LEARNING TO EXPRESS MOTION EVENTS IN EWE

BY

FRANCISCA ADZO ADJEI

(10046632)

THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF PhD LINGUISTICS DEGREE.

JULY, 2013
DECLARATION

I declare that no portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning. References to other works have been duly acknowledged.

Franscica Adzo Adjei Date

Prof. K.K. Saah Date

Prof. Akosua Anyidoho Date

Dr. Evershed Kwasi Amuzu Date
DEDICATION

To my family
ACKNOWLEDGEMENTS

The completion of this thesis has been possible through the assistance and support of many people who set off upon this long journey with me as well as people whom I encountered along the way. After five years of countless hours of reading, writing, rewriting, procrastinating and finally writing again, this is it. A piece of work that asks for thanking people around me for teaching, guiding, encouraging, urging, and showing me that there is life beyond the PhD, and reminding me that I have a PhD to finish. Very well, I oblige.

First of all, I would like to express my most sincere thanks to my supervisors, Prof. K.K. Saah, Prof. Akosua Anyidoho and Dr. Evershed Amuzu for their constant support, encouragement, guidance and understanding from the start up to the very end. I am most grateful for their “surgical” precision in “dissecting” and commenting on my work and their ability to keep just the right balance between providing helpful supervision and letting me make my own choices.

A “huge” thanks to all the participants who kindly volunteered to take part in the study; the children and their parents in Akrofu and Sokode, akpé ná mi loo! Special thanks to the 2012 graduating Ewe class of the University of Education, Winneba. My thanks go to the staff of the Multimedia studio of the ICT Department of the University of Education, Winneba, for allowing me to use their facilities in recording the adult data. I must also acknowledge the contribution of Mr. Koto Odoku, a level 300 student of the Department of Art Education University of Education, Winneba for creating the picture book, Klo aﬁ ka nèle?
My research was generously supported financially by the University of Education, Winneba and the American Council of Learned Societies (ACLS), who through their African Humanities Programme (AHP) secured a one year leave (2012-2013) for me from the University. ACLS also supported my research stay at the University of Ibadan, Nigeria. A big thank you to the Director of the Office of International Programmes of the University of Ibadan and her staff – Edith, Segou, Anuohuwapo, Mr. Falola, Mr. Effiong Akpan of the Linkhouse, as well as the head of the Department of African Languages and Linguistics, her staff and students for their administrative support during my research stay. I am also grateful to my Eck family in Ibadan, especially the Iboks and Mr. William Mejuru who made me feel at home, away from home.

Many thanks to Mr. Aspect Caiquo and Ms. Felicia Takrama. Your suggestions and encouragement helped me decide I could take on this adventure. I am also grateful to Dr. Patrick Ekow Bankah (neurosurgeon) and Mr. Ulric Sena Abonie (physiotherapist) all of the Korle-Bu Teaching Hospital who showed me so much love and gave me the necessary treatment and attention when my spine nearly gave up because of the prolonged period of sitting up in the writing of this thesis.

I must acknowledge the contribution of all the lecturers in the Linguistics Department of the University of Ghana and other linguists – Prof. Emeritas Mary Esther Kropp-Dakubu, Prof. Felix Ameka and Prof. James Essegbe who inspired me a lot with their selfless service. I am thankful. I must thank Mrs. Agatha Augustt for typing the work.
Many thanks go out to my numerous friends, including Regina, Cecilia and especially Dr. Samuel Atintono who, though in Manchester University, always made sure I had access to the necessary and current materials for my work. My sincere thanks also go to my research assistants, Mr. Emmanuel Dogbe and Mr. Elvis Yevudey.

Finally, but most importantly, I thank my family dearly for their support, love and unshakeable trust during all this time. My husband Peter, and my children (biological and non-biological) provided me with the necessary love, faith, strength and courage to go through all the stages of this journey. They were my best fellow travellers along the uphills, downhills and twisted paths. Thank you all. *Mia wóé wɔ dɔ. Miawé sè ŋù. Akpe dzáá. Sé nètú tsi ná mì.*
ABSTRACT

The focus of this thesis is to examine Ewe speakers’ linguistic organization of motion events and how such language patterns develop in Ewe-speaking children. The work is situated within Talmy’s Theory of Lexicalization Patterns (which examines the conceptual structure of motion events as well as the typological patterns in which this conceptual structure is parcelled out in languages), Slobin’s Thinking-for-Speaking Hypothesis (which explores how particular typological properties will lead Ewe children to learn a particular way of thinking-for-speaking) and the Cognitive and Language-Specific Hypotheses. The cognitive hypothesis claims that children come to the task of language learning with a pre-existent cognitive representation of the world. In contrast, the Language-specific hypothesis claims that the language learning process is often under the semantic structure of the input language and that such influence begins from the very beginnings of language acquisition.

Elicited production tasks with fifty 3-, 4-, 5-, 7- and 9 year olds (10 participants in each age group) as well as a group of 10 adults were carried out using three elicitation tools developed for research into motion expression.

Findings of the study support the claim that typological properties constrain how speakers of Ewe talk about motion from early acquisition phases to adulthood. At age three, Ewe-speaking children used more path verbs than manner verbs in the expression of motion events. From four years onwards, they used the typical SVC constructions, a combination of Manner and Path verbs, to express motion events. They also mentioned only one piece of information about ground of movement in individual clauses. The children neither showed any
ability at describing the physical setting in which movement takes place (until 9 years of age) nor fully develop the narrative habit of describing complex motion events. Ewe-speaking children’s performance in motion event description has been found to grow gradually with increasing age and adult performance is always more extensive than that of children at any age. These results also suggest that while Ewe children follow equipollently-framed structural pattern when talking about motion events at a tender age of three, equipollently-framed discourse characteristics in Ewe-speaking children do not achieve maturity until adulthood.

