indicated by the relative error:

E*g (cal) - Efface)
error = ------- — -------------  (3.36)

Ej-'Cacc)

The values of the maximum errors found to be below 1% are listed 
in Table. 3.1

Group Constant D1 °2 Eal ^a2 ^f l <N Ŝl->2

Maximum Error 0. 022 0.141 0.073 0.032 0.207 0.010 0.013

Table 3.1: Maximum Error in Paramaterized Group Constants

79

University of Ghana          http://ugspace.ug.edu.gh



In conclusion, a two group data base has been created using a 
simplified model. The error analysis depicts an accurate data base 
for neutronic calculations. The data could be used to solve a 2-D 
transport or diffusion code for fast and thermal neutron fluxes 
produced at any point in the reactor. The predicted values are to 
be compared with those obtained from experiments as a further 
confirmation of the present analysis.
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CHAPTER FOUR

METHOD OF SOLUTION OF TWO-GROUP DIFFUSION EQUATION

The KWABEN code is a finite difference method based computer 
code which solves a 2-D (r,z) neutron diffusion equation for two- 
energy groups (fast and thermal)• The KWABEN code is written for 
IBM PC AT to form part of a proposed computer package MEPE for the 
analysis of the MNSR. It can however exist in isolation from the 
MEPE package and could also be applicable to other water moderated 
reactors subject to the conditions that:

(1) the reactor has cylindrical geometry
(2) the program is supplied with appropriate two-energy data 

base consisting of group constants in radial, axial (r,z) 
dimensions.

A major assumption in the utilization of the MEPE code is 
that the nuclear properties such as macroscopic cross-sections are 
dependent only on the homogeneous zones of the reactor core and 
the energy group under consideration. The code comprises the main 
program KWABEN and other libraries such as BMC.LIB which contains 
cross-sections obtained at the middle of the core and with correc­
tions due to the effect of burnup. Corrections were also intro­
duced to the BMCs to account for temperature changes along the 
axis of the flow channel. These are listed in the AXIS.INP file.
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In the present work, the mathematical model, numerical methods
and techniques used in the code are presented. The model was
applied to the criticality parameters and group average fluxes for 
the various homogeneous zones.

4.1 Mathematical model

The diffusion equation for a 2-D (r,z) region is written for
any one group g in the form [6]

Dg (r,z)V20g (r,z) + Etg(r,z)0g = Sg (r,z) (4.1)

where

Dg = diffusion coefficient for energy group g
0g = group neutron flux

JV = total macroscopic neutron cross-section for group gxg
S = source term for group g

Eq.(4.1) is a neutron balance equation where losses on the left
hand side (LHS) are balanced by neutron gains on the right hand
side (RHS). For a 2-D plane, cylindrical and spherical geometries,

2the leakage or advection term D (r, z) V <p (r,z) is written as:y y
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D (r,z)V2d (r,z) = - (i- -^raD _(r,z)% (r,z) + 1-D (r,z)^ (r,z)l 
y y Sr g Sr y Sz y 8z y J

where

(4.2)

a = ■

0 plane (rectangular) region

1 cylindrical geometry
2 spherical geometry

The diffusion constant in group g at position (r,z) is D (r,z) 
The total cross-section for group g is expressed in the form

Etg (r/Z) = Dg (r,z)Bg (r,z) + £ag(r,z) + £rg(r,z) (4.3)

where

2 = transverse buckling for group g
£ = macroscopic absorption cross-section for group g
a9
T = macroscopic removal cross-section for energy group g
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The source term in group g is similarly expressed in the form

G G
X  (r,z)\— 1 \ '

Sg (r,Z) = ' ) V f g (r,Z)V (r'Z) + 2 _ Es g ^ g (r'z)^g(r'z)
g'=l g'=l

g'*g
(4.4)

where

X  = fraction of fission neutrons in group g y
V g  = average number of neutrons per fission in group g 
A = eigenvalue related to the effective multiplication 

factor (keff)
Efg = macroscopic fission cross-section in group g 

Egg'-̂ g = macroscopic scattering cross-section from g' to g

Dropping the group subscript g, Eq.(4.1) is re-written as

■i- — raD (r, z) — </> (r, z) + —  D (r, z) —  <p (r, z) - (r, z) 0 (r, z) = -S(r,z)
r ar d r  d z  d z

(4.5)

which may be parametrically expressed
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-1 i_j + L - y  = V < / >  -  S (4.6)
r dr dz

where the parameters J and Y are defined as

J = <X-d<pr D—
Sr

Y = D—
dZ

(4.7)

(4.8)

It is assumed in this analysis that discontinuities in the nuclear 
properties of D, £ and S lie on basic interpolation points (r^,z^) 
as illustrated below in Fig 4.1.

Fig 4.1: A mesh layout in r,z geometry
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One way of formulating a finite difference eguation is by 
numerical integration of Eg.(4.6), the group diffusion equation 
over an interval on a spatial mesh. It is worth defining some 
terms which will be helpful in performing the numerical integra­
tion. Consider the schematic of the spatial mesh with central grid 
point (i, j) and four adjacent grid points (i-1,j), (i+l,j),
(i,j-l) and (i,j+l) in Fig 4.2 below.

(i,j+1) 
A |z .j+1/2

Zj+l/2
(i-1/j) (if j) (i+1,j)
ri-l/2 ri+l/2 ri+l/2

z .j—1/2

(i/j~l)

Fig 4.2: Coordinate System around mesh point (i,j)
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The rectangular boxes around the central mesh point (i,j) are 
defined by the intersecting lines over four rectangles. The 
spacing however, need not be uniform. The intervals are defined as 
follows:

ri+l/2 = l(ri+l + ri) (4.9a)

ri-l/2 = 2̂ (ri + ri-l) (4.9b)

Zj+1/2 = 2 (Z j+1 + Zj) (4.9c)

Zj-1/2 = l(Zj + Zj-l) (4.9d)

Ari+l/2 ri+l “ ri (4.9e)

Ari-l/2 = ri " ri-l (4’9f)

AZj+l/2 = Zj+1 " Zj (4*9 )̂

AZj-1/2 = Zj - Zj-1 <49h>

The nuclear properties are defined to correspond to the various 
regions of the reactor core and assumed to remain constant within 
a mesh interval. For example, the group diffusion coefficient at
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various mesh points is given as

Di-1/2 . - i fD? . + D? , ■), 3 2 [ 1,D l-l,Jj (4.10a)

DI+l/2,j - I (Di+1,j + D?.j) <4-10b)

D? = — [d? i,3-1 / 1 2 [ 1,3 + D? • Ji,D-lJ (4.10c)

Di,j+l/2 ' I (Di,j+1 + Di,j) <4 '10d>

With the box drawn around the arbitrary point, the diffusion 
equation is integrated over the box to obtain the fluxes and the 
parameters are evaluated at the mesh points. Multiplyiing 
Eq.(4.6) by ra and integrating over the mesh intervals

ri-l/2 < ri< ri+l/2 and Zj-1/2 < Zj < Zj+!/2'

yields the expression
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Zj+1/2 ri+l/2

[ (Ji+l/2 " Ji-l/2)dZ + [ (Yj+1/2 ^j—I/2)r dr
Zj-1/2 ri-l/2

ri+l/2 Zj+1/2
| - sjradrdz (4.11)

ri-l/2 zj-1/2

which in accordance with the above assumption, can be written as

Z j + 1 / 2

[ ( Ji+l/2 " Ji-l/2)dZ = (Ji+l/2,j ‘ Ji-l/2,j )AZj (4‘12)
Zj-1/2

ri+l/2

| ( Yj+l/ 2 Y j-1 /2)r dr (Yi,j+1/2 " Yi,j-1 /2 )ri Ari (4-13)
ri-l/2
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and

ri+l/2 Zj+1/2

(lt0 - sjradrdz = (j^ArAz)ifj^lrj r“ -

i-1/2 j-1/2
SArAz i,jri

(4.14)

