ECONOMIC ANALYSIS OF SOIL CONSERVATION PRACTICES IN NORTHERN GHANA

A THESIS SUBMITTED TO THE DEPARTMENT OF AGRICULTURAL ECONOMICS, UNIVERSITY OF GHANA, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF PHILOSOPHY DEGREE IN AGRICULTURAL ECONOMICS.

September 2000.
DECLARATION

I do hereby declare that, except for references cited which have been duly acknowledged, this research work presented in this thesis was carried out by me as a student at the Department of Agricultural Economics, University of Ghana, Legon. This work has never been presented anywhere either in part or whole for the award of any degree.

James Fearon  
(Student)

This work has been submitted for examination with my approval as supervisor

Dr. Emmanuel Kweku Andah  
(Major Supervisor)

Dr. Daniel Bruce Sarpong  
(Co-Supervisor)
ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to Dr. E.K. Andah, under whose supervision this work was conducted. His advice, thorough guidance and valuable criticisms are most appreciated. I very much appreciate the excellent and helpful comments given by Dr. D.B. Sarpong, the co-supervisor, throughout the conduct of this research.

I am very grateful to Professor J.S. Dittoh (U.D.S. Tamale) who gave a lot of guidance and encouragement. Dr. Ramatu Alhassn (Head, Department of Agricultural Economics) deserves special commendation for her assistance during the crucial period of the preparation of this thesis.

I am highly indebted to Dr. Kees Burger (Economic and Social Institute, Free University of Amsterdam) and Dr. Nico Heerink (Department of Economics and Management, Wageningen Agricultural University) for their invaluable contributions.

I acknowledge with thanks the assistance I received throughout the preparation of this thesis from all persons and institutions whose names have not been mentioned.

Finally, to my dear sister Mrs. Edith Ayeley Ocquaye and the rest of the family, I say big thanks for getting me this far.

To them I dedicate this thesis.
ABSTRACT

This study was carried out in some parts of the Northern and Upper East regions of Ghana with the objective of identifying the traditional soil conservation options available to farmers in the area. The study subsequently assessed the economics of the use of stone bunds as a conservation technology.

To achieve the above objectives structured questionnaires were administered in selected villages from the East and West Mamprusi districts in the Northern region and the Bolgatanga district in the Upper East region. Descriptive statistics and a partial budget analytical tools were employed here. In Northern Ghana, high intensity rains, extensive land clearing and tree felling for fuel wood, overgrazing, uncontrolled burning of bush, poor farming practices and population pressures have resulted in severe erosion problems. The gradual soil degradation has affected crop productivity. Stone bunding, Ridging, and Crop residue management are some techniques that farmers have adopted to check soil erosion. Among the numerous fertility restoring methods, Composting, mulching, crop residue management and shifting cultivation are those currently being used by farmers. Others include the use of crop rotation, household refuse, animal/farmyard manure and fertilizer. Results of the partial budget analysis for the use of stone bunding indicate that an additional benefit of GH¢3,122,860.00 was realised by putting in 35 extra man-days at a total cost of GH¢374,150.00. In other words, it is worth adopting this strategy where possible since the profitability ratio of 9.3 is substantial. A more participatory approach to extension programme formulation and implementation is therefore recommended since farmers are already aware of the problems.
TABLE OF CONTENTS

DEDICATION
DECLARATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES

CHAPTER
ONE
INTRODUCTION .......................................................... 1
Background ................................................................. 1
Problem statement ...................................................... 2
Objectives of the study ................................................. 6
Justification of the study .............................................. 6
Scope of the study ....................................................... 7
Organization of the study ............................................ 9

CHAPTER
TWO
LITERATURE REVIEW ............................................... 10
Definitional concepts .................................................. 10
Land degradation ....................................................... 10
Soil conservation ....................................................... 11
Evidence of degradation ............................................. 12
Land use ....................................................................... 15
Livestock rearing ....................................................... 16
Conservation policies in Ghana .................................... 16
The National Soil Fertility Management Action Plan ....... 17
Effects of soil degradation (erosion) ............................. 18
Off-site effects .......................................................... 19
On-site effects .......................................................... 20
Effects of some fertility restoration/Conservation methods
Animal Manure .......................................................... 21
Agroforestry ............................................................... 21
Fertilizer use ............................................................. 22
Determinants of soil conservation .............................. 23
Land tenure ............................................................... 24
Credit markets .......................................................... 25
Off-farm income ......................................................... 26
Education ................................................................. 26
Age ....................................................................... 26
Knowledge of conservation techniques ....................... 27
Farm size ................................................................. 27
Soil type ................................................................. 27
Slope ................................................................. 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion and soil depth</td>
<td>28</td>
</tr>
<tr>
<td>Population density</td>
<td>28</td>
</tr>
<tr>
<td>Prices of output</td>
<td>29</td>
</tr>
<tr>
<td>Labour markets</td>
<td>30</td>
</tr>
<tr>
<td>Village-level effects</td>
<td>31</td>
</tr>
<tr>
<td>Effectiveness of soil conservation technique</td>
<td>32</td>
</tr>
<tr>
<td>Risk</td>
<td>33</td>
</tr>
</tbody>
</table>

### CHAPTER THREE METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of data collection</td>
<td>34</td>
</tr>
<tr>
<td>Sampling procedure</td>
<td>34</td>
</tr>
<tr>
<td>Types of data</td>
<td>35</td>
</tr>
<tr>
<td>Method of data analysis</td>
<td>35</td>
</tr>
</tbody>
</table>

### CHAPTER FOUR RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes of erosion on farming fields</td>
<td>38</td>
</tr>
<tr>
<td>Common erosion control techniques</td>
<td>39</td>
</tr>
<tr>
<td>Fertility restoring methods</td>
<td>41</td>
</tr>
<tr>
<td>Farmer’s response on yield trends</td>
<td>45</td>
</tr>
<tr>
<td>Cost effectiveness of adopting stone bunding</td>
<td>47</td>
</tr>
</tbody>
</table>

### CHAPTER FIVE SUMMARY CONCLUSIONS AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY CONCLUSIONS AND RECOMMENDATIONS</td>
<td>50-53</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1. Erosion hazard on regional basis (km²) 13
Table 2.2. Response of maize to fertilizer and mulch 22
Table 2.3. Responses of some food crops to fertilizers in regions of Ghana 23
Table 4.1. Causes of erosion on respondents’ farm plots 38
Table 4.2. Problems with the use of some fertility maintenance techniques 44
Table 4.3. Farmer’s response on reasons for declining yield trends 45
Table 4.4. Response of maize/groundnut mixture to stone bunding 46
Table 4.5. Response of maize to mulch 46
Table 4.6. Average nominal farm gate price for the 1999 cropping season 48
Table 4.7. A partial budget of adopting stone bunding in maize-groundnut production 49
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Erosion control techniques (Upper East Region)</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Erosion control techniques (Northern Region)</td>
<td>40</td>
</tr>
<tr>
<td>4.3</td>
<td>Fertility restoring methods (Northern Region)</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Fertility restoring methods on farmer’s fields (Upper East)</td>
<td>42</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

Background

Land is an important natural resource of every country, and particularly for a developing country like Ghana, where agriculture is the main source of livelihood to the majority of the people. Since the dawn of time, soil has been on the move. Rain and wind have transported soil particles from place to place, resulting in loss of fertile topsoil from agricultural lands. This problem of land degradation through soil erosion has been a major concern to mankind but still continues to pose a threat to food production. Again, attempts to achieve rapid increase in food production in many African countries including Ghana have basically relied on the extension of the area of land under cultivation. The cleared lands have continuously been exploited through various ecologically unfriendly and unproductive systems. Considering these, and increases in the rate of use of new agricultural lands, it is imperative that adequate attention be focused on arresting the situation.

Ghana is richly endowed with natural resources such as land and forests and the growth of the economy is to a large extent linked to the utilization of these resources. However, current production technologies are in conflict with conditions for sustainable development. The most pressing environmental issues in Ghana today are soil degradation, deforestation and pollution from mining industries. Studies in Northern Ghana have revealed that high intensity rains, extensive land clearing and tree felling for fuel wood, overgrazing, uncontrolled burning of bush, poor farming practices and population pressures...
have resulted in severe erosion problems. These problems include drastic decline in soil productivity, drying out of streams, depletion of soil water reserves and pollution of natural waters. Research shows that the causative agents of soil degradation in Northern Ghana are water and wind. Wind erosion becomes serious as the area of bare land increases as a result of vegetation degradative processes. Agricultural production in the area, characterized by small farm units and relying almost solely on land and labour as factor inputs, have been suffering from the hazards of low rainfall and poor soils. Livestock rearing, mainly cattle and small ruminants, which constitute vital sources of income to farmers, equally suffer.

