ESTABLISHING A RELATIONSHIP BETWEEN UTERINE MYOMA AND THYROID NODULES USING MEDICAL ULTRASONOGRAPHIC PATTERN APPROACH

BY

SETH KORTEY CLOTTEY
(10434062)

A RESEARCH DISSERTATION SUBMITTED TO THE SCHOOL OF ALLIED HEALTH SCIENCES, COLLEGE OF HEALTH SCIENCES, UNIVERSITY OF GHANA IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF MASTER OF SCIENCE IN MEDICAL ULTRASONOGRAPHY DEGREE

JULY 2014
DECLARATION

I, Mr. SETH KORTEY CLOTTEY do hereby declare that this thesis which is being submitted in fulfillment of the requirements for the degree of Msc Medical Ultrasonography is the result of my own research performed under supervision, and that except where otherwise other sources are acknowledged and duly referenced, this work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

I hereby give permission for the Department of Radiography to seek dissemination/publication of the dissertation in any appropriate format. Authorship in such circumstances to be jointly held between myself as first author and the project supervisors as subsequent authors.

Signed... Date.........................

SETH KORTEY CLOTTEY (Candidate ID.10434062)

Signed... Date.........................

(Principal Supervisor) Dr SAMUEL YAW OPOKU

Signed... Date.........................

(Secondary Supervisor) Dr VINCENT HEWLETT

Signed... Date.........................

(Head of Department) Dr SAMUEL YAW OPOKU
DEDICATION

The study is dedicated to God who granted me knowledge, strength, understanding and wisdom to do this work for purposes of preserving the world till He who died and rose on the third day will manifest to receive His own.

Consequently dedication of this work is extended to the Community of Christ Power Point Chapel, Agona Swedru for waiting till their Apostle return to serve them in the power of JAHOVAH.

To Dr Anim sampong I dedicate this work as a coach to me.
ACKNOWLEDGEMENT

Acknowledgement to the very solid pillar, Dr S.Y. Opoku, who took me through this work as a mentor and a father. These very pillars did not get tired of the study. Acknowledgement goes to all the lecturers for impacting encouragement and making important contributions to the success of the research work and presentation of this thesis/dissertation.

Acknowledgement goes to Dr V Hewlett who took me through sonographic advance technique and supervised the study.

Acknowledgement goes to my wife, Mrs. Eunice Aku Clottey who supported the Ministry of God and took the challenge to be both father and mother to our 3 children.

I Acknowledge the Arch Bishop, His Eminence Dr. Slezer Ofori-Attah of the International Council for Clergy who pardoned my absence at very important meetings during the cause of the study.
ABSTRACT

Background: Every cell in the body depends on the thyroid hormones for regulation of their metabolism. About 5-10% of thyroid nodules are suggested to be malignant. Many philosophies explain myoma growth through different pathways and most make mention of estrogen as a contributor. Estrogen is known to have influence on thyroid function, and suspected to have a role in formation of thyroid nodules. Estrogen receptors have been found in normal and neoplastic thyroid tissue and have increased numbers in uterine myoma compared to the normal myometrium. Does estrogen implication imply both thyroid nodule and uterine myoma simultaneously exist in women?

Aim: The aim of this research work was to test for relationship between uterine myoma and thyroid nodule among women using medical ultrasonographic approach.

Methods: Adult females (n=326) were ultrasonographically screened for the presence of thyroid nodules and uterine myoma using a cross sectional study and a convenient sampling method. The sonographic imaging was done using Toshiba Nemio XG ultrasound equipment with linear probe (7.0-11.0) MHz and convex probe (3.5-5.0 MHz). Blood groups (A, B, O and Rh) were tested after 5mls of blood was drawn from each participant, using blood grouping antigen screening serum.

Results: The relationship between uterine myoma and thyroid nodule was significant (p=0.0005) at 95% confidence interval among the participants using Chi-square. The ratio of participants with myoma and thyroid nodule (myo+/thy+) to myoma without (myo+/thy-) was approximately 2:1 (23.31% to 11.65 %). Comparatively, blood group A (44%) and B (57%), were more prone to present with myoma and thyroid nodule respectively among the study population.
Conclusion: The strength of the established relationship between uterine myoma and thyroid nodule was stronger below 51 years as compared to the entire study population. The highest prevalence of myoma (36.8%; $n=42$) and thyroid nodules (30.0%; $n=50$) was between the 31-40 year group. Increase average parity (2.30±2.20) decreased the risk to developing uterine myoma (myo-/thy-) significantly (0.01>p> 0.001) at 95% CI compared to developing myoma (myo+/thy-) (1.32births±1.44) in the absence of thyroid nodule. Blood group A- is more prone (66.0%) to developing myoma and most prone (100%) to present with thyroid nodule if Rhesus factor is considered.