By using Egs.(4.12) to (4.14), Eq.(4.11) reduces to the simpli­
fied form

(Ji+l/2 ,j " Ji-l/2 ,j)t2j + (Vi,j+1/2 " '̂i, j-l/2) riAri

jsArAzj jri (4.15)

Integration of Eq.(4.7) over the intervals r^ < r < r^+1/2 ’ 
Zj < z < zj+1/2 el;'-m:’-nates J whilst an integration of Eq.(4.8)
performed over the limits < r < r^+1/2 ' zj < z < zj+1/2
eliminates Y. The simplified expressions for the parameters J and 
Y are then arrived at as
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J: *i+l,j ~ *i,j ( d) i+1/2, j (" Ari+1/2 | Ji+1/2 (4.16)Az. J a
J 1+1/2

*i,j+1 - - (”5 ) i, j+1/2 [ AZ^ /2 jYi,j+1/2 <4'17'

It follows immediately from Eqs.(4.16) and (4.17) that

Ji+l/2 i = ri+1/2  3 1 X ± 1 ^ _ _ X^ _ (4.18)1+1/2,D 1+ 1/2 A r . . [Azl
1+1/2 1 dJ i,j+1/2

A r . <b. . , „ - <p ■ .
Y. . , =  —   1,3    (4.19)

1+1/2 | d)i ,j+1/2

respectively. Similar equations can be written for
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and

Y. . = Arj- t l A  " ___ (4 2 1 )j-1/2 Az. (4'21)
IAS)i,j-1/2

Substituting Eqs.(4.18) - (4.21) into Eq.(4.15) we obtain the 
relation

Air.
+ *  2r^ - - Fi,j <4'22>

where

0 ( 0 ^ )  ^i-1/2 , j^i-l, j + iSi+l/2, j^i+1, j + Pi, j-l/2^i, j-1

+ ^i,j+l/2^i,j+1 (4.23)

r(^i,j} (3i+l/2,j^i+l, j “ Ar!+^  ^i“l/2, j^i-1, j (4*24)
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^i,j - ^i-1/2,j + ^i+l/2,j + ^i,j-1/2 j+1/2

Ar
+ a- i+1/2

2ri ^i+1/2,j
Ari-l/2
Ari+l/2 ^i-1/2,j JArAz

1,3
(4.25)

and

F. . i,D SArAz
if j

(4.26)

The parameters appearing in Eq.(4.23) - (4.25) are expressed 
as follows:

Azi „ _ AZj
^i-l/2,j " ,A > ; ^i+1/2, ja fAz) /,J At. fMli-1/2 [ d J i-1/2,j i+1/ 2 1 DJ i+1/2,j

.2 A 2Ar. Ar.
(3, . , =     ; 13. ~i f j - 1 / 2 f Arl ' i f j + 1 /2 /•A r ’>

Azj-l/2 dJ i,j-1/2 AZj + l / 2 dJ i,j+1/2

(4.27)
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Further simplification of Eq.(4.22) gives the five point finite 
difference equation for any energy group g of the form

*i,j^i+1,j + bi,j^i-1,j + °i,j^i,j+1 + di,j^i,j-l + ei,j^i,j fi,j

(1 = 1,2,...,n)
(4.28)

(j ” 1/2,*.. ,ltl)

where the coefficients are defined as

ai,j (3i+i/2,j 1 + a- Ari+l/22r. (4.29a)

bi,j Pi-l/2,j 1 - a Ari+l/2 Ari-l/2
2ri Ari+l/2 j

(4.29b)

Ci,j ^i,j+1 (4.29c)

di,j pi,j-3 (4.29d)
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% j j^i+1/2,j + Pi-l/2,j + ^i,j+1/2 + ^i, j-1/2

A i .
+ a- i+1/2

2r
Ari-l/2

Ji+l/2/j Pi-l/2,j
i+1/2

£ArAz

(4.29e)

f. . = — F . . = -l,D i/D SArAz (4.29f)
i/D

A mesh system was imagined to cover the whole 2-D space of 
the core. In addition it was assumed that all the coefficients of 
Eq. (4.28) are constant in each mesh interval. The quantity f is 
proportional to the source term S and has different values for 
various energies under consideration. The source term S appearing 
in Eq.(4.29f) is determined from fission and scattering processes. 
It was also assumed that the birth of neutrons occurs at fast 
energies only and neutrons from lower energies do not scatter to 
higher energies. This is often referred to as "no upscattering". 
Furthermore in-group scattering is not allowed. The source term 
can thus be expressed in the form
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V  =

'O'

X  Y .  V  ( ^ f ) g ' ^ g '  g ' = 1  ( f a s t  g r o u p )

g'=l

Ig'=l
g'*g

^sg g g

(4.30)

g'< 2 (thermal group)

The resulting matrix for any point (r^,Zj) is written in matrix 
form as

= Y Brf + ) C *r,'rrg g * g / sg g 
g'=l
g'*g

(4.31)

where

G

Bg / *g' (^fjg'^g' ' Cgg' ^sg'g
g'=l
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As mentioned earlier in Chapter Two, the present analysis is 
limited to two-group theory which is the simplest form of multi­
group theory to avoid complexity and computational cost. The two- 
group approximation is often used to illustrate a variety of fuel 
management concepts [20] which is the main objective in the deve­
lopment of this code. The scattering for the source term for the 
fast group (g'=l) is neglected in line with our assumption of no 
upscattering. The source of neutrons for the thermal group (g'=2) 
is from downscattering of neutrons from fast to thermal energies. 
For the two-group model, Eq.(4.30) simplifies to

A (vEf 1^1 + X 2 (V^f)2^2 g=i

v (4.32)

^sg'g^l' g=2

The finite difference approximation to the matrix Eq.(4.31) is 
written according to two-group theory in the matrix form as

V l

A2*2

- k (F1*1 g=i

g=2

(4.33)
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where 4>1 and 4>2 are the fluxes for the fast and thermal neutrons 
respectively. and A2 are matrices representing the finite
difference operators and F1, F2 and H represent the quantities

*l[v£f)l» *2 ( ^ ) 2  and ŝl-»2 resPectivelY- The boundary conditions 
required to satisfy Eq.(4.28) are

0(ri,He) = 0

Yi,l/2 0

'(RgrZj) = 0

(4.34)

where it assumed that the centres of the first interpolation 
intervals Ar and Az are at r=0 and z=0 and Hg, Re represent the 
respective extrapolated height and radius of the core. The finite 
difference equation for the 2-D cylindrical symmetric region as 
written in Eq.(4.26) is solved for <p. . values to satisfy the
following boundary conditions:

For r-axis:

0, j n+1, j = 0 (j 1,2,..., n) (4.35)
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For z-axis:

i ,m+l 0 (i/1,2 m) (4.36)

The first of each of these above equations are symmetry conditions 
to the r- and z- axes respectively. The second set are boundary 
conditions resulting from the fact that the solution vanishes at 
the external boundary. Using the boundary conditions for Eq.(4.28) 
yields

an, J 0 c . 0 (4.37)

A discussion of the numerical solution of the matrix equation 
[Eq.(4.33)] is presented in the next section.

University of Ghana          http://ugspace.ug.edu.gh



4.2 METHOD OF SOLUTION

Two kinds of iterative (inner and outer) schemes are involved 
in the numerical solution to Eq.(4.33). The matrices and are 
pentadiagonal and direct inversions of them are not practicable.