Problem Statement

Soils are more vulnerable than is generally thought. Yet they remain the very basis of human existence and the foundation of our food chain. Traditionally, farm household production strategy has revolved mainly around extensive shifting cultivation, which allows the farmland to fallow in order to improve its quality. In other words, the traditional production strategy is a way of reducing pressure on the land and therefore averting soil degradation. According to Boserup, when demand for agricultural products rise as a result

---


of population growth and economic development, there are two ways to raise output to meet it. The first is to apply more labor to land by: (a) bringing forest and wasteland under cultivation; (b) reverting to fallow and natural grazing land (and) producing fodder for the livestock; (c) reducing the fallow period; (d) extending the use of multiple cropping system. The second way is to increase the use of industrial and scientific inputs such as fertilizers, insecticides, improved seeds and mechanized equipment. Options such as cultivation of marginal lands and reducing fallow periods, which farmers have already adopted increase pressure on the land. Al-hassan et al\(^5\) indicate in a study of household food security that, unless agricultural land use becomes more intensive in terms of frequency of cultivation, and the use of productivity enhancing factors such as fertilizers and irrigation, as well as adoption of improved soil management practices, the contribution of own food production to the attainment of household food security may reduce. Adoption of improved productive techniques and soil management practices will therefore be essential for achieving sustainable and increased agricultural production. Sheng\(^6\) defines soil conservation as the scientific use and protection of land, including wise choice of land use and pursuits of necessary measures of soil management and erosion control. This definition reemphasizes the fact that conservation is a resource and time consuming activity with apparently little or no long-term benefits to the private interest. Therefore the attitude of the small farmer towards its adoption is likely not to be encouraging. It was therefore


\(^6\) Sheng, T.C., op cit.
observed rightly that the short-term goals of small farmers (private returns) heavily outweigh that of long-term social benefit of soil conservation⁷.

Agricultural officers (working in the area of soil conservation) several years ago noticed the potentially damaging consequences of land degradation in Northern Ghana.⁸ Despite the long-standing concern about these problems, little evidence exists on their magnitude. Conservation measures were meanwhile adopted to deal with the problems. However, the non-sustainable nature of these measures in post-independent Ghana has resulted in considerable damage to the soils. The use of the slash and burn method of cultivation with low or no use of fertilizer especially nitrogen and phosphorus negatively affects crop yields. As soil is degraded and crop yields decline, any attempt at restoring productivity will mean higher levels of input utilization (and hence cost). The present situation could degenerate further if adequate and sustainable measures are not put in place to ensure effective soil conservation.

In spite of the numerous constraints facing farmers with regard to practicing soil conservation on their farms, it is observed that some farmers still commit some resources into the practice while others do not. This study therefore seeks to find out what factors directly or indirectly influence farmer’s decision to or not to invest in soil conservation. It is necessary to, (a) investigate whether the problem of soil erosion on farmlands has anything to do with cultural practices on the farms (b) find out what soil conservation

⁷ ibid
⁸ Lynn, C.W. Agriculture in North Mamprusi:- Dept. of Agriculture, Gold Coast Bulletin 34 (1937), pp. 5-6.
means to farmers (c) research the yield implications of soil conservation, and (d) inquire about what needs to be done to enable farmers to invest in soil conservation.

The farm household decision-making is primarily directed towards crop and livestock production with the purpose of satisfying its different goals. By letting farm households pursue their own objectives, society expects that our common interest of environmental sustainability will be promoted as well. However in soil and water conservation, private and public interest may differ considerably. It is possible that even in situations where the soil erosion problem exists, farmers will not perceive the need to conserve the soil. It has however been argued that if erosion will impose serious on-site productivity effects, it would be in the interest of the farmer to conserve his resource.9 In situations where farmers are seen to under-invest in conservation, it is not unusual for governments to try and redress the problem by introducing intervention packages based on the premise that conservation technology works. This approach generally sets out to persuade and/or coerce farmers into adopting soil conservation. Persuasion and/or coercion alone, on the grounds of environmental concern was never likely to be effective, in the face of private costs.10 Thus by trying to address the research issues above, it is possible to find a better alternative to the traditional approach whereby persuasion and coercion become participation and cooperation respectively.

Food and Agriculture Organization Activities in Soil Conservation. In W.C. Moldenhauer and N.W. Hudson (eds.),
Objectives of the Study.

The main objective of this study is to identify the traditional soil conservation options available to farmers in Northern Ghana and to investigate the yield implications i.e. whether the practice is beneficial or otherwise in terms of crop yields.

The study has the following specific objectives.

1. To identify the major causes of soil erosion on farm lands.
2. To investigate the extent to which farmers use these conservation and fertility maintenance techniques on their farms.
3. To analyse the yield implications, hence the profitability of use of these measures.
4. To make recommendations on how to encourage the adoption of conservation methods among small-scale farmers who may for some reasons not use them.

Justification of the study.

The performance of Ghana’s agricultural sector has generally influenced the performance of the economy as a whole. Since the soil serves as a very important medium for crop production (supplying vital micro and macronutrients), its destruction poses a serious threat to maintaining agricultural production and national development. Given Ghana’s need for food and fuel, current rates of soil degradation jeopardize the soil’s life supporting potential, and hence, its capacity to provide the present and future population with the essential food requirements. This study is therefore relevant in the light of the existing problems relating agriculture and soil fertility maintenance. For soil conservation programs to be effective, it is important to be clear whether farmers see erosion as a serious problem and know what they could do about it. By so doing, certain fundamental factors that
influence farmer’s decisions comes to light and also make provision for measures that fall within their means, in terms of acceptability and affordability. Three of such reasons are referred to below.

Firstly, it has been documented that farmer’s inability to adopt modern technologies is a result of high input costs and subsidy removal which have contributed to a declining trend in domestic food supply.11 Since the end of the 1970s the frequent failure of soil conservation interventions is increasingly noted.12 It has again been reported by most performance measures that conventional conservation programmes have seen remarkable failures13. These failures have been attributed to an inefficient/ineffective mode of intervention, especially in developing countries. Secondly, although the disastrous effects of soil degradation/erosion were noticed decades ago, little empirical analysis has so far been carried out on the causes and severity of these problems and on the best ways to address them. Thirdly, it has become obvious that future planning of soil conservation strategies need to draw on past experiences so as to ensure its effectiveness and sustainability.

Scope of study

The study covered small scale food crop farmers in two Guinea savanna zones of Ghana. These are the Northern and Upper East administrative regions, which are located in the

northeastern section of Ghana. The Upper East Region lies between longitude 0° and 10° 4’ west and latitude 10° 15’ to 11° 10’ north, with a total area of 8,842 sq. km. (see Appendix 1). The region is bordered to the north and east by Burkina Faso and Togo respectively, to the west by Upper West Region and to the south by the Northern Region. The total area of the Northern Region, which also lies between longitude 8° and 11° north, is 70,384 sq. km. It is bounded to the east by Togo and the south by Brong Ahafo Region. Even though the two regions receive an average of about 1100mm of rainfall (mono-modal), the distribution is erratic, rainfall intensities are high (>80mm⁻¹), with an unpredictable onset and termination. On the other hand, the two regions have a comparative advantage for the production of cereals and legumes. Described as the “cereal basket” of the country, Northern Ghana produces all the national supply of sorghum and millet as well as groundnuts and cowpea. About 56%, 45% and 23% of yam, rice and maize are also produced, respectively.

The topography of the study area is undulating and low in relief with slopes of 3 to 4 per cent dominating. The highest hills are around 397m and most of the area lies between 153m and 244m above sea level. Soils of the Guinea savanna are predominantly savanna ochrosols and oxysoils. Upland soils, mainly developed from granite rocks are low in inherent soil fertility and poor in organic matter content. Valley soils range from sandy clay loam to silt clays, which have higher natural fertility. According to Food and Agricultural

Organization of the United Nations (FAO), a large part of the region has class IV soils, mostly well drained, red to reddish brown with some patches of shallow soils and concentrations.

The northern regions of Ghana could be climatically described as semiarid savannah with humidity that lasts on the average up to seven months in a year. The predominant tree species of economic value commonly found growing on farmlands are *Parkia filicoides* (dawa-dawa) and *Butyrospermum parkii* (shea nut) with more localized areas of *Faidhabia albida*. Grass species commonly found are *Andropogon*, *Hyparrehnia* and *Heteropogon spp.* On highly eroded soils *Aristida*, *Cymbopogon* and *Imperata spp.* are found.  

**Organization of the Study.**

Chapter Two reviews the relevant literature. In it, literature on definitional concepts of conservation, evidence of degradation and conservation policies are reviewed. Chapter Three deals with the methods employed in data collection and analysis. In Chapter Four the empirical results of the study and discussion of results are presented. The final Chapter presents the summary, conclusions and policy recommendations.

---

CHAPTER TWO

LITERATURE REVIEW

This chapter reviews the relevant literature related to land degradation and conservation. It provides a brief overview of the general definition of the two concepts: land degradation and soil conservation. The review specifically concerns findings of the factors that have contributed to the process of degradation in the northern parts of the country, their effects and the efforts that have gone into salvaging the situation.

Definitional Concepts.

Land degradation

Land degradation is among the most frequently named global environmental problems because it threatens food production, especially in developing countries. The World Resource Institute estimates that 1.2 billion hectares or 11 percent of the earth’s vegetated surface have been moderately or severely degraded since 1945.\textsuperscript{16} Biot\textsuperscript{17} has defined land degradation as an environmental process, which occurs when the ability of the land to produce the goods and/or services people demand from it is declining. In other words, it is the reduction in soil’s productivity that may result from breakdown in soil structure, salinization, water logging, nutrient loss, and pollution from toxic substances. Most of these processes are the result of agricultural activities such as misuse of chemicals and tillage with heavy implements. The thought of soil conditions are what basically comes to


mind when the expression “land degradation” is used. It is however important to note that
the vegetation growing on the land, such as trees, bushes or grasses are also included.
Among the several overlapping environmental processes involved in land degradation is
soil degradation, of which soil erosion is a key contributor.