Keywords: thyroid nodule, myoma, estrogen, estrogen receptors
TABLE OF CONTENT

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v-vi
TABLE OF CONTENTS vii- xi
LIST OF FIGURES x
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii

CHAPTER ONE
1.0 INTRODUCTION 1
1.1 BACKGROUND 1-5
1.2 PROBLEM STATEMENT 6
1.3 SIGNIFICANCE OF STUDY 7
1.4 HYPOTHESIS 7
1.5 AIM 7
1.6 OBJECTIVES 7-8

CHAPTER TWO
2.0 LITERATURE REVIEW 9
2.1 INTRODUCTION 9
2.2 UTERINE MYOMA 9-12
2.2.1 Classification of Myomas 12
2.2.2 Risk Factors 12

2.3 RELATED MYOMA STUDIES 13-14

2.4 THYROID NODULES 14-16
2.4.1 RELATED THYROID STUDIES 16-28

2.5 PREVALENCE OF DISEASES AMONG BLOOD GROUP 28-31

CHAPTER THREE:

3.0 METHODOLOGY 32
3.1 INTRODUCTION 32
3.2 STUDY DESIGN 32-33
3.3 STUDY SITE 33
3.4 STUDY POPULATION 33-34
3.5 SAMPLING METHOD 34
3.6 SAMPLE SIZE 34
3.7 INCLUSION AND EXCLUSION CRITERIA 34-35
3.7.1 Inclusive criteria 34
3.7.2 Exclusive Criteria 35
3.8 PROCEDURE FOR DATA COLLECTION 35-
3.8.1 Instrumentation validation and reliability 35-36
3.8.2 Method for collecting data 36
3.8.3 Thyroid Ultrasound Procedure 36-39
3.8.4 Myoma ultrasound procedure 39-40
3.8.5 OAB and Rh Blood Group Test 41
3.9 DATA ANALYSIS 41-42
3.10 DATA MANAGEMENT PLAN 42
3.11 ETHICS 42-43

CHAPTER FOUR

4.0 RESULTS 44
4.1 INTRODUCTION 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>STATISTICAL PRESENTATION OF MYOMA AND THYROID NODULES</td>
<td>44-45</td>
</tr>
<tr>
<td>4.3</td>
<td>PRESENTATION OF UTERINE MYOMA AND THYROID NODULES</td>
<td>45</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Age Demographics and Prevalence of Uterine Myoma</td>
<td>45-46</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Age Demographics and Prevalence of Thyroid Nodules</td>
<td>47-49</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Anthropometrics</td>
<td>50-51</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Multiplicity and Locations of Uterine Myoma among Participants</td>
<td>51-52</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Distribution of Thyroid Nodule Echogenicities</td>
<td>52-53</td>
</tr>
<tr>
<td>4.4</td>
<td>MYOMA/THYROID DISTRIBUTION WITHIN AGE</td>
<td>54-56</td>
</tr>
<tr>
<td>4.5</td>
<td>PRESENTATIONS OF NO MYOMA AND NO THYROID NODULES</td>
<td>56</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Demographics and Prevalence of Non-myoma, Non-thyroid nodule Participants</td>
<td>56-57</td>
</tr>
<tr>
<td>4.6</td>
<td>COMPARISON OF VARIOUS MYOMA/THYROID COMBINATIONS</td>
<td>58-59</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Comparing Non-myoma, non-thyroid with various myoma/thyroid combinations</td>
<td>59-60</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Comparison of Myoma/Thyroid with Myoma/non-thyroid and Non-myoma/Thyroid</td>
<td>60</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Comparison of Myoma/Non-thyroid- with Non-myoma/Thyroid</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>BLOOD GROUP DISTRIBUTIONS OF PARTICIPANTS</td>
<td>61-62</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Blood Groups Distribution of Participants Presenting With Uterine Myoma</td>
<td>62-63</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Blood Groups Distribution of Participants Presenting With Thyroid Nodules</td>
<td>63</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Blood Group Distribution of Participants Without Myoma and Thyroid Nodules</td>
<td>63</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Comparison of uterine myoma, thyroid nodule and non-myoma non-thyroid nodules</td>
<td>64</td>
</tr>
</tbody>
</table>