The Chebyshev polynomial method is used to solve the equation 
and this is referred to as outer iteration. Each outer iteration 
requires a solution for the LHS of Eq.(4.33) whenever the right 
sides are given. This problem is reduced to the solution of the 
equation written in the form

(4.38)

where

E_ = B C , <p ,g g g

g'*g

(4.39)

The outer iteration scheme determines the value of the eigenvalue 
The iterative scheme to solve the inhomogeneous problem is 

called inner iteration. For this work, the method of successive
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approximation (SOR) was used. The solution gives the fluxes for 
fast and thermal groups of energy. The flow chart of the schemes 
for solving the 2-D, two-group neutron diffusion equation code 
KWABEN is illustrated in Fig 4.3.

A discussion of the numerical techniques for the inner itera­
tion scheme for the subroutine SOR [21] is first presented. This 
will be followed by a discussion on the outer iteration scheme 
based on the Chebyshev polynomial method.

4.2.1 Inner Iteration - Successive-Over-Relaxation(SOR) Method

The SOR method as mentioned in the preceding section was used 
to solve the five point finite difference equation [Eq.(4.28)] 
written without the energy group subscript g in the matrix form

K(j> =  E (4.40)

We can conveniently express the matrix A as

A = L + D + U (4.41)
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where D is the diagonal part of A, L and U are the lower and upper 
diagonals of matrix A. respectively.

The Gauss-Seidel method corresponds to the matrix decomposi­
tion

+ D j i.00 = (r-l) + E (4.42)

The SOR method, which provides a practical algorithm enabling an 
overcorrection to the value to be made at the rth stage of
the Gauss-Seidel iteration is now applied. By addition and subtrac- 
tion of 0' ' on the RHS of Eq.(4.42), the equation becomes

$(r) = -|l +d | 1 +D + u|0(r 1) - eJ (4.43)

Designating the term in square brackets on the RHS of Eq.(4.43) as
fr-1\ . * .' and calling it the residual vector, Eq.(4.43) reduces to

0 (r) = 0 (r-l) (L +D)-1 (4.44)
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The overcorrection to the value of <p is

0(r ) = ^(r_1) _ +Dj_1^(r 1) (4.45)

where u is called the acceleration parameter.
The problem of prime importance associated with the SOR method 

is the determination of a suitable value of to. Essentially, an 
optimum value of u is required which will minimize the spectral 
radius of the SOR iteration matrix and consequently maximize the 
rate of convergence of the method. The theory of its determination 
is placed on firm grounds by Varga [22]. The following obser­
vations were made:

(a) the method is convergent only for 0 < w < 2.
If 0 < u < 1, then there is under-relaxation.

(b) under certain mathematical restrictions generally
satisfied by matrices from finite differencing, 
only over-relaxation (0 < u> < 2) can give faster 
convergence than the Gauss-Seidel method.

(c) the optimum value of cj for maximum convergence rate
is given by the relationship [21]
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c =  £  (4.46)
1+ /  1 + p2

where p is the spectral radius. The boundary conditions as given 
in Eq.(4.34) is for a homogeneous Neumann boundary condition on an 
nxm grid (for which Ar = Az). The spectral radius can be expressed 
in the form

p = ------------- tLL-------- —  (4.47)

(£ f):i + ( ^ ) 2

Solving Eg. (4.28) for <p. .. yields the expressionl, ]

i/D e
1 1 J

fi,j " ai,j^i+1,j ” bi,j^i-l,j ci,j^i,j+l di,j^i,j-l
(4.48)

The new weighted value < p jnew . is
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The residual at any stage becomes

+ b. .<p.i , y  1 - 1 , 3 + c

(4.50)

The SOR algorithm presented in Eq.(4.44) or Eq.(4.49) is

This formulation can now be programmed and the norm of the
residual vector £. .is used as a criterion for terminating the

1 , J

iteration. The KWABEN code invoked the subroutine SOR and required 
of value 1.5. Convergence was achieved for a maximum of fifty- 

five iterations.
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4.2.2 Outer Iteration - Chebyshev Polynomial Method

This section describes the method used for accelerating itera­
tive convergence of eigenvalue problems. The Chebyshev polynomial 
method is used to obtain the best linear combination when there is 
no knowledge of higher eigenvalues. The description presented 
below attempts to explain the techniques applied in the subroutine 
CHEBY which forms part of the computational flow chart of Fig 4.3.

The outer iteration procedure to calculate X using Eq.(4.33) 
can be expressed in the matrix notation

A i 0 F 1
'

F2 ' ^  '

II

<—* 
I 

ft l H

- H A 2 . 0 A2

(4.52)

Defining

y = F101 + F 2<P2 (4.53)

0. and 4>0 may then be expressed respectively as
J. ^
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Substitution of Eqs.(4.54) and (4.55) into Eq.(4.53) gives

y = | Sy (4.56)

where

S = F . ^ 1 +  F2A~1HA^1 (4.57)

The iterative solution given by Eq.(4.52) may be written as

y(fc) =k(t)Sy(t+1) (4.58)

where
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The effective multiplication factor is calculated using the
expression

k (t) , < ,, S y < ^ >  > (4.60)
< w, J >

where w is the weighting factor and its selection is arbitrary.
The Chebyshev polynomial method is now applied to accelerate 

the iterative convergence [Eq.(4.58)] for the eventual determina­
tion of k .The basic technique applied in most convergent accele­
ration methods is to replace the vector 0 ^  with some linear 
combination of < p ^  and the previous iterates < p ^  
etc. If cp^  is replaced with a linear combination of only two 
previous iterates, then the scheme can be written as

(4.61)

and
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In particular, it is desired to choose the optimum set of 0s to 
maximize the rate of convergence of the iterative process. Combi­
ning Eqs.(4.61) and (4.62) gives

,(t+l) _ 1 + 0 (t) (t) -  0 ^ 1 (4.63)

where I is the unit matrix. Eq.(4.63) may be simply re-written as

^(t+i) _ (fc) (4.64)

The equation below can be deduced from Eq.(4.64) as

<t+1' - V t - X V (0 ) (4.65)

where is the initial guess for <p. The eigenvalues of the
matrix S is denoted by u < cr „ < . . . <  cr. with the assumptionJ m m-1 1
that the values of the matrix are real and positive. If the eigen­
vectors associated with a  are represented by jn and they form aq  <3
complete set for the vector space of U, then the initial flux 
guess can be represented in terms of these eigenvectors as
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m

q=l
(4.66)

Writing

R./3 =D q
1 + e (j)

IT ) s/3. -  ad).

and substituting Eq.(4.66) into Eq.(4.67) gives

, ( n )  =
n-1 m

r > £
3=0 q=l

c /3q q

or

<P
(n) .

m n-1 (n *,nq=l
1  +  9 (j)

(j) - e (j)

(4.67)

(4.68)

(4.69)
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An attempt to converge on the largest eigenvalue cr and its 
associated eigenvector (3̂  now has to be made. Eq.(4.69) can be 

rewritten in the form

n-1,

n i 1 + 0 (j)
(j) ci'3i

m

q=2
HI—

 
1C —

k (j)0 (i)
q i + 0 ^)

ll 1 k (j)g(i)OII

1 1 + 0 ^  \
(4.70)

= w_n

m
:^1 + £  C]czn(e'£rq)^c (4.71)

q=2

where

w_
n-1

n
i + 0  ̂  ̂

k (j)

u. II o .