**Soil conservation**

In a wide sense, soil conservation includes “all forms of human action to prevent and treat
soil degradation”.\(^{18}\) The objective of conservation, according to Sheide,\(^{19}\) is to ensure that
the soil functions for long-term use of humans and nature. In the sense used here,
conservation aims at protecting the ability of the soil to produce crops and to reduce soil
erosion. Soil conservation on agricultural lands includes mechanical and biological
measures. Mechanical conservation measures are referred to as “hard” measures because
they involve changes of the landscape to slow runoff and guide water safely from fields.
Popular methods include contour ridges or bunding for gentle slopes and terraces for
steeper slopes. The biological measures rely on vegetative cover for soil protection.
Examples include the use of crop covers like trees, intercropping to reduce the time the soil
is bare, and covering the soil with mulch or stubble. Sheng\(^{20}\) also classified soil
conservation practices into four categories,

---


\(^{19}\) Scheide, W: Entwicklung eines wissensbasierten Systems zur Unterstützung der Beratung im Erosionsschutz.

\(^{20}\) Sheng, T.C.: Soil Conservation for small farmers in the humid tropics. FAO Soils Bulletin, No. 60 FAO Rome,
(1989).
• Structural or Mechanical erosion practices which is composed of terraces, ditches, windbreaks, earth dams, irrigation dams, controlled land smoothing and land grating.

• Agronomic practices such as multiple cropping, strip cropping, mulching, cover cropping and crop rotation.

• Soil management practices like deep ploughing, composting/farm manure, green manuring, and use of fertilizer.

• Cultivation practices such as minimum/conservation tillage, zero tillage and conventional tillage.

Evidence of degradation

Soil erosion has been described as the most potent degradative process affecting the productivity of agriculture in Ghana\textsuperscript{21}. However, soil nutrient mining and depletion which starts off productivity diminishing processes leading to the loss of vegetative cover contributes immensely to the exposition of the top soil to erosion.

Various types of soil erosion caused by water namely sheet and gully are common in most parts of the country particularly in the areas where the vegetation has been disturbed in the savannah zones, hilly areas and steep slopes. Annual water erosion is widespread in many parts of Ghana (Table 2.1).

Table 2.1. Erosion hazard on regional basis (km²)

<table>
<thead>
<tr>
<th>Region</th>
<th>Slight to moderate sheet erosion</th>
<th>Severe sheet and gully erosion</th>
<th>Very severe sheet and gully erosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>23310</td>
<td>19062</td>
<td>23330</td>
</tr>
<tr>
<td>Upper East</td>
<td>4574</td>
<td>3774</td>
<td>964</td>
</tr>
<tr>
<td>Upper West</td>
<td>7274</td>
<td>4470</td>
<td>7148</td>
</tr>
<tr>
<td>Brong Ahafo</td>
<td>10697</td>
<td>20930</td>
<td>5219</td>
</tr>
<tr>
<td>Volta</td>
<td>6615</td>
<td>7376</td>
<td>2901</td>
</tr>
<tr>
<td>Ashanti</td>
<td>7115</td>
<td>11826</td>
<td>6017</td>
</tr>
<tr>
<td>Greater Accra</td>
<td>3005</td>
<td>101</td>
<td>85</td>
</tr>
<tr>
<td>Eastern</td>
<td>3090</td>
<td>11105</td>
<td>2852</td>
</tr>
<tr>
<td>Central</td>
<td>2002</td>
<td>7780</td>
<td>521</td>
</tr>
<tr>
<td>Western</td>
<td>2745</td>
<td>11913</td>
<td>3675</td>
</tr>
</tbody>
</table>

Source: Asiamah (1987)

About 29.5 per cent of the country is subject to moderate sheet erosion, 43.3 per cent to severe sheet erosion and 23 per cent to very severe and gully erosion in hilly areas and steep slopes depending on the amount of rain received. In areas with vegetation cover such as the forest zone, erosion is not a problem.

Brammer indicated that soil erosion is not a serious problem in Ghana except in very densely populated and intensely cropped areas around major towns. While it has been generally claimed that an increasing population would accelerate land degradation, some

---


cases have been reported where a reverse development took place: more people, less erosion.24

Much of the concern about soil degradation in Northern Ghana is beset by uncertainty due to lack of concrete evidence about the amount/rate of soil erosion in the area, hence its productivity consequences. The few available studies on absolute quantities of soils eroded however reveal alarming losses. On the other hand, some of these findings may be limiting in the sense that references as to the time frame during which those losses occurred were not made.

Adu25 found that, in the Upper East Region the Tanchera series (Chromic cambisol), consisting of 90 to 120cm of brown loamy coarse sand, has lost an estimated amount of 90cm of soil by sheet and rill erosion, leaving about 30cm of coarse sandy loam and gravel above the parent material. In other severely eroded areas, the Pusiga series (Dystric leptosol) had lost all its solum of about 120cm. Soil losses of 2.24ton/ha have been recorded in the course of a season on a bare one per cent slope.26 In Northern Region, Bonsu27 found that between July and October in 1977 and 1978, soil loss from a bare fallow run-off plot with a 2 per cent slope ranged from 0.19 to 1.83ton/ha.

26 Bonsu, M,: Soil erosion studies under different cultural practices within the various ecological zones of Ghana.- Lecture notes, FAO Training Course in Soil Conservation and Management, Kwadaso, Kumasi (1979).
27 Bonsu, M., ibid.
Land use

Over the years, shifting cultivation has been the dominant system in Ghana. Soil fertility was maintained by leaving the land from 5 to 15 or more years for fertility to be rejuvenated. However, the bush fallow system is no longer available and soil fertility has to be improved and maintained through the use of inputs and appropriate land/crop management systems for the realization of increased growth in the agricultural sector.

In recent years, increasing population pressure on land and food requirements have led to the extension of cropped areas and the lengthening of cropping periods. Consequently, long fallow periods traditionally associated with shifting cultivation have been reduced to about 2 to 3 years.

Cereals (millet and guinea corn), the main crops grown, do not provide adequate cover to protect the soil against the forces of raindrop and runoff. Moreover, the common practice of clean weeding by hoe and the use of stems as fuel leaves the soil bare at the onset of rains. Farming along streams has enhanced erosion along stream banks and large-scale paddy rice cultivation has transformed thousands of hectares of swampy bush-land into virtually treeless plains.


Livestock rearing

Overstocking of grazing land (cattle being the most important here) is a common feature in the three northern regions, where most of Ghana's cattle population is found. Cattle population density was reported to be 103 per sq. km. in Navrongo and Bolgatanga districts and 77 per sq. km. in the Bawku and Lawra districts with an estimated stocking rate of 1.3 ha/cow (ibid.). This, as observed by Asare was far in excess of the recommended carrying capacity of 10 to 20 ha/cow. These areas are overgrazed during the prolonged dry season creating bare patches, which are subject to erosion. Annual recurrence of uncontrolled bush burning further worsens the situation. The Upper East Region for example recorded a total of 149 incidents of fire outbreaks during the 1997/98 dry season.

Conservation Policies in Northern Ghana.

The recognition of the severity of erosion in Northern Ghana, and the need for proper land use planning, led to the establishment of a Land Planning Organization about four decades ago. This organization was charged with the responsibility of allocating land between forestry, farming and pastureland to protect/develop natural resources in the area. With the statutory backing of the Land Planning and Soil Conservation Ordinances of 1952, seven land planning areas, each with a Project Committee and a Central Co-ordinating

---

Committee were set up. They were to see to the implementation of conservation measures such as establishment of forest reserves, controlling run off on arable lands by narrow-based graded terraces, among others. With a regular flow of inputs and extension services, considerable progress was made with respect to appropriate land-use and conservation of natural resources.

Unfortunately, the above measures could not be sustained in post independence Ghana. As noted by Asem, a major problem of the planning was that, it was difficult for the people to continue after the technical advisors left. This was due to the non-participatory nature of the program planning and implementation. Nevertheless, the need to re-introduce soil and water conservation measures is recognized at all levels.

The National Soil Fertility Management Action Plan

The continuous decline in soil nutrients and organic matter in most soils in Ghana have been of great concern in recent times. In order to accelerate growth in the agricultural sector the Ministry of Food and Agriculture (MOFA), with financial assistance from Sasakawa Africa Association (SAA), in conjunction with Ministries of Environment, Science and Technology (MEST), Lands and Forestry (MLF), the University of Cape Coast (UCC) and the International Fertilizer Development Center (IFDC) -Africa Division, based in Lome-Togo organized a 4-day stakeholders’ workshop at Cape Coast in July 1996. The stakeholders (i.e. policy makers, farmers, private agricultural business firms, university professors, researchers, extension workers, donors, non-governmental organizations and

---

international development agencies) in the country dialogued on the constraints affecting soil fertility restoration and maintenance for increased food production. The workshop, which examined broad areas of soil fertility management, formulated guidelines for the development of National Soil Fertility Management Action Plan\textsuperscript{36}, a document launched by the Ghana Government in December 1998\textsuperscript{37}

The document laid emphasis on measures to be adopted to increase the productivity of smallholder farmers who form the bulk of agricultural production in the country, after consideration of ongoing soil fertility maintenance work being undertaken by various institutions. In the Northern, Upper East and Upper West Regions, coverage areas of the project focused on the use and promotion of organic manure for soil fertility maintenance in agriculture. To ensure successful implementation of the Action Plan, some policy action programmes such as land tenure, land use policy and land management programmes are to be adopted by government ministries, district assemblies and relevant institutions for the smooth execution of programmes/projects of the plan with the active involvement of farmers and rural communities.

**Effects of soil degradation (erosion)**

Accelerated erosion is the most serious form of soil degradation in many developing countries (e.g. Nigeria and Ghana). However, one of the problems of soil erosion - and for


that matter soil degradation is the invisibility of the problem itself.\textsuperscript{38} According to Rickson \textit{et al.},\textsuperscript{39} most forms of soil erosion are subtle. The process is slow and unobtrusive at first yet the effects accumulate over time.\textsuperscript{40} It was thus rightly noted that, farmers consistently underestimate the extent of erosion in the early stages, and their misperceptions are common.