CHAPTER FIVE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>DISCUSSIONS</td>
<td>65</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>STATISTICS</td>
<td>65-66</td>
</tr>
<tr>
<td>5.3</td>
<td>PREVALENCE OF UTERINE MYOMA AND THYROID NODULES</td>
<td>66-67</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Age Demographics and Prevalence of Uterine Myoma</td>
<td>67-68</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Age Demographics and Prevalence of Thyroid Nodules</td>
<td>68-69</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Anthropometrics: comparing myoma and thyroid nodule generally</td>
<td>69-70</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Multiplicity and Locations of Uterine Myoma among Participants</td>
<td>70-71</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Distribution of thyroid nodule echogenicities</td>
<td>71-72</td>
</tr>
</tbody>
</table>
5.4. COMPARISON OF VARIOUS (MYO/THY) COMBINATIONS TO (MYO- / THY-) GROUP

5.4.1 Non-Myo/non-thyoid and compared to Myoma+/Thyroid+ 72-73

5.4.2 Myo-/thy- compared to Myo+/thy and Myo-/thy+ 73-75

5.4.3 Myo+/thy- compared to Myo-/thy+ 75

5.5 Blood Group Distribution and Myoma and Thyroid Nodule 76-77

CHAPTER SIX

6.1 INTRODUCTION 77

6.2 CONCLUSIONS 77-80

6.3 RECOMMENDATIONS 80-81

6.4 LIMITATION 81

REFERENCES 82-98

APPENDIX A 99

APPENDIX B 100

APPENDIX C 101

APPENDIX D 102-103

APPENDIX E 104

APPENDIX F 105

APPENDIX G 106
LIST OF TABLES

Table 4.1: Observed and expected values of myoma and thyroid symptoms

Table 4.2: Statistical relationship between the observed and expected values

Table 4.3: Age demographics and prevalence of uterine myoma

Table 4.4: Age demographics and prevalence of thyroid nodules

Table 4.5: Observed and expected values of myoma and thyroid symptoms below 51 years

Table 4.6: Distribution of weight, height and BMI

Table 4.7: Multiplicity and location of myoma in participants

Table 4.8: Distribution of thyroid nodule echogenicties

Table 4.9: Myo/Thy Combinations Distribution within Each age Age

Table 4.10: Age demographics and prevalence of thyroid nodules

Table 4.11: Distribution of weight, height, parity and BMI among various myo/thy combinations

Table 4.12: Comparing myo-/thy- to various myo/thy combinations

Table 4.13: Comparing myo+/thy+ to myo+/thy- and myo-/thy+

Table 4.14: Comparing Myo+/Thy- And Myo-/Thy

Table 4.15: Blood group of participant presenting with uterine myoma and thyroid nodules

Table 4.16: Comparison of uterine myoma, thyroid nodule and non-myoma non-thyroid
LIST OF FIGURES

Fig 3.1: Normal transverse and longitudinal ultrasonographic images of the thyroid
Fig 3.2: Cystic and hypoechoic thyroid nodules
Fig 3.3: Hyperechoic and mixed echogenic thyroid nodules
Fig 3.4: Fine calcifications and thyroid nodules with solid part
Fig 3.5: Post intramuscular and multiple intramuscular myomas
Fig 3.6: Posterior cervical intramuscular myoma and pendunculated myoma
Fig 3.7: Normal uterus without myoma
Fig.4.1: Age distribution and prevalence of myoma
Fig.4.2: Age distribution and prevalence of thyroid nodule
Fig.4.3: Types of echogenicities
Fig.4.4: Myo/Thy Combinations Distribution within Each age Age
Fig.4.5: Age distributions of participants without myoma and thyroid nodules
Fig.4.6: Blood group of participants presenting with uterine myoma and thyroid nodules
LIST OF ABBREVIATIONS

CI Confidence interval
COD Coefficient of determination
df degree of freedom
FNAC fine needle aspiration cytology
Myo myoma
Thy thyroid
Myo/thy myoma thyroid nodule combination
Myo+/thy- myoma present thyroid nodule absent
Myo+/thy+ myoma present thyroid nodule present
Myo-/thy+ myoma absent thyroid nodule present
Myo-/thy- myoma absent thyroid nodule absent
SMH Swedru Municipal Hospital.
TRMRA Time resolved magnetic resonance angiography
US Ultrasonography
18FDG 18-Flurodeoxyglucose