<r. _ (4.72)

and
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n-1

■ n  
1=0

cr

o\ -

k ( j ) e (j) 

i + e » 7
k ( 3 ) e » )
i +

(4.73)

Indeed, Eg.(4.71) provides a criterion for the determination
of an optimum set of extrapolated parameters 0 ^ ,  The objective
now is to determine 0 ̂  so that the maximum rate of convergence
is achieved. This is accomplished by choosing 0 ^  so that the
expression in the bracket of Eq.(4.71) is minimized. A selection
of 0 ^  means the function wn is constant and consequently
absorbed into c, . This leaves the function z (0,cr ) to be 1 n q
minimized. By minimizing z (0,cr ), q = 2,3, . . ,m, in effect alson q
minimizes the contributions of all other eigenvectors 6 ,  
q = 2,3,...,m, with respect to the desired /3 .

The function zn (0,cr̂ ) is a polynomial of degree n in 
Hence we can write

zn (0'oq) = 1 (4,74)

Our task is to make z (0, a  as small as possible such thati n q 1
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max
q V 0'°q> max

a  ■ s cr < <x„ m ^
V e' V (4.75)

It is more convenient to transfer u to (i [22] as

2cr
cr_ - cr 2 m

cr. + cr 2 m
~ o'2 m

(4.76)

Eq. (4.76) transforms the interval [o'm /cr2] into [-1,1]. Defining

v n ( 9 , u )  =  zn (0,cr) (4.77)

a polynomial is sought which minimizes

max 
-is jus 1

vn (e,u) (4.78)

subject to vn (0,/Lt) = 1
According to the theorem of Flanders and Shortley [23], among 

all polynomials of degree m in u having the value +1 at m>1, there 
is only one value with the minimum absolute throughout the
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interval [-1,1], namely the polynomial

T m (M)

V “ > " " V )  ( 4 ' 7 9 )m'^l'

where Tm (/-0 is the mth order Chebyshev polynomial obtained by 
expanding in powers of /n given as

Tm (ji) = cos(mcos 1fi) (4.80)

In order to make

Tm (M)
V 0'*> = (4’81)

the zeros of each polynomial have to be equated since they both 
have similar values a t  u  =  Using Eq.(4.80) the zeros of Tm (M) 
are

COS(21+l)7T i „ 1 tA oo\iu2 = ---- ^ — , 1 = 0,...,n-l (4.82)
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Clearly the zeros of v ^ ( 6 , i i ) are those of zn (0,cr) which can be 
translated using Eq.(4.76) to give the expression

^ 1  cr- -  a m i  + e (i)
cr_ + cr 2 m
2 m

1 =  1,•..n-1 (4.83)

Equating Eq.(4.82) to Eq.(4.83) gives

0 (n)
1 + m

cr_ + cr 2 m
cos (21+l)n

2n
2k (1 )

(<x„ + cr ) ' 2
-  1 -

- cr2 m
cr„ + cr2 m

cos (21+1)71
2n

(4.84)

for 1 = 0,1,...,n-1. The sequence of 9 s  provides the best possible
result as discussed earlier. In order to apply the result of
Eq.(4.84), it is essential that the values of the eigenvalues cr
and cr be known in advance. However, these are not known and more m
approximations are required. The first and most important assump­
tion is that the smallest eigenvalue crm which was previously 
assumed to be positive, may be ignored in comparison to cr .
Therefore Eg.(4.84) simplifies to the form
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s!1! -( n )
1 +  C O S

(21 + 1) 7T

2n (4.85)
2k (1) - 1 -cos (21+1)71

2n

An estimate for either cr2 or the ratio k (1 ) /cr2 will have to
be made. In particular, since at iteration I, k ^  is the best 
estimate for o^, the largest eigenvalue, this means that the ratio 

(Tl ! (T2 '*'s actuallY being sought. Defining

cr =  max 
i=l

cr. l (4.86)

can now be computed from

_ cr c2 (n)
(n) 2 - crĉ  (n)

(4.47)

where

? 7 +1c2 (n) = 1+ cos (4.88)
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The parameter <r in Eq.(4.86) is called the dominance ratio since 
it provides an idea of the separation between the largest eigen­
value and the second largest. Details of the theory for obtaining 
initial and updated estimates for cr are available in ref [23].

The quantity 1/T (ĵ ) in Eq.(4.8l) is the maximum of |hn (jLt)| 
in the interval [-1,1] and it is a measure of the reduction of the 
coefficients of all eigenvectors with eigenvalues in the range cr. 
to cr2, relative to as represented in Eq.(4.71). Using
Eq.(4.76), the equation below is obtained.

2 cr. cr + cr
li- =  u  (cr ) = -----------------5!- (4.89)1 1  — cr cr — o' v '2 m 2 m

m

By following the same assumption leading to Eq.(4.85) that crm may 
be neglected in comparison to cr, Eq.(4.89) is simplified to

1H  = ■ _ X - 1 (4.90)
2

Consider now the quantity

c(l)

T - - 1 
n a

(4.91)
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where

k(I) - k(I)
e(D k(l)

to determine what degree of the Chebyshev polynomial will most 
likely reduce the eigenvalue or c(l) to an acceptable value. This 
means n is required such that

where is the input convergence criterion.
In practice, a cycle of n iterations using a sequence of Ss 

given by Eq.(4.87) will have to be performed for 1  =  0,1,...,n-1. 
In case convergence has not been achieved, a new set of n is found 
based on the inequality in Eq.(4.92) and another cycle of n 
iterations is followed. This procedure is repeated until the 
iteration converges to the criterion

c (11
, 2 < £1 (4.92)

n = 1,2
i = 1,2

t • • • t N
I (4.93)
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for two successive iterations. Fig 4.3 illustrates the computa­
tional flow chart for the subprogram CHEBY.

4.3 NORMALIZATION OF SOURCES AND FLUXES

The subroutine ACTS is written to form part of the KWABEN 
code to compute and print the average flux in each homogeneous 
zone of the reactor.The average of the region 1 and the group g is 
defined by

(4.94)
1

where dV^ is the volume elements expressed in the form

1 a  = 0 (slab)

2nr 1 a  =  1 (cylinder) (4.95)

47ir1 a  =  2 (sphere)
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    s i / ______________ ___
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based on neutron mean free path
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COEFF
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Fig 4.3: Computational Flow Chart for KWABEN.
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Designating

G
y(r) = £  W r) V r)

g=l

the normalized source is then defined by the expression

s(r) =
Y(r)

y (r)dV,

(4.96)

The integral term for any zone 1 can now be approximated. The 
denominator of Eq.(4.96) is

-2,2
y(r)dv“

1,1

rr2 , 1
= c r“y(r)dr (4.97)

rl ,1

-  c 2r(r“yi + r“y2) + 3T“ (ri?i - r“'1',2) + (ri"2',i - rr 2y2)
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where

Y-j - y(rk) and r2,1 ■1,1 + h (4.98)

The evaluation of Eq.(4.98) provides the normalized sources 
for individual rings of the reactor. The neutron flux shall now be 
normalized to a given level. The total power produced within the 
core of the reactor is defined as

r G  
5 L  V r ,W (r)dv?

g=1
(4.99)

where £ = 3.2x10 11 Watts-s per fission and VR is the volume of 
the reactor. The integrals of the flux in each ring of the reactor 
can be related to the average flux of the region. Thus

G L

v <t> Z  * < 3 ' ! Av* (4.100)
g=l 1=1

where AV^, the volume element corresponding to the geometry of the 
reactor is defined as
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AV“ -

h + i  - ri)HL 

" H + i  - ri)»

;"(ri+i - rj)

for a = 0 (slab)

for a  =  1 (cylinder)

for a  = 2 (sphere)

H and L are the transverse dimensions of the slab. H is the height
of the cylinder. Assuming the solution of the matrix Eq.(4.38)
provides values for the fluxes 0 . , a constant \p must be obtainedg, K
such that

(4.101)

yields the desired power level

(4.102)

5 I  I 'g=l 1=1
’g,lAVIEfg,l

The subroutine ACTS which computes the normalized sources and 
fluxes for all regions is shown in Fig 4.3.
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4.4 INPUT DESCRIPTION

Besides the geometry and material composition, the following 
two-group data are important to start the reactor calculations:

(i) the macroscopic group constants, bucklings, fractions 
and number of neutrons produced per fission for every 
homogeneous zone of the reactor. These cross-sections
were obtained at a selected reference level (middle of
the core). These are contained in the BMC.LIB file.