\textbf{Off-site effects.}

Soil erosion by water is basically a redistribution of soil. Its deposition elsewhere generally has both positive and adverse effects. Clark \textit{II} divides these into in-stream and off-stream effects\textsuperscript{41}. In-stream impacts include adverse effects on navigation, water storage, water conveyance, recreation and water ecology. Off-stream impacts include flood damages and adverse effects on water use for human consumption, industry and agriculture (in terms of water quality loss and water treatment costs). Deposition elsewhere may also have positive effects. For example, whereas Herodutus called the fertile silt deposit by seasonal floods in the Nile delta a ‘gift from the gods’, a more recent view is that it was a


gift from Ethiopia. Soil erosion is viewed as the removal of soil and water from areas of low valued use (upland) to high valued use (lowland) where both can be utilized more efficiently.

On-site effects.

The large-scale effects of erosion on the productivity of soils are not well known. Crop yields are a function of many variables, including biophysical conditions, crop management and the crop itself. However, it is clear that fertility decline affects crop production directly. To ensure a good harvest, farmers use expensive chemical fertilizers (usually unaffordable), which when over utilized further degrades soils low in organic matter. In other words, sole use of chemical fertilizers destroys soil structure. Meanwhile, the explanatory power of the erosion-productivity relationship is generally limited – that is, soil erosion rates by themselves are poor indicators of the loss in productivity. Bush burning is the number one contributing factor to the shortage of feed for livestock in degraded areas. Poor quality of the soil affects the supply of vegetative material for feed leading to overgrazing of crop lands.

---

Effects of some Fertility restoration/Conservation methods

Animal Manure

Owing to the high cost of fertilizers, farmers in the study area use manure in their efforts at restoring/maintaining soil productivity. However, the several constraints to the efficient utilization of dung and other forms of manure include difficulties in collection, processing, storage and the mode of application preclude their intensive use in crop production in Ghana. In northern Ghana, large quantities of cow dung are available in some farms, but this is not used extensively due to the limited available information on nutrient content and crop yields.

Agroforestry

Agroforestry provides the possibility of growing woody perennials (trees and shrubs) in association with crops and/or animals in either spatial or sequential arrangements on farms. Since its introduction in 1988, farmers have adopted various types of agroforestry interventions in crop production. These include alley cropping, woodlots and contour planting with multiple purpose trees (MPTs). The commonest MPT familiar to farmers is Leucaena leucocephala, which is known to increase the soil nitrogen content, and organic matter levels and the restoration of topsoil fertility. In a trial conducted with the prunings of Leucaena leucocephala and fertilizer on maize, it was observed that while yields declined in the control (no fertilizer and no mulch), maize yields increased with mulch and in combination with half-rate of fertilizer (Table 2.2).
Table 2.2. Response of maize to fertilizer and mulch

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Maize yield (kg/ha)</th>
<th>1992</th>
<th>1993</th>
<th>1994</th>
<th>1995</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>No mulch, no fertilizer</td>
<td></td>
<td>1808</td>
<td>1415</td>
<td>552</td>
<td>nd*</td>
<td>1258</td>
</tr>
<tr>
<td>Full rate of fertilizer</td>
<td></td>
<td>2250</td>
<td>2400</td>
<td>908</td>
<td>2120</td>
<td>1920</td>
</tr>
<tr>
<td>Mulch only</td>
<td></td>
<td>2100</td>
<td>2500</td>
<td>1860</td>
<td>2600</td>
<td>2265</td>
</tr>
<tr>
<td>Mulch + ( \frac{1}{2} ) rate of fertilizer</td>
<td></td>
<td>3050</td>
<td>2800</td>
<td>1296</td>
<td>2700</td>
<td>2687</td>
</tr>
</tbody>
</table>

*Source: Annual Report of Agroforestry Unit, MOFA (1995).*

*nd* indicates ‘no data’

**Fertilizer use**

Research has clearly demonstrated that fertilizer is an important component in the technology required to increase crop production in Ghana. Fertilizer use can increase crop yields and biomass for conservation in most deficient soils of the tropics. Results from field trials show that annual food crops respond positively to N, P and K fertilizers and these responses vary according to agro-ecological zone (Table 2.3).

---

Table 2.3. Responses of some food crops to fertilizers in regions of Ghana

<table>
<thead>
<tr>
<th>Crop</th>
<th>Region</th>
<th>*Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Eastern</td>
<td>2257</td>
</tr>
<tr>
<td></td>
<td>Central</td>
<td>2020</td>
</tr>
<tr>
<td></td>
<td>Volta</td>
<td>3160</td>
</tr>
<tr>
<td></td>
<td>Ashanti</td>
<td>2531</td>
</tr>
<tr>
<td></td>
<td>Brong Ahafo</td>
<td>1381</td>
</tr>
<tr>
<td>Cassava</td>
<td>Volta</td>
<td>14493</td>
</tr>
<tr>
<td>Groundnut</td>
<td>Volta</td>
<td>1082</td>
</tr>
<tr>
<td>Rice(LL)</td>
<td>Volta</td>
<td>2708</td>
</tr>
<tr>
<td></td>
<td>Northern</td>
<td>2781</td>
</tr>
<tr>
<td>Cowpea</td>
<td>Central</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>Volta</td>
<td>1015</td>
</tr>
<tr>
<td></td>
<td>Ashanti</td>
<td>706</td>
</tr>
<tr>
<td>Soybean</td>
<td>Ashanti</td>
<td>771</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Brong Ahafo</td>
<td>1345</td>
</tr>
</tbody>
</table>

*Yield increase due to fertilizer;  
Source: Bonsu et al41.

Determinants of soil conservation

Decisions with regard to long term conservation measures concern investment and usually require a whole farm analysis. Given that farmers will choose to adopt soil conservation techniques if the economic and non-economic benefits exceed the costs, the determinants of soil conservation are those factors that affect these benefits and costs.

Among the numerous economic and non-economic factors found to be of importance in the decision structure of farmers and which are likely to induce transition towards sustainable land use, Burger and Oostendorp49 distinguished between two types of evidence. These are Statistical and Transitional evidences. From a statistical point of view, evidence shows that

48Bonsu et al, op cit.
certain factors are relevant but not that they necessarily have a major effect on the transition process. For example, ethnicity of the farmer may contribute to the adoption of soil conservation, but even the largest change possible in ethnicity may have a small effect on the eventual adoption. Transitionally significant factors are those that can by themselves change enough to have large significant effect on transition. Some factors found to be of transitional significance include the land tenure system, credit markets, off-farm income of farmers, their age, education and knowledge of conservation techniques. The rest are farm size, soil type, erosion and soil depth, population density, prices, labor markets, risk, village-level effects and the effectiveness of soil conservation technique adopted.

**Land tenure**

The incentive to invest in soil conservation can be affected by the functioning of the land market. If the tenure is less secure, a tenant farmer faces lower expected return from investment into soil conservation because of the risk of being evicted before realizing all benefits. Even if tenure is secure, the return to soil conservation will be lower if the land sales market is not functioning well, because farmers will not be able to recover land improvement investments through sales. Imperfect land markets may also affect soil conservation by limiting the access to (formal) credit.\(^5\)

---

Credit markets

The incentives to invest in soil conservation may be affected by the wealth of the farmer if credit markets do not function well due to the short-run costs of construction expenses and long-run benefits of increased productivity that often characterise the investment. According to Reardon et al., realization of agricultural progress and adequate soil management in West Africa (and several less-developed countries) requires the meeting of certain conditions. In the agricultural sector in Ghana for example, there is very limited access to financial services and credit. In view of the risks associated with agriculture, inadequate funds are channeled for lending to farmers. The high interest rate and bank charges due to inflation drastically increase the prices of fertilizers, which serve as disincentive for farmers to invest in soil fertility restoration and maintenance. In general if farmers are liquidity constrained, for example, because of borrowing problems, capital-poor farmers will be less able to invest than their rich counterparts. Consequently, in addition to restoring competitive conditions and remedying structural constraints, support of farm incomes may be needed to encourage farmer investment.

Off-farm income

The effect of off-farm income on soil conservation is ambiguous. On the one hand it might induce conservation indirectly through the type of crop it induces\textsuperscript{54}, and on the other hand off-farm income is sometimes seen as decreasing conservation by reducing the landowners' interest in farming and limiting labor availability.\textsuperscript{55} Off-farm income may also affect soil conservation activity through its effect on the rate of time preference or risk aversion.

Education

A study carried out in two villages in India\textsuperscript{56}, found out that education has transitional significance effect on soil conservation as well. In both villages, one additional year of education implied an increase in soil and water conservation investment of about 25% of the average investment level.

Age

Shiferaw \textit{et al.}\textsuperscript{57} found age of the household head to be of transitional significance, i.e. the elasticity of the probability of adoption of level bunds at the plot level with respect to the age of the household head (in years) was -0.94. Age effect could however change in the long run given that farms will eventually be transferred from the older to the younger generation which may be more inclined to adopt new techniques.

\textsuperscript{54} Barbier, E., \textit{ibid.}
\textsuperscript{55} Kerr, J. and N. Sanghi, \textit{op cit.}
\textsuperscript{56} Pender, J. et al., \textit{op cit.}
Knowledge of conservation techniques

It has been found out that awareness of soil conservation techniques is of transitional significance\textsuperscript{58} - the elasticity of the probability of adoption of level bunds at the plot level with respect to the number of techniques known was 0.74.