(ii) corrections due to axial effects of the temperatures in
the fuel, cladding and coolant, and fluid density varia­
tions. These terms are listed in AXIS.INP.

The description of the files are as follows:

(a) File BMC.LIB

The specification of the geometry and conditions required for 
the solution of the two-group, 2-D neutron diffusion equation are 
given in the first part of the input data. In the second part are 
written the two-group macroscopic cross-section data for all 
thirteen zones along the radius of the core obtained at the 
reference position (middle of the core) for nominal power at 27kW.
The third part consists of the coefficients of the polynomial
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equation depicting the changes of the macroscopic cross-sections 
due to fuel burnup. The WIMSPC code, a PC version of the lattice 
code WIMS was used to generate two-group macroscopic constants

(Dl "  °2' Eal' W  V 2 ^ f 2  and Esl->2) f°r the prototype
MNSR. Details of the method of preparation of input data were 
presented in Chapter Three.

All input data were written in the prescribed order and format 
as shown below:

Card No. Format Parameter Mathematical Description
symbol

1 3i3 ig, ng, nrl a ,  G, L a  = geometry parameter
G = total energy group 
L = total number of 

radial zones

2f10.5 power,hc p, H p = operating reactor
power

H = height of core(cm)

fll.5 tau t burnup value (MWd/tU)

4 nrl(el0.3) de2r Ri+i “ Ri interval between rings
(cm)

5 "  dclO(kg,2) D . diffusion constant for
g' -lzone 2 (cm )
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Symbol
Card No. Format Parameter Mathematical Description

6 "  sigalO(kg,!) 7 , macroscopic absorptionag, i
cross-section for zone 
1 and group g (cm-1)

7 '' sigflO(khl) v g ^ f g  1 macroscopic fission
cross-section for zone 
1 and group (cm-1)

5 "  sigsIO(kg,l) £Sgg' j macroscopic scattering
cross-section for zone 
1 and group g (cm-1)

spl(kg,l) £pg  ̂ macroscopic poison
cross-section for zone 
zone 1 and group g

10 ' ' bul(kg,l) Bg  ̂ transverse buckling for
zone I and group g (cm2)

11 "  chil(kg,I) %  , neutron fission fraction
y  t 1

for zone 1 aand group g

12 "  snul(kg,I) v  ̂ number of neutrons per
fission
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This is followed by the information on burnup. Data for the 
polynomial equation as shown below

bXg(T) - I (4.103)
n=l

are read from BMC.LIB through a single DO loop:

do * kg l,ng
read(*,*) dbl(kg), absl(kg), sfbl(kg), scbl(kg) 
read(*,*) db2(kg), abs2(kg), sfb2(kg), scb2(kg) 

** format(4el0.3)
* continue

where dbl(kg), absl(kg), sfbl(kg) scbl(kg) are coefficients b1 for 
the energy group g for diffusion constant, macroscopic absorption 
cross-section, fission and scattering respectively and b2 are 
values for the various cross-sections in the same order.
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(b) File AXIS,INP

This is the library file containing coefficients obtained for 
the polynomial equation representing axial effects caused by 
variations in coolant density, fuel temperatures along the axis of 
the flow channel from the reference position. The relevant equa­
tion derived as shown in Chapter Three is of the form

(z) - I a?g z11 I, n aXg + 
1 1 0  +

aXg z aI,lZ + axg z 2  1 , 2 (4.104)
n=0

In this case, the coefficients aXgQ, and are rea^ for
every zone 1 and energy group g following the order: diffusion 
constant, macroscopic absorption cross-section, fission and
scattering. The data in the file are written on the next page 
in the following order:
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Card No. Format Parameter Mathematical Description
Symbol

1 nrl(el0.3) adO(kg,I)
2 " adl(kg,l)
3 " ad2(kg,i)

ixg1,0
ixg1,1
xg
1,2

abO(kg,I) 
abl(kg,I) 
ab2(kg,1)

xg
1,0
xg
1,1
xg
1,2

af0(kg,I) 
afl(kg,I) 
af2(kg,l)

xg
1,0
xg
1,1xg
1,2

10
11
12

asO(kg,1) 
asl(kg,I) 
as2(kg,1)

xg
1,0
xg
1,1
xg
1,2

coefficients for 
diffusion constant 
for zone 1 and 
group g

coefficients for 
macroscopic absorp­
tion cross-section 
for zone 1 and 
group g

coefficients for 
macroscopic fission 
cross-section for 
zone 1 and group g

coefficients for 
macroscopic scatte­
ring cross-section 
zone 1 and group g
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4.5 OUTPUT DESCRIPTION

The output of the program KWABEN is contained in the KWABEN-OUT 
file written on UNIT 3. The code first prints the name of the code 
"KWABEN" and the establishment of the authors and a summary of the 
input data including the macroscopic cross-sections at the refe­
rence position along the radius of the core. The next part of the 
output is for each stage of the iteration: the iteration number 
and the eigenvalue X .

After the convergence of the outer iterations, the converged 
value of ke££ is printed. The normalized fluxes of each mesh point 
for the two-energy groups (fast and thermal) at the specified 
power level are also printed. Finally, the normalized flux values 
for each homogeneous zone and each group are printed.

4.6 RESULTS AND DISCUSSION

In general, the development of computer codes for reactor 
analysis is an interesting, albeit difficult and time costly 
exercise. Computer codes such as KWABEN which are intended for the 
purposes of multigroup, two-dimensional reactor physics calcula­
tions and analysis demand a lot of time and effort. Considering 
this fact and coupled with the time constraint set for the presen­
tation of this thesis, the KWABEN diffusion code could not be
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fully developed to its final stage at the time of submitting this 
thesis. However, the code in its present form could be used in the 
prediction of fast and thermal fluxes along the radius of the 
reactor core. The computational flow chart for the KWABEN code is 
shown in Fig 4.3. Illustrated in Fig 4.4 is the computational 
model used for the present analysis. After its completion, it is 
expected that it will solve the two-group neutron fluxes in both 
radial and axial directions of the core. The known fluxes will 
then be used to generate the eigenvalues leading to the condition 
of criticality for the core.

The code could also be used to study the effect of nuclides
on the multiplication factor and for the determination of the
worth of the top Be shim plates added to compensate for fuel
depletion. Preliminary calculations however, were carried out with
the code and the computed zone average fluxes at 2 0 kW in the
radial directions are listed below in Tables 4.1 and 4.2 for both
fast and thermal groups. The plot of the fluxes can be seen in
Fig 4.5. The average thermal flux in the region of the annular
reflector where the inner irradiation sites are located was

11 2determined to be 7.777000E+10 n/cm -s which compares favourably
11 2with the value of 7.688000E+10 n/cm -s reported in ref [24].