Farm size

Soil and water conservation at the plot level was reported to be much lower for larger farms than for smaller farms\textsuperscript{59} (elasticities -2.5 and -3.0). Reports of positive effects of farm size also exist. Farm size has been found to be of transitional significance - the elasticity of the probability of adoption of level bunds at the plot level with respect to farm size was 0.87\textsuperscript{60}

Soil type

Pender \textit{et al.}\textsuperscript{61} finds out that soil type is another factor of transitional significance. In their sample of three villages, the village with deep black heavy clay soils (vertisols) and high water retention capacity shows the greatest level of soil and water conservation investment. The village with the lowest level of investment has shallow to medium red soil (alfisols) and low water retention capacity. Red soils are difficult to work when dry, so conservation investments in such soils take place during the rainy and post-rainy seasons, when soils are moist and labor scarce. In contrast, plots with black soils allow conservation work in the dry season when labor is cheap.

\textsuperscript{58} Shiferaw, B. \textit{et al. ibid.}
\textsuperscript{59} Pender, J. \textit{et al., op cit.}
\textsuperscript{60} Shiferaw, B. \textit{et al. op cit.}
\textsuperscript{61} Pender, J. \textit{et al., op cit}
Slope

The steepness of the plot has been found to be of transitional significance. Results pooled for three villages showed that if the slope of the plot is more than 3%, conservation investment increases by 781 rupees\textsuperscript{62} (average investment 581 rupees).

Erosion and soil depth

The presence or perception of severe erosion on the plot is sometimes found to be a transitionally significant factor in farmer’s decision and is likely to induce transition towards sustainable land use.\textsuperscript{63} This was found not to be always so for the reason that there may be a simultaneity problem however, plots that have conservation structures tend to have less erosion, thus creating a downward simultaneity bias. Another reason given for the lack of a clear relationship between erosion and investment may be that yields do not fall because soil erosion does not lead to soil depth below the critical level where yields are reduced.

Population density

The land/man ratio has been found to be of transitional significance for sustainable land use\textsuperscript{64} - the elasticity of the probability of adoption of level bunds at the plot level with

\textsuperscript{62} Pender, J. \textit{et al.}, \textit{op cit.}

\textsuperscript{63} Senga\textit{lawe "Household adoption behaviour and agricultural sustainability in the Northeastern mountains of Tanzania. The case of soil conservation in the North Pare and West Usambara Mountains", PhD. Dissertation, Wageningen Agricultural University (1998); Shiferaw, B. \textit{et al. op cit.; Pender et al- op cit.}

\textsuperscript{64} Shiferaw, B. \textit{et al. op. cit.}
respect to the land/man ratio was 0.57. Barbier et al.\textsuperscript{65}, using a calibrated dynamic linear programming bioeconomic model at the micro watershed-level in the hillside of Honduras, simulate the effect of increasing immigration on the adoption of soil conservation techniques. The results of two population simulations showed that when population density is relatively low, population pressure has negative effects on natural resources. However, when population reaches higher density and when the productivity of the resource base is threatened, farmers start to improve their natural resource management practices.

Increasing the population by a factor 3 has only a small short- and medium-run effect on the adoption of conservation techniques (terraces, life barriers, grass strips). The inflow of immigrants leads to erosion increases from an estimated 5 tons per ha to 25 tons per ha over a period of 15 years. After 15 years farmers are motivated to invest in soil conservation techniques because then it becomes profitable and erosion starts to fall. Population is therefore a transitonally significant factor for sustainable land use induction, but only in the long run.

\textit{Prices of output}

Conservation investments often decrease current output levels because of a reduction in the effective farming area or because of adjustments in farming practices.\textsuperscript{66} An increase in the output price will therefore make soil conservation investment less attractive by increasing


\textsuperscript{66}La France, J. "Do increased commodity prices lead to more or less degradation?", Australian Journal of Agricultural Economics, Vol. 36, No. 1, (1992) pp. 57-82.
the opportunity cost of forgone output. On the other hand, because soil conservation leads to higher future output levels due to lower rate of soil degradation, higher output prices will increase the future benefits of soil conservation investments. It is sometimes suggested that lack of transport and market imperfections make national prices of little importance to farmers.⁶⁷

In less-developed countries, low population densities have hampered the development of markets and raised cost of physical and social infrastructure per head. Lack of infrastructure has increased the difference between agricultural product prices in rural and urban markets⁶⁸, augmented farmers’ transaction cost (eg. time involved in headloading of output), and raised the cost of inputs.⁶⁹ This, according to LaFrance leaves the price effect ambiguous. The effect of increase in the price of a conservation input is ambiguous as well, because it makes conservation in the current period more expensive, but also reduces the future cost of additional inputs applied to compensate for soil loss.⁷⁰

**Labor market**

If the labor market function perfectly and costlessly (and household labor and hired labor are perfect substitutes), then the incentive to invest in soil conservation will be independent

---


of the household size or composition. In reality the labor market is rarely perfect, because of transaction costs, adverse selection, moral hazard problems, and discrimination. Hired labor and household labor are therefore not perfect substitutes. In this case the availability of household labor will have a positive impact on soil conservation adoption.\(^7\) Availability of hired labour on the other hand may not necessarily impact positively on conservation, but even if it does, it will be to a lesser extent.

**Village-level effects**

It has been established\(^7\) using regression analysis, that village characteristics are a transitional factor for the total conservation investment (grass strips, anti-erosion ditches, hedgerows and radial terraces) at the plot-level in the highland areas of Rwanda. These village characteristics include social and administrative conditions, imitation effects and externalities of neighbors undertaking land protection measures. They estimate the elasticity of soil conservation with respect to village-average level of conservation to be 1.00. This unitary elasticity suggests a simultaneity problem with their estimation.


\(^7\) Clay, D., F. Byiringiro, J. Kangasniemi, T. Reardon, B. Sibomana and L. Uwamariya "Promoting food security in Rwanda through sustainable agricultural productivity: Meeting the challenges of population pressure, land degradation and poverty*. Department of Agricultural Economics Staff Paper No. 95-08, Michigan State University (1995).
Effectiveness of soil conservation technique

The effectiveness of soil conservation techniques has also been found to be a transitional factor. In a cost-benefit analysis of soil conservation in Honduras, Valdes\textsuperscript{73} performs a sensitivity analysis of the returns to conservation to percentage change in yield with and without conservation for a village in Honduras. Without the construction of diversion ditches protected with life barriers, the average yields of corn are estimated to fall by 5.5% per year. With the construction of these conservation measures, the average yields are estimated to increase by 7.4% per year. The average yield over the period 1986-90 is 1.95 metric tons per ha with conservation measures. If the increase in yields due to soil conservation investment fall from 7.4% to 3.7% per year, the net present value of the investment in soil conservation falls from L4, 910 to L2, 667 per ha for a period of 100 years (20% discount rate). If soil conservation did not lead to any improvement in yield but simply halted its decline, the net present value will only be equal to L234 per ha (L, the unit of the currency is Lempira). Because diversion ditches protected by live barriers are relatively low cost measures, the internal rate of return of these investments remain high even if soil conservation only stabilizes the yield. The sharp fall in the net present value shows, however, that for more costly conservation measures adoption will be affected by small changes in estimated yield changes.

Risk

Holden et al. argue that in a low income rural setting crop insurance markets will be either highly imperfect or simply nonexistent. Problems of moral hazards, lack of collateral, covariate risk, and fixed costs make it unlikely to have well-functioning crop insurance markets other than for every specific risk. Weather and yield risks are therefore likely to affect the incentives to invest in soil conservation given that farmers are risk averse.

Risk is often assumed to form a disincentive to soil conservation investment, particularly in soil-conserving structures or perennial crops with long lead times, but theoretically the effect of risk is often ambiguous and depends on the particular farming system. Clay et al. using regression analysis, found evidence to support the fact that risk is a transitional factor for total conservation investment at the plot-level, with an elasticity of output price variation of 0.52 at the mean

---

78 Clay et al op.cit.
CHAPTER THREE

METHODODOLOGY

Method of Data collection

The study which was carried out in 4 major districts of the Northern and Upper East regions of Ghana is based on survey data collected in the 1999 cropping season and secondary data from the Ministry of Food and Agriculture. The districts are the East and West Mamprusi districts in the Northern region and Bawku East and Bolgatanga districts in the Upper East region. Selection of the areas was done purposely to fit into an on-going research study on land degradation and migration, sponsored by the Economic and Social Institute of the Free University of Amsterdam.

Sampling Procedure

Thirty villages (see Appendix 2) were purposively selected based on their historical and documented information on environmental and land degradation issues in the study regions. Five households were randomly selected from each of the villages. The selection of the households was done using house numbers from the recent population and housing census held in the country. After the first house has been selected, subsequent ones are identified by adding three(3) to the first and for that matter the preceding house number. The household head, representative or an adult member of each of the households was interviewed using structured questionnaires. A total of one hundred and fifty households were thus used in the study.
Types of Data

Questions were formulated in such a way as to throw more light on soil conservation and fertility maintenance information, crop yields, household information and plot characteristics. Others included farmer’s perception on causes of soil erosion on farm plots, need for soil conservation, the reasons for engaging (or not) in soil conservation practices, among others (see Appendix 3).

Methods of Data analysis

Descriptive statistical tools such as percentage distribution was used to describe the extent to which farmers use these conservation and fertility maintenance techniques on their farms. Prevalence and popularity of different soil conservation techniques as well as fertility restoration methods at the plot level were analysed using the same tool plus charts. The causes of soil erosion in the area were also analysed.

Given that extra resources are required (financial and labour) for the construction of conservation structures and improve upon crop yields, a partial budget analysis was used to compare the extra benefits as against extra costs incurred in construction of stone bunds. In order to compare benefits of bunding (yield implications), the net profit per hectare for typical crop mixtures was used as a cost-effective measure.

The cost of construction of stone bunds per hectare per growing season were analysed using,

\[ Ce = Lc_j + Mc_j; \]  

(1)
where, $Cc$ is the total cost of bund construction/ha/growing season.

$Lc_j$ is the labor cost involved in bund construction.

$Mc_j$ is the cost of purchase or hiring of materials such as pick axes, shovels and wheel barrows used in bund construction.

Incremental yields obtained as a result of bunding were computed as

$$Y_{in} = \sum_{i=1}^{N} (Y_{ic} - Y_{inc})$$

where $Y_{in}$ is the incremental yield in kg/ha.

$Y_{ic}$ is the mean of yield of crop $i$ from bunded fields in kg/ha.

$Y_{inc}$ represents mean yield of crop $i$ from non-bunded fields in kg/ha.

The following relation expresses household incremental income from crop production;

$$I_{ln} = Y_{ln} * P_l$$

with $I_{ln}$ denoting incremental farm income (€)

$Y_{ln}$ is the incremental yield of crop $i$ (kg/ha)

$P_l$ is the price (€) (average farm-gate price in 1999)

Incremental profit per hectare is given by

$$N_p = I_{ln} - Cc/A,$$

where $N_p$ represents the incremental profit (€/ha)

$Cc$ is the cost of bund construction (incremental) (€)

'A' is the area measured in hectares.
In order to determine the profitability of the method, the input/output (profitability) ratios were used, given by the expression:

$$\Pi = \frac{L_i}{C_c}$$

Where $\Pi$ is the profitability ratio for the technique.

The technique is considered profitable if $\Pi$ is greater than one, (i.e. $\Pi > 1$).

Based on the findings of the study, conclusions and recommendations will be made for improving upon the current farming practices that have the potential of worsening the erosion problems on farms and hence the associated negative yield effects.
CHAPTER FOUR

RESULTS AND DISCUSSION

Causes of erosion on farming fields.

The first objective of the study is to identify the causes of soil erosion in Northern Ghana. In this section the causes of soil erosion on fields are presented as obtained from interviews using structured questionnaire.

Household heads or representatives were interviewed generally on what they observe as the major factors that contribute/facilitate the process of soil erosion on their individual plots. The result is as presented for the two regions in the Table 4.1 below.

Table 4.1. Causes of erosion on respondents’ plots

<table>
<thead>
<tr>
<th></th>
<th>Upper East</th>
<th></th>
<th>Northern</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>% Distribution</td>
<td>Frequency</td>
<td>% Distribution</td>
</tr>
<tr>
<td>Land preparation</td>
<td>37</td>
<td>33.0</td>
<td>29</td>
<td>30.9</td>
</tr>
<tr>
<td>Burning</td>
<td>33</td>
<td>29.5</td>
<td>13</td>
<td>13.8</td>
</tr>
<tr>
<td>Tree felling</td>
<td>10</td>
<td>8.9</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>Heavy rainfall</td>
<td>17</td>
<td>15.2</td>
<td>18</td>
<td>19.1</td>
</tr>
<tr>
<td>Sloppy lands</td>
<td>13</td>
<td>11.6</td>
<td>25</td>
<td>26.6</td>
</tr>
<tr>
<td>Farming on water ways</td>
<td>2</td>
<td>1.8</td>
<td>6</td>
<td>6.4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>112</strong></td>
<td><strong>100.0</strong></td>
<td><strong>94</strong></td>
<td><strong>100.0</strong></td>
</tr>
</tbody>
</table>


Farming and other human activities contribute immensely to the erosion problem. Land preparation was mentioned as the most important remote cause of erosion in
both regions. In the Upper East, erosion on thirty-seven out of 122 plots (33\%) was attributed to bad land preparation methods and twenty-nine out of 94 plots (31\%) for the Northern Region. Farmers indicated ploughing along slopes and the use of heavy equipment for farm work when the soil is dry as the remote causes. Burning and heavy rainfall came second and third in the Upper East as against sloppy lands and burning in the Northern Region.

These findings confirm the assertion of Asiamah\textsuperscript{79} that the various types of soil erosion caused by water become common in areas where the vegetation has been disturbed. All forms of land clearing result in the destruction of vegetative cover depriving the soil of its cover and enhancing the erosive action of water. The problem is aggravated further when the exposed soil is worked during the dry season.

**Common Erosion Control Techniques**

With their knowledge of the primary causes of erosion on their farms, the strategies adopted by farmers to control the situation are those directed at reducing the velocity of run-off water and hence soil loss. Ridging across slopes, stone bund construction and the use of grass strips are some of these strategies. Ridging is the most common among farmers in both the Upper East and Northern Regions as shown in Figures 4.1 and 4.2. below

Fig. 4.1. Erosion control techniques (Upper East Region)

- Ridging: 51.1%
- Stone bunds: 13.4%
- C.R.M: 6.2%
- Grass strips: 22.4%
- Other: 6.9%

Source: Field Survey Data, 2000

Fig. 4.2. Erosion control techniques (Northern Region)

- Ridging: 57.6%
- Minimum tillage: 10.4%
- Grass strips: 6.9%
- C.R.M: 20.8%
- Other: 4.3%

Source: Field Survey Data, 2000
These ridges are basically constructed on plots in areas of moderate slope. Fifty-seven (57) percent of farm plots in Northern Region use ridging as against 51 percent in the Upper East Region.

Stone bunding (13.4%) featured as the next popularly used method after grass strips (22.4%) in the Upper East Region while in the Northern Region less than 4 percent of plots have stone bunds (captured in the area labeled other %). Use of stone bunds in the Upper East Region is limited to those areas where stones are readily available (Nangodi areas). Incorporation of crop residues is the next most popular technique after ridging adopted by farmers in the Northern Region. The rather low level of crop residue use in the Upper East could be attributed to the higher incidence of bush fires and fuel wood scarcity.

**Fertility restoring methods**

Figures 4.3 and 4.4 below show the frequency of utilization of these methods in the two regions. Techniques being used by farmers to maintain/restore the fertility of the soil include the use of household refuse, animal manure, composting, mulching, crop residue management, crop rotation, shifting cultivation and fertilizer use.

Use of animal manure is the most prevalent practice in the Upper East Region representing 43 percent, followed by household refuse use (22%) and then fertilizer (13%). Although farmyard manure is highly used by farmers, the high labour required for its collection, preservation and transportation make it quite unattractive.
Fig. 4.3. Fertility Restoring methods (Northern Region)

Source: Field Survey Data, 2000

Fig. 4.4. Fertility Restoring methods (Upper East Region)

Source: Field Survey Data, 2000

*C.R.M represents crop residue management
Despite the fact that yield response to recommended levels of fertilizer is better and quicker than the other methods, its use is rather low, confirming the fact that farmers cannot afford the high cost. This problem of low/nonuse of mineral fertilizers was observed way back in 1995 in a survey of over 4000 fields in northern Ghana\(^80\). In the survey, it was observed that only 16 percent of fields used some mineral fertilizers. The continuous existence of this trend poses a serious threat to increased agricultural productivity in Ghana.

Although farmers are aware of the use and benefits of composting, mulching and crop residue management, the level of practice is low due to constraints such as high labour requirements, inadequate quantities of residue produced and most importantly farmer’s high demand for residues as animal feed, fencing and for fuelwood.

Apart from composting, mulching and shifting cultivation whose prevalence are very low in both regions, the farmers in Northern Region frequently utilized fertilizer and the crop rotation technique than their counterparts in the Upper East Region. Crop rotation is the commonest technique used in the Northern region (22%). On 20 percent of the plots in the Northern Region, animal manure is applied with fertilizer and household refuse utilization taking 19 and 18 percent respectively.

Reasons attributed to the low level of utilization or non-use of some of these fertility restoring methods are as presented in Table 4.2 below.

---

Table 4.2. Problems with the use of some fertility maintenance techniques (% of farmers).

<table>
<thead>
<tr>
<th>Reason</th>
<th>*CRM (n=70)</th>
<th>Composting (n=82)</th>
<th>Mulching (n=70)</th>
<th>Crop Rotation (n=40)</th>
<th>Fertilizer (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High labour demand</td>
<td>40</td>
<td>81</td>
<td>50</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>No/little knowledge</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Expensive(cash)</td>
<td>2</td>
<td>34</td>
<td>10</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>Unavailable materials</td>
<td>75</td>
<td>78</td>
<td>80</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*CRM represents Crop residue management.
Source: field survey data, 2000

Most (88%) of the farmers interviewed from both regions who did not use fertilizer on their fields (40 framers) attributed their non-use to the expensive nature of the input while a few said they actually have no need for fertilizers. Out of a total of 82 farmers who did not practice composting, 81 percent said it is labour intensive while none claimed no knowledge of the technique. 78 percent of them, again mentioned non-availability of composting materials as the reason.

Only 1 percent of non-users of mulching claimed no knowledge of the technique. Again, lack of mulching materials and high labour involvement dominated (80% and 50% respectively) as reasons for not using the technique. The story was not different in the case of crop residue management as 75 percent of farmers indicated lack of residue as mulch material. Apart from the mere 12 percent of farmers who attributed their non-use of crop rotation to its labour demands, majority could not explain why they do not use the technique.
Farmer’s response on yield trends

Farmer’s perception of yield changes over the years is one of declining output. Responding to structured questions, farmers gave varying reasons for what they perceive to be the immediate cause of the general decline in the yields. Prominent among the reasons is unfavorable rainfall pattern. Others include continuous cropping, Striga infestation and deforestation as shown in Table 4.3 below.