As stated earlier, the development of the code is still in 
progress and the final form will be helpful in verifying 
experimental measurements such as relative flux distribution in 
the axial direction, effective multiplication factor and the worth 
of the Be shims in the Al tray.
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Energy 
Group No

Zone
No

Radius
(cm)

Neutron Flux 
(n/cm -s)

1 1 5.893000E-01 2.196517E+12
1 2 1.585300E+00 8.208591E+11
1 3 2.581300E+00 3.126535E+11
1 4 3.577300E+00 1.411125E+11
1 5 4.573300E+00 7.312678E+10
1 6 5.569300E+00 4.586392E+10
1 7 6.565300E+00 2.925973E+10
1 8 7.561299E+00 1.585588E+10
1 9 8.557300E+00 8.542776E+09
1 10 9.553300E+00 7.018482E+09
1 11 10.3493 00E+00 5.501925E+09
1 12 2 0.5493 00E+00 4.242780E+08
1 13 34.7993 00E+00 6.134543E+00

Table 4.1: Computed zone average fluxes at 20kW for radial 
direction (fast group)
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Energy Zone Radius Neutron Flux
Group No No (cm) (n/cm2-s)

2 1 5.893000E-01 2.086245E+11
2 2 1.585300E+00 9.858476E+10
2 3 2.581300E+00 5.163733E+10
2 4 3.577300E+00 3.316888E+10
2 5 4.573300E+00 2.462278E+10
2 6 5.569300E+00 2.005640E+10
2 7 6.565300E+00 1.740958E+10
2 8 7.561299E+00 1.650480E+10
2 9 8.557300E+00 1.542763E+10
2 10 9.553300E+00 1.435605E+10
2 11 10.3493 00E+00 1.315503E+10
2 12 2 0.549300E+00 7.777000E+11
2 13 34.7993 00E+00 7.661966E+10

Table 4.2: Computed zone average fluxes at 20kW for radial 
direction (thermal group)
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Fig 4.5: Neutron Flux Variation Along Radial Direction
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

The literature on the fundamental principles of nuclear 
reactor theory, numerical methods used for solving the diffusion 
equation as related to nuclear reactor systems was reviewed in 
Chapter Two. Geometrical features of the Miniature Neutron Source 
Reactor were also presented in this chapter. The results of this 
study were given in Chapters Three and Four. It will suffice to 
present a short summary here of the main findings.

For neutronic calculations for the reactor, a two-dimensional 
two-group data base was created. An appropriate computational 
model was developed taking into account all known parameters such 
as fuel burnup, U-238 temperature, Xe effect, etc, which influence 
group constants. The model was used to determine group constants 
that are in good agreement with those calculated using the WIMS 
lattice code. A diffusion code KWABEN, based on the finite 
difference scheme is being developed to solve the two-dimensional 
neutron diffusion equation for fast and thermal neutron fluxes for 
any point in the reactor system. The numerical methods and tech­
niques applied in KWABEN are discussed.

The KWABEN diffusion code in its present form is capable of 
predicting fast and thermal neutron fluxes along the radial 
direction of the core. However, due to the relatively short time
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available to this research work and coupled with the fact that the 
development of complete computer codes for nuclear reactor 
analysis are often tedious and time consuming, the code could not 
be fully completed within the alloted time.

It is recommended that further work be done towards the 
completion of the KWABEN code. It would be of great interest to 
test the final form of the code for the following:

(1) Solution of the two-group neutron fluxes in both 
radial and axial directions for absolute and relative 
fluxes within any region of the reactor.

(2) Determination of eigenvalues and effective multiplication 
factor for the critical system.

(3) Calculation of the worth of the thickness of the top Be 
shim reflector in the Al tray used for compensation of the 
loss of U-235 during fuel depletion.
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Appendix A: Libraries of Group Constants

1 .  0 0 2 E + 0 0  
1.  6 4 3 E + 0 0  
9 .  5 7 1 E - 0 2
1 .  8 0 1 E - 0 1  

4 . 7 9 7 E - 0 3  
2 . 1 4 1 E - 0 2  
2 . 9 0 6 E - 0 2  
1 . 7 7 4 E - 0 1  
3 . 2 9 8 E - 0 2  
3 . 7 0 0 E - 0 2  
2 . 0 8 9 E - 0 2  
3 . 0 5 4 E - 0 1  
5 . 4 4 9 E - 0 4  
2 . 3 8 8 E - 0 2  
0 , 0 0 0 £ + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
1 . 1 3 9 E - 0 2  
1 . 1 3 9 E - 0 2  
1 . 1 1 7  E - 0 2  
1 . 1 1 7 E - 0 2  
1 . 0 0 0 E  + 0 0  
1 . 0 0 0 E  + 0 0  

0 . 0 0 0 E + 0 0  
0 .  0 0 0 E  + 0 0
2 .  4 5 0 E  + 0 0  
2.  4 5 0 E  + 0 0  
2 .  4 0 0 E  + 0 0  
2 .  4 0 0 E + 0 0
2 .  0 3 2 E - 0 3  

- 2 . 8 0 0 E - 1 2
1 . 0 0 8 E - 0 7
3 .  6 1 S E - 1 2

4 6 9 E + 0 0  
6 3 9 E + 0 0  
5 3 3 E - 0 1  
9 6 3 E - 0 1  
0 2 9 E - 0 2  
2 4 6 E - 0 2  
3 0 5 E - 0 1  
7 5 2 E - 0 1  
2 9 8 E - 0 2  
3 6 0 E - 0 2  
0 8 9 E - 0 1  
0 0 0 E - 0 1  

5 . 3 5 8 E - 0 3  
2 . 7 2 0 E - 0 2  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  

0 0 0 E + 0 0  
0 0 0 E + 0 0  
0 0 0 E + 0 0  
0 0 0 E + 0 0  
1 3 9 E - 0 2  
1 3 9 E - 0 2  
1 1 7 E - 0 2  
1 1 7 E - 0 2  

0 0 0 E + 0 0  
0 0 0 E + 0 0  
0 0 0 E + 0 0  
0  0 0  E + 0 0  
4 5 0 E + 0 0  
4 5 0 E + 0 0  
4 0 0 E + 0 0  
4 0 0 E + 0 0  
0 8 9 E - 0 8 -  
4 0 0 E - 1 1  
3 3 6 E - 0 7 -  
5 6 0 E - 1 1

1 . 
1. 
1 . 
1. 
2 . 

2 . 
1. 
1. 

3 .  
3 .  
2 . 
3 .

1 . 5 7 2 E + 0 0  
1 . 5 6 2 E + 0 0  
1 . 6 5 5 E - 0 1  
1 . 8 5 5 E - 0 1  

2 . 0 8 3 E - 0 2  
2 . 6 6 6 E - 0 2  
1 . 5 1 8 E - 0 1  
1 . 8 6 8 E - 0 1  

3 . 5 0 3 E - 0 2  
4 . 6 4 4 E - 0 2  
2 . 5 2 7 E - 0 1  
3 . 2 4 9 E - 0 1 
8 . 5 7 9 E - 0 3  
3 . 5 9 2 E - 0 2  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  