Unfavorable rainfall featured highest in both the Upper East and Northern Regions, (51.7% and 21.3% respectively). The area, situated in the one-maximum rainfall zone has the rains commencing in April and extending to October.

Table 4.3. Farmer’s response on reasons for declining yield trends

<table>
<thead>
<tr>
<th>Reason</th>
<th>Northern Region</th>
<th>Percentage</th>
<th>Upper East Region</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of farmers</td>
<td></td>
<td>Number of farmers</td>
<td></td>
</tr>
<tr>
<td>Continuous cropping</td>
<td>16</td>
<td>18.0</td>
<td>10</td>
<td>11.2</td>
</tr>
<tr>
<td>Striga infestation</td>
<td>19</td>
<td>21.3</td>
<td>8</td>
<td>9.0</td>
</tr>
<tr>
<td>Soil erosion</td>
<td>6</td>
<td>6.7</td>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>Bush burning</td>
<td>10</td>
<td>11.2</td>
<td>8</td>
<td>9.0</td>
</tr>
<tr>
<td>Lack of fertilizer</td>
<td>6</td>
<td>6.7</td>
<td>5</td>
<td>5.6</td>
</tr>
<tr>
<td>Deforestation</td>
<td>10</td>
<td>11.2</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Unfavourable rains</td>
<td>19</td>
<td>21.3</td>
<td>46</td>
<td>51.7</td>
</tr>
<tr>
<td>Bad seed variety</td>
<td></td>
<td></td>
<td>7</td>
<td>7.9</td>
</tr>
<tr>
<td>Pests and diseases</td>
<td>3</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>89</strong></td>
<td><strong>100.0</strong></td>
<td><strong>89</strong></td>
<td><strong>100.0</strong></td>
</tr>
</tbody>
</table>

The rainfall pattern is erratic, coupled with lengthy drought periods thus rendering the plant environment fragile. Next to this is the issue of *Striga spp.* Infestation and continuous cropping. Interestingly, these two move together in the sense that as the land is cropped continuously without adequately replacing the lost nutrients (declining fertility), *Striga spp.* begins to thrive. Surprisingly, only six out of 89 farmers (6.7%) from Northern Region and five out of 89 (5.6%) from Upper East attributed the problem to lack/rising cost of fertilizer. Issues like poor seed varieties and pests/diseases did not matter among farmers in the study area.

Table 4.4. Response of maize/groundnut mixture to stone bunding.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Crop yield (kg/ha)</th>
<th>□ *Yield (kg/ha)</th>
<th>□ Yield (bags)</th>
<th>Percentage increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bunded</td>
<td>Non bunded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>4,500</td>
<td>2,910</td>
<td>1,590</td>
<td>32</td>
</tr>
<tr>
<td>Groundnut</td>
<td>5,000</td>
<td>2,505</td>
<td>2,495</td>
<td>50</td>
</tr>
</tbody>
</table>

*Yield increase due to stone bunding;
Source: computed from TRAX field data, 1999.

Table 4.5. Response of maize to mulch

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Maize yield (kg/ha)</th>
<th>Yield (bags)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No mulch</td>
<td>1808</td>
<td>1415</td>
</tr>
<tr>
<td>Mulch</td>
<td>2100</td>
<td>2500</td>
</tr>
</tbody>
</table>

Source: *Annual Report of Agroforestry Unit, MOFA (1995).*

*'nd' indicates 'no data'
Table 4.4 shows the result of an on-farm trials in which mean yields from stone bunded fields were compared with those of non-bunded fields in a typical mixed maize/groundnut farms. The table shows marked changes (increase) in crop yield as a result of bunding; 1,590kg/ha for maize and 2,495kg/ha representing approximately 32 bags and 50 bags respectively. In other words, bunding yielded a 54.6 per cent increase in maize output while that of groundnut doubled (99.6 per cent).

A 43.7 per cent (approximately 20 bags) increase in maize yield was realised as a result of mulching with Leucaena leucocephala (Table 4.5).

Cost-effectiveness of Adopting Stone Bunding

The labour-related implications of stone bunding for the farm household are paramount here since all activities draw on labour for production. In general, well constructed stone bunds tend to be labour saving in that it spare farmers the ordeal of having to construct less permanent soil conserving structures such as ridges every cropping season. In other words, avoidance of such seasonal demands on labour invariably frees capital (cash) for alternative uses (e.g. to finance the purchase of mineral fertilizers and for other non-agricultural activities).

The average farm gate prices of maize, millet, sorghum and groundnuts computed from field survey data for the 1999 cropping season is as presented in Table 4.6.
Table 4.6. Average (nominal) farm gate price for the 1999 cropping season.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Price (¢)</th>
<th>Price (¢)/Bag of 50kg.</th>
<th>Mean</th>
<th>Price (¢/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Northern</td>
<td>Upper East</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize</td>
<td>46,000</td>
<td>50,600</td>
<td>48,300</td>
<td>966</td>
</tr>
<tr>
<td>Millet</td>
<td>44,789</td>
<td>42,273</td>
<td>43,531</td>
<td>871</td>
</tr>
<tr>
<td>Sorghum</td>
<td>38,000</td>
<td>62,062</td>
<td>50,031</td>
<td>1,001</td>
</tr>
<tr>
<td>Groundnut</td>
<td>32,694</td>
<td>45,903</td>
<td>39,299</td>
<td>786</td>
</tr>
</tbody>
</table>


At a mean cost of 10,690.00 per head, an average of 12 persons are required for the construction of ‘standard’ numbers and sizes of bunds (dimensions and number of bunds per hectare which is dependent on the slope is unavailable) on a hectare of land. This data was computed using the field survey data i.e. the mean cost of hiring labour and the average number of persons needed for the task. Thus the incremental cost due to bund construction is 128,280.00.

At the going farm gate price for maize and groundnut (Table 4.6) and the incremental yields obtained in the typical maize/groundnut mixture (Table 4.4), the net incremental profit is presented in Table 4.7 below.

Results of the partial budget analysis indicate that it is worth committing resources into the adoption of stone bunding for the purpose of conserving soil and also improving upon
crop yields. This is so because the basic materials needed (stones) for the bund construction are obtainable at no cost, provided the labour for haulage is available.

Table 4.7 A partial budget of adopting Stone bunding in maize-groundnut production.

<table>
<thead>
<tr>
<th>Extra benefits/ Extra costs</th>
<th>Quantity (kg)</th>
<th>Unit price (c)</th>
<th>Total value (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Extra benefits</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra output of maize</td>
<td>1,590</td>
<td>966</td>
<td>1,535,940</td>
</tr>
<tr>
<td>Extra output of groundnuts</td>
<td>2,495</td>
<td>786</td>
<td>1,961,070</td>
</tr>
<tr>
<td>Total extra benefits</td>
<td></td>
<td></td>
<td>3,497,010</td>
</tr>
<tr>
<td><strong>Extra costs</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra labour</td>
<td>35 man days</td>
<td>10,690</td>
<td>374,150</td>
</tr>
<tr>
<td><strong>Extra benefits less extra costs</strong></td>
<td></td>
<td></td>
<td>3,122,860</td>
</tr>
</tbody>
</table>

*Materials needed are stones (no costs)
Source: Field survey data 1999.

By putting in 35 extra man-days at a total cost of 374,150.00 additional benefits of 3,122,860.00 was realised. From the result it can be seen that additional benefits far exceeded additional costs. In other words, it is worth adopting this strategy where possible since the profitability ratio of 9.3 is substantial. Also farmers can improve upon their revenue targets for maize up to about 972,762.00 from a hectare of land by simply making use of crop residues for mulching.
CHAPTER FIVE
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS.

Summary
The land use pattern in the study area suggests that the traditional farm household production strategy that has revolved mainly around extensive shifting cultivation with the aim of improving the soil quality is no more. Other husbandry methods, which were able to cope with the past, are equally ineffective due to rapid increase in population. In the face of the low resource/capital base of most farm households, much could still be done with improvement in the use of crop residues, crop rotation and cultivation practices to maintain or improve fertility, reduce run-off and thereby enhance crop yields. Again, improvement on the use of such traditional methods will also mean some form of replacement of the existing over reliance of artificial inputs, the price of which cannot be afforded by the farmer.

Conclusions
One major factor that has exacerbated land degradation and for that matter erosion is the wanton destruction of vegetation through bush burning. Apart from destroying soil nutrients, bush burning destroys small seedlings and big trees thus making it difficult for forests to re-establish themselves thereby exposing the soil to erosion. The recurrence of the bush burning problem could be partially attributed to some socio-cultural practices of the people. The people of Nangodi for example, have an annual practice of sacred bush burning called Gog during which the youth hunt game. Other groups in the Bolgatanga district have similar practices. The important issue here is
the effect such practices has on the youth rather than the festival itself. They are taught (unconsciously though) to burn and destroy without any sense of guilt.\footnote{Korem A.: Bushfires and Agricultural Development in Ghana. Ghana Publishing Corporation, 1985.}

Virtually all farmers in the study area are aware of the need for soil conservation. Four main erosion control techniques and seven fertility maintenance techniques are known and are being practiced by farmers. Of the four anti-erosion techniques, ridging is the common practice in both the Upper East and Northern regions (51 percent and 58 percent respectively). Under normal terrain conditions ridging across the slope is enough to check soil erosion. The next fairly prominent technique is the use of grass strips and crop residue management. Strip cropping is basically used to reinforce ridges.