0 . 0 0 0 E + 0 0  
1 . 1 3 9 E - 0 2  
1 . 1 3 9 E - 0 2  
1 . 1 1 7 E - 0 2
1 . 1 1 7 E - 0 2

-1

1 . 0 0 0 E + 0 0  
1 . 0 0 0 E  + 0 0  

0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  

4 5 0 E + 0 0  
4 5 0 E + 0 0  
4 0 0 E + 0 0  
4 0 0 E + 0 0  
4 4 6 E - 0 6 -  
1 9 3 E - 1 1 

1 . 2 2 7 E - 0 6  
5 . 0 0 4 E - 1 2

1 . 6 3 5 E + 0 0  1 
1 . 3 3 3 E + 0 0  6  
1 . 7 5 0 E - 0 1 1 
1 . 5 7 5 E - 0 1 4  

2 . 1 1 5 E - 0 2  2  
2 .  U 4 E - 0 2 - 8  
1 . 6 8 5 E - 0 1  1 
1 .  1 5 8 E - 0 1  2  

3 , 6 2 6 E - 0 2  3  
3 . 3  1 0 E - 0 2  0  
2 . 8 7 1 E - 0 1 3  
1 . 7 8 0 E - 0 1 0  
1 . 1 5 6 E - 0 2  1 
5 . 7 7 7 E - 0 2  1 
0 . 0 0 0 E + 0 0  0  
0 . 0 0 0 E + 0 0  0  
0 . 0 0 0 E + 0 0  0  
0 . 0 0 0 E + 0 0  0  
0 . 0 0 0 E + 0 0  0  
0 . 0 0 0 E + 0 0  0  

1 . 1 3 9 E - 0 2  1 
1 . 1 3 9 E - 0 2  1 
1 . 1 1 7 E - 0 2  1 
1 . 1 1 7 E - 0 2  1 
1 . 0 0 0 E + 0 0  1 
1 . 0 0 0 E + 0 0  1 

0 . 0 0 0 E + 0 0  0  
0 . 0 0 0 E + 0 0  0  
2 . 4 5 0 E + 0 0  2  
2 . 4 5 0 E + 0 0  2  
2 . 4 0 0 E + 0 0  2  
2 , 4 0 0 E + 0 0  2  
3 . 3 4 1 E - 0 7  
3 . 5 4 0 E - 1 1  
0 . 0 0 0 E + 0 ®
0 . 0 0 0 E + 0 0

6 6 7 E + 0 0  
. 2 2 0 E - 0 1 
. 8 0 4 E - 0 1 
. 0 9 3 E - 0 1  
. 1 1 4 E - 0 2  
. 2 0 4 E - 0 5  
, 7 7 9 E - 0 1  
. 0 1 7 E - 0 3  
, 6 5 7 E - 0 2  
. 0 0 0 E - 0 0  0  
. 0 6 5 E - 0 2  3  
. 0 0 0 E + 0 0  0  
. 4 2 7 E - 0 2  1 
. 4 5 0 E - 0 2  1 
, 0 0 0 E + 0 0  0  
. 0 0 0 E + 0 0  0  
. 0 0 0 E + 0 0  0  
. 0 0 0 E + 0 0  0  
, 0 0 0 E + 0 0  0  
. 0 0 0  E + 0 0  0
. 1 3 9 E - 0 2  1 
. 12-9 E - 0 2  1 
, 1 1 7 E - 0 2  1 
. 1 1 7 E - 0 2  1 
. 0 0 0  E + 0 0  1 
. 0 0 0 E  + 0 0  1 
. 0 0 0 E + 0 0  0 
. 0 0 0 E + 0 0  0  
. 4 5 0 E + 0 0  2  
. 4  5  0  E + 0  0  2  
. 4 0 0 E + 0 0  2  
. 4 0 0 E + 0 0  2

6 7 4 E + 0 0  
0 7 5 E - 0 1  
8 1  I E - 0 1  
5 6 9 E - 0 2  
0 7 6 E - 0 2  
4 9 5 E - 0 2  
7 9 0 E - 0 1 
9 0 7 E - 0 2  
5 9 5 E - 0 2  3  
0 0 0 E - 0 0  
0 8 7 E - 0 1  
0 0 0 E + 0 0  
6 7 2 E - 0 2  
5 9 8 E - 0 1  
0 0 0 E + 0 0  
0 0 0 E + 0 0  
0 0 0 E + 0 0  
0 0 0 E + 0 0
0 0 0  E + 0 0  
0 0 0 E + 0 0  
1 3 9 E - 0 2  
1 3  9  E -  0  2

1 1 7 E - 0 2  
1 1 7 E - 0 2  
000E+00 
0 0 0  E + 0 0  
0 0 0  E +00 
0 0 0 E + 0 0  
4 5  0  E + 0  0  
4 5 0 E + 0 0  
4 0 0 E + 0 0  
4 0 0 E + 0 0

1 . 6 8 8 E + 0 0  
0 . 0 0 0 E + 0 0  
1 . 8 8 8 E - 0 1  
0 . 0 0 0 E + 0 0  
2 . 2 1 9 E - 0 2  
0 . 0 0 0 E + 0 0  
1 . 9 2 5 E - 0 1 
0 . 0 0 0 E + 0 0  

8 8 3 E - 0 2  
0 . 0 0 0 E - 0 0  
3 . 3 6 5 E - 0 1  
0 . 0 0 0 E + 0 0  
1 . 9 4 2 E - 0 2  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0

d ;

Si

Si

S:

S i

S c

Sc

1 3 9 E - 0 2  
1 3 9 E - 0 2  
1 1 7 E - 0 2  
1 1 7 E - 0 2  

1 . 0 0 0 E + 0 0  

0 . 0 0 0 E + 0 0  
0  0 0 0 E + 0 0  
0 . 0 0 0 E + 0 0  
2 . 4 5 0 E + 0 0  
0 . 0 0 0 E + 0 0  
2 . 4 0 0 E + 0 0  
0 . 0 0 & E + 0 0

B1

The BMC.LIB File
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P f e - t O D - i J . 2 1 4 e - 0 S ~ 2 .  0 0 0 e - 0 5 - l . 4 6 4 e - 0 5 - l . 4 6 4 e - 0 5 - 9 .  9 9 9 e - 0 6 - l . 1 4 3 e - 0 5  
; ; g i 7 e - 0 6 - 7 .  8 5 6 e - 0 6 - 4 .  2 8 5 e - 0 6  3 . 5 7 1 e - 0 6  9  . 7 8 6 e - 0 6 - 5  . 8 2  l e - 0 6  0 . 0 0 0 e - 0 0  a d 0 D  
g ® 0 e - 0 1 - l . 7 5 0 e - 0 6 - l . 7 5 0 e - 0 6 - l . 6 0 7 e - 0 6 - l . 7 5 0 e - 0 6 - l , 5 7 1 e - 0 6 - l .  5 3 6 e - 0 6  
, g ? l e - 0 6 - l . 5 3 6 e - 0 6 - l . 4 2 9 e - 0 6 - l . 7 1 4 e - 0 6 - 7 . 1 4 3 e - 0 8 - l . 8 8 2 e - 0 6  0 . 0 0 0 e - 0 0  a d 0 D  
, 5 S 6 e - 0 2 - 3 .  4 6 6 e - 0 3 - 8 , 1 7 7 e - 0 3 - l . 0 0 7 e - 0 2 - l , 0 4 2 e - 0 2 - l . 0 7 0 e - 0 2 - l . 1 4 0 e - 0 2  