Household refuse utilization, animal manure, composting, crop residue management, crop rotation, shifting cultivation and fertilizer are the seven fertility maintenance techniques used. Pressures from rapidly rising population have virtually eliminated the age-old system of shifting cultivation. Apart from animal/farmyard manure and household refuse use, the remaining five methods of fertility maintenance are poorly patronized in the study area especially the Upper East Region.

Non-use or poor patronage of composting, mulching and crop residue management as these fertility maintenance techniques is mainly the result of bush burning which consumes every organic residue on the field. Even though extensive use of stone bunding, as a soil conservation measure is limited to some areas in the Upper East Region (Bongo area), it is worth committing resources into programmes that will
encourage its adoption elsewhere. With its high profitability ratio of 9.3 and the more permanent nature of stone bunds, farmers stand to gain eventually.

Recommendations.

Prolonged drought certainly tips the balance in favour of desertification, which aggravates the already bad situation created by misuse of the land. Misuse of the land is however likely to be a result of the high incidence of drought in the area. An ecosystem that is fragile and which is only capable of supporting limited range of crops and livestock for example, leaves the people with no other option than to continue producing with little regard to the carrying capacity of the land.

In view of the above situation, there is an urgent need for an articulate soil conservation policy for the Northern and Upper East Regions of Ghana. Techniques used for maintaining soil fertility and preventing erosion on continuously cropped lands are already known to farmers. What is required presently is a more participatory approach to programme formulation and implementation. In other words, farmers/farming communities should be made to feel responsible for the sustenance of their land’s productivity. Enforcement of laws on bush fires should be entrusted in community leadership with strong support from government.

Control of water erosion with the use of contour ploughing and maintenance of field cover is vital. Farmers should be given the necessary institutional support (a reformed extension effort) in the area of education on effective conservation. Conservation practices
involving trees species, should be included in extension packages to farmers.

Pastureland development should also feature prominently in future government policies on agriculture as well as financial assistance (various forms of subsidy) to farmers.
APPENDIX 1  MAP OF THE STUDY AREA

Source: Base map: Survey of Ghana / Field survey by the author.
APPENDIX 2: List of villages covered

<table>
<thead>
<tr>
<th>Districts covered in Northern Region</th>
<th>Village(s)</th>
<th>Districts covered in Upper East Region</th>
<th>Village(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Mamprusi</td>
<td>Langbensi</td>
<td>Bawku East</td>
<td>Gotulis</td>
</tr>
<tr>
<td></td>
<td>Samini</td>
<td></td>
<td>Kultamisi</td>
</tr>
<tr>
<td></td>
<td>Tangbeni</td>
<td></td>
<td>Zong-Natinga</td>
</tr>
<tr>
<td></td>
<td>Bowku</td>
<td></td>
<td>Bimpiela</td>
</tr>
<tr>
<td></td>
<td>Gbangu</td>
<td></td>
<td>Kugasegu-Bugri</td>
</tr>
<tr>
<td></td>
<td>Namango</td>
<td></td>
<td>Binduri</td>
</tr>
<tr>
<td></td>
<td>Bumbazio</td>
<td></td>
<td>Narogo</td>
</tr>
<tr>
<td></td>
<td>Sakogu</td>
<td></td>
<td>Kaadi</td>
</tr>
<tr>
<td></td>
<td>Nakpanduri</td>
<td></td>
<td>Goore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manga</td>
</tr>
<tr>
<td>West Mamprusi</td>
<td>Guabuliga</td>
<td>*Bolgatanga</td>
<td>Asonge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sekoti-Baadabog</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pelungu Nayiri</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tindongo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tasoo/Kulpeliga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Madina/kulpeliga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ndanbougu/Nyogbari</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gaagin/Dagliga</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Damoligu-Tingre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nakpeligia</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY


Billes, D.J. The planning of land-use and soil and water conservation in the Northern Territories of Gold Coast - 2nd Inter African Soils Conference, Leopodville 90, 1954.


Childress, M. "Capital Investments on Smallholder Coffee Farms: An Empirical Study from Honduras", in Economic and Institutional Analysis of Soil Conservation Projects


Clay, D., F. Byiringiro, J. Kangasniemi, T. Reardon, B. Sibomana and L. Uwamariya “Promoting food security in Rwanda through sustainable agricultural productivity: Meeting the challenges of population pressure, land degradation and poverty”. Department of Agricultural Economics Staff Paper No. 95-08, Michigan State University. 1995.


de Graaff, J. The price of soil erosion: An economic evaluation of soil conservation and watershed development. Monsholt Studies No. 3. Wageningen, WAU.


Lynn, C.W. Agriculture in North Mamprusi: Dept. of Agriculture, Gold Coast Bulletin 34, 1937.


PPMEd: Statistical information from the Ministry of Food and Agriculture, Ghana (1994).


APPENDIX 3: QUESTIONNAIRE

1. CHARACTERISTICS OF RESPONDENT/HOUSEHOLD

<table>
<thead>
<tr>
<th>Household Number</th>
<th>Name of respondent</th>
<th>Relationship to household head (a)</th>
<th>Age</th>
<th>Sex (1=M 2=F)</th>
<th>Education (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) 1 = Head  
2 = Wife/Husband  
3 = Son/Daughter  
4 = Father/Mother  
5 = Sister/Brother  
6 = Others (specify)  

(c) 1 = Illiterate  
2 = Primary  
3 = Secondary  
4 = Others (specify)  

2. How many people are living in your household?

- Men □
- Women □
- Children above 5 years □

3. CHARACTERISTICS OF THE PLOTS.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>*Slope (code a)</th>
<th>Plot characteristics in 1999</th>
<th>Plot characteristics in 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fertility status (code b)</td>
<td>Extent of erosion on plot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extent of erosion on plot</td>
<td>No. of trees on plot</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Ask respondent to describe slope as compared to the whole village farms.
(a)  
1= Flat  
2= Gentle slope  
3= Steep slope

(b)  
1= Very low  
2= Low  
3= Moderate  
4= High  
5= Very high

4. USE OF SOIL AND WATER CONSERVATION TECHNIQUES.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Do you know about this technique? (Yes = 1, No=2)</th>
<th>If yes, do you use it on your farm? (Yes=1, No=2)</th>
<th>If no why? (code x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household</td>
<td>Household</td>
<td>Household</td>
<td></td>
</tr>
<tr>
<td>Hedgerows/Grass strips</td>
<td>hh 1</td>
<td>hh 1</td>
<td></td>
</tr>
<tr>
<td>Ridge across slope</td>
<td>hh 2</td>
<td>hh 2</td>
<td></td>
</tr>
<tr>
<td>Stone bunds</td>
<td>hh 3</td>
<td>hh 3</td>
<td></td>
</tr>
<tr>
<td>Mulching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household refuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum tillage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop residue management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal/farmyard manure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shifting cultivation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of fertilizer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop rotation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(x)  
1= it involve too much work  
2= it require a lot of money  
3= the technique is not convenient on my farm  
4= the materials needed are not available /scarce  
5= land is scarce  
6= others (specify)

5. What do you see as the major cause(s) of erosion? (List and rank in order of importance: 1= most important cause in that order)

.......................... .......................... ..........................
.......................... .......................... ..........................
.......................... .......................... ..........................

62
6. HOUSEHOLD FERTILITY MAINTENANCE AND EROSION CONTROL MEASURES ON PLOTS.

<table>
<thead>
<tr>
<th>Plot No.</th>
<th>Method of restoring fertility (code a)</th>
<th>Erosion control/conservation technique (code b)</th>
<th>How do you rate the completeness of the conservation work? (code c)</th>
<th>If not complete, what do you think is needed to make it complete? (code d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type(s)</td>
<td>Type(s)</td>
<td>Rate</td>
<td>Needed</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) 1= Animal manure 
2= Composting 
3= Crop rotation 
4= Shifting cultivation 
5= Fertilizer

(b) 1= Ridging across slope 
2= Grass strips 
3= Minimum tillage 
4= Crop residue management 
5= Stone bunds 
6= Hedge rows 
7= None

(c) 1= Complete 
2= Not complete

(d) 1= education 
2= materials/equipment (specify) 
3= labour 
4= financial assistance 
5= others (specify)

7. In general, how will you rank the need to practice soil conservation on farmlands?

1= low 
2= moderate 
3= high
8. COST OF IMPLEMENTING CONSERVATION TECHNIQUE FOR THE 1999 SEASON

<table>
<thead>
<tr>
<th>Technique name</th>
<th>Size/Length of land conserved/ Units (e.g length, area)</th>
<th>Number of people</th>
<th>Number of days</th>
<th>Daily wage per person (₵)</th>
<th>Month(s) of implementation in 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge across slope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terracing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum tillage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop residue management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedge rows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone bunds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Which one of the following two systems is dominant on your fields?

1= sole cropping
2= mixed cropping

10. Provide an estimate of your household’s total production of the following crops during the last (1999) cropping season.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Quantity-actual (bags/bowls)</th>
<th>Quantity-expected (bags/bowls)</th>
<th>Equivalence in kg.</th>
<th>Price per unit (₵)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>actual</td>
<td>expected</td>
<td>actual</td>
<td>expected</td>
</tr>
<tr>
<td>Maize</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorghum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundnut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowpea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soybean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Generally, do you consider crop output from your farm plots in the last 10 years as;

1= increasing
2= decreasing
3= uncertain

12. If crop output are decreasing, what do you think are the reasons for that?
13. What do you think about the future of crop production if nothing is done about the erosion problem? (indicate yes=1, no=2, uncertain=3)

1= further yield decline
2= remain as it is
3= uncertain