, 1 0 6 e - 0 2 - l . 1 9 4 e - 0 2 - l . 1 6 5 e - 0 2 - 6 . 0 8 9 e - 0 3 - 4 . 4 5 1 e - 0 3  5 . 3 8 9 e - 0 3  0 . 0 0 0 e - 0 0  a d l D  
, 5 2 2 e - 0 3  2 . 3 3 3 e - 0 3  2 . 3 7 3 e - 0 3  2 . 4 1 1 e - 0 3  2 . 4 1 6 e - 0 3  2 , 4 4 5 e - 0 3  2 . 4 8 1 e - 0 3
, 4 4 5 e - 0 3  2 . 5 2 1 e - 0 3  2 . 4 6 9 e - 0 3  2 . 3 3 5 e - 0 3  3 . 4 7 1 e - 0 4  2 . 0 4 3 e - 0 3  0 . 0 0 0 e - 0 0  a d l D
,439e - 0 2 - 4 , 0 0 0 e - 0 3  5 . 7 1 4 e - 0 3  9 , 4 2 9 e - 0 3  8 . 2 8 6 e - 0 3  1 .  0 2 9 e - 0 2  1 . 0 2 9 e - 0 2
, 5 f 2 e - 0 3  8  . 5 7 2 e - 0 3  8 . 0 0 0 e - 0 3 - 2 . 8 5 7 e - 0 3  6 , 0 0 0 e - 0 3 - l . 7 5 l e - 0 2  0 . 0 0 0 e + 0 0  a d 2 D
, 8 9 6 e - 0 3 - 5 .  8 0 0 e - 0 3 - 5 . 8 0 0 G - 0 3 - 5 . 8 0 0 e - 0 3 - 5 , 6 8 6 e - 0 3 - 5 . 9 4 3 e - 0 3 - 5 .  9 7 1 e - 0 3  
, 9 4 3 e - 0 3 - 5 .  9 7 1 e - 0 3 - 5 . 8 2 9 e - 0 3 - 5 . 9 4 3 e - 0 3 - 4 . 0 0 0 e - 0 4 - 5 . 8 3 1 e - 0 3  0 . 0 0 0 e + 0 0  a d 2 D  
,507e - 0 7  1 .  1 0 7 e - 0 6  1 . 9 4 6 e - 0 6  9 . 7 8 6 e - 0 7  8 . 8 2 1 e - 0 7  7 . 5 7 1 e - 0 7  8 . 3 9 3 e - 0 7
, , 5 7 1 e - 0 7  4  . 0 3 6 e - 0 7  1 .  5 0 0 e - 0 7 - 3  . 2 5 0 e - 0 7 - 7  . 8 3 9 e - 0 8  1 . 8 5 7 e - 0 7  0 . 0 0 0 e - 0 0  a b 0 S
, 2 1 4 e - 0 7  3 . 2 1 4 e - 0 7  2 . 5 0 0 e - 0 7  3 . 5 7 1 e - 0 7  5 . 0 0 0 e - 0 7  2 . 1 4 3 e - 0 7  2 . 8 5 7 e - 0 7
, 7 8 6 e - 0 7  3 . 5 3 6 e - 0 6  1 . 4 2 9 e - 0 7  2 . 1 4 3 e - 0 7 - 1 . 4 2 9 e - 0 9  5 . 1 7 9 e - 0 7  0 . 0 0 0 e - 0 7  a b 0 S
, 8 1 3 e - 0 4 - 9 .  4 2 0 e - 0 4 - 7 . 8 2 6 e - 0 4 - 5 . 3 0 2 e - 0 4 - 4 . 4 4 0 e - 0 4 - 3 . 9 2 2 e - 0 4 - 3 .  8 0 2 e - 0 4  
, 9 1 4 e - 0 4 - 4 .  4 2 1 e - 0 4 - 6 . 7 5 1 e - 0 4 - 8 .  1 3 6 e - 0 4  2 . 5 3 7 e - 0 5 - 1 . 6 5 8 e - 0 3  0 . 0 0 0 e - 0 0  a b l S  
, 3 8 3 e - 0 3 - 2 . 2 8 7 e - 0 3 - 2 . 4 9 6 e - 0 3 - 2 . 6 3 6 e - 0 3 - 2 , 6 8 9 e - 0 3 - 2 . 7 0 6 e - 0 3 - 2 .  8 3 5 e - 0 3  
, 6 9 5 e - 0 3 - 2 .  6 7 2 e - 0 3 - 2 . 8 1 7 e - 0 3 - 2 .  1 1 5 e - 0 3 - 2 . 0 5 0 e - 0 5 - l . 3 9 6 e - 0 3  0 . 0 0 0 e + 0 0  a b l S  
, 6 7 4 e - 0 4  1 .  2 8 6 e - 0 3  2 . 0 7 7 e - 0 3  7 . 1 4 3 e - 0 4  6 . 2 0 0 e - 0 4  5 . 7 1 4 e - 0 4  5 . 8 5 7 e - 0 4
, 0 5 7 e - 0 4  6 . 9 4 3 e - 0 4  1 . 0 1 1 e - 0 3  1 .  2 0 9 e - 0 3 - 3 . 2 8 3 e - 0 5  2 . 5 1 4 e - 0 3  0 . 0 0 0 e + 0 0  a b 2 S ,
, 6 4 6 e - 0 3  3 . 5 1 4 e - 0 3  3 . 9 1 4 e - 0 3  4 . 0 5 7 e - 0 3  3 . 9 4 3 e - 0 3  4 . 0 5 7 e - 0 3  4 . 2 2 9 e - 0 3
, 0 8 6 e - 0 3  3 .  8 0 0 e - 0 3  4 .  2 2 9 e - 0 3  3 . 3 7 1 e - 0 3  2 .  4 0 0 e - 0 5  2 . 6 6 0 e - 0 3  0 . 0 0 0 E + 0 0  a b 2 S ,
,®00e+00 1 .  6 7 9 e - 0 6  1 . 6 7 9 e - 0 6  1 . 5 7 9 e - 0 6  1 . 4 6 4 e - 0 6  1 . 2 8 2 e - 0 6  1 . 1 7 5 e - 0 6
, 9 6 4 e - 0 7 ' 6 . 0 7  l e - 0 7  1 . 7 8 6 e - 0 7 - 6 . 0 3 6 e - 0 7  0 . 0 0 0 e + 0 0  0 . 0 0 0 e + 0 0  0 . 0 0 0 e  + 0 0  a f 0 S

,000e + 0 0 - 3 .  2 1 4 e - 0 7 - 1 , 4 8 9 e - 1 2 - l . 0 7 1 e - 0 7  2 . 5 7 2 e - 2 8 - 1 . 7 8 6 e - 0 7 - l . 4 3 0 S - 0 7  
' . 9 2 3 e - 0 5 - l  . 4 2 9 e - 0 7 - l . 0 7 1 e - 0 7 - l  . 0 7 1 e - 0 7  0 . 0 0 0 e + 0 0  0 . 0 0 0 e + 0 0  0 . 0 0 0 e + 0 0  a f ® S  
, 0 0 0 e + 0 0 - 1 . 3 2 0 e - 0 3 - 9 . 7 8 1 e - 0 3 - 7 , 6 2 8 e - 0 4 - 6 . 3 3 2 e - 0 4 - 5 . 4 9 i e - 0 4 - 5 . 2 8 4 e - 0 4  
i . 3 9 9 e - 0 4 - 6 .  1 4 5 e - 0 4 - l . 0 0 6 e - 0 3 - l . 0 2 7 e - 0 3  0 . 0 0 0 e + 0 0  0 . 0 0 0 e i - 0 0  0 . 0 0 0 e + 0 0  a f  I S  
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5 . 2 8 1 e - 0 3  5 . 9 7 7 e - 0 3  7 . 9 1 9 e - 0 3  1 .  5 0 6 e - 0 2 - 1 ,  8 2 8 e - 0 3  3.492e-02 0 . 0 0 0 e + 0 0  a s ' , :

S.0006 +00 0 . 0 0 0 e +00  0 . 0 0 0 6 + 0 0  0 . 0 ®0 e +-?3 0 . 0 0 0 6+ 0 0  0 . 000 6+ 00  0 . 000 6+ 0 0  ^
S . 0 0 0 e + 0 0  0 . 0 0 0 e +00  0 . 0 0 0 e +00  0 . 0 0 0 e +00 0 . 0 0 0 e +00 0 . 0 0 0 e +00 0 . 0 0 0 e+W0 a S t t

Tbe iXIS.INP File
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