The thesis provides evidence for some possible early cognitive tendencies and the place of language specific hypothesis in language development. It also lends support to the typological categorization of Ewe within the Talmian and Slobin’s frameworks which can be used in other comparative studies in future research.
TABLE OF CONTENT

DECLARATION .. i

DEDICATION ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. vi

TABLE OF CONTENT ... viii

LIST OF TABLES .. xvi

LIST OF FIGURES .. xviii

ABBREVIATIONS IN INTERLINEAR GLOSSES ... xx

CHAPTER ONE .. 1

GENERAL INTRODUCTION ... 1

1.0 Introduction ... 1

1.1 Aims of the Study ... 4

1.2 Research Questions ... 4

1.3 Methodology ... 5

1.3.1 Participants ... 5

1.3.2 Data Collection Tools .. 7

1.3.3 Transcription Format and Data Analysis ... 8
1.3.4 Tape Identification ... 9
1.3.5 Reference to the Data .. 9

1.4 Theoretical Considerations ... 9
1.4.1 Talmy’s Typology .. 9
1.4.2 Thinking-for-Speaking Hypothesis .. 11
1.4.3 Cognitive Hypothesis versus the Language-specific Hypothesis 12

1.5 The Outline of the Thesis ... 14

CHAPTER TWO ... 16

LITERATURE REVIEW ... 16

2.0 Introduction ... 16

2.1 Talmy’s Work ... 16

2.1.1 Talmy’s Theory of Lexicalization and Motion Events 16

2.1.2 The Motion Event ... 18

2.1.3 Diversity of Patterns in Motion Expression 23

2.1.3.1 The Three-Way Typology: The Verb Root 24

2.1.3.2 Lexicalisation Pattern: Motion + Co-event 24

2.1.3.3 Lexicalisation Pattern: Motion + Path .. 26

2.1.3.4 Lexicalisation Pattern: Motion + Figure .. 28
2.1.3.5 Other Minor Patterns.. 31

2.1.3.6 Split and Parallel Systems of Conflation ... 32

2.1.4 The Two-way Typology: Path of Motion.. 34

2.1.5 Typological Shifts ... 38

2.1.6 Typology Revisited (A Third Category) ... 40

2.2 The works of Slobin and others ... 42

2.2.2 Cline of Manner Salience ... 46

2.2.3 Cline of Path Salience ... 51

2.2.4 Linguistic Relativity and Slobin’s Proposal to Shift the Subject from “Thought and Language” to “Thinking and Speaking” .. 54

2.3 Cross-linguistic studies on motion events .. 61

2.3.1 Introduction .. 61

2.3.2 Thinking-for-Speaking Research ... 61

2.3.3 Narrative Style ... 62

2.3.4 First Language Acquisition ... 71

2.4 Linguistic Relativity Research ... 79

2.4.1 Positive Evidence ... 80

2.4.2 Conflicting Evidence.. 83
CHAPTER THREE.. 88

FORMAL ENCODING OF MOTION EVENTS IN EWE.. 88

3.0 Introduction .. 88

3.1 The Language and Its Speakers.. 88

3.2 Phonology and Morphology... 89

3.3 The Syntax of Ewe ... 91

3.4 Ewe Verbal System ... 97

3.5 Ewe Adpositions ... 100

3.6 The Linguistic Encoding of Motion Events ... 106

3.6.1 Introduction ... 106

3.6.2 The Linguistic Encoding of Figure and Ground in Ewe................................. 106

3.6.3 Ground .. 107

3.6.4 Goal and Source .. 110

3.6.5 Motion Interpretation from Non-motion Expressions...................................... 113

3.7 Verbs that have a Motion Semantics ... 116

3.8 Verbs that Express Direction ... 119

3.8.1 Verbs that Conflate the Fact of Motion and the Speed of Movement 119
3.9 Motion-cum Purpose Constructions .. 119

3.10 The Linguistic Encoding of Path .. 120

3.10.2 Boundary Crossing Verbs ... 122

3.10.3 The Directional Complement Verbs .. 124

3.10.4 Deictic Path Verbs in Ewe ... 125

3.11 The Linguistic Encoding of Manner .. 125

3.11.1 Some Semantic Categories of Ewe Manner of Motion Verb 126

3.12 The Linguistic Encoding of Cause of Motion 131

3.13 The Place of Ewe in Motion Event Typology 135

3.14 Summary ... 137

CHAPTER FOUR .. 139

MOTION EVENT EXPRESSION IN NARRATIVES OF THE CONTROL GROUP (ADULT EWE SPEAKERS) .. 139

4.0 Introduction ... 139

4.1 Methodology .. 140

4.1.1 The Control group and Data .. 140

4.1.2 Data Collection Procedure ... 141

4.1.3 Transcription ... 141
4.2 Coding Categories ... 142

4.2.1 Motion Verb Categories ... 142

4.3 Results ... 150

4.3.1 Uses of Motion Verbs ... 150

4.3.4 Static Setting Versus Dynamic Movement 167

4.4 General Discussion and Conclusion ... 169

4.4.1 The Use of Motion Verbs ... 169

4.4.2 Descriptions of Ground Elements per Individual Clauses 184

4.4.3 Dynamic Movement versus Setting ... 187

4.5 Summary of Chapter Four ... 191

CHAPTER FIVE .. 194

DEVELOPMENT OF MOTION EXPRESSIONS IN EWE-SPEAKING

CHILDREN ... 194

5.0 Introduction ... 194

5.1 Research Participants, Data and Method of Collection 195

5.1.1 Coding .. 196

5.2 Results and Discussion .. 197

5.2.1 Learning to Use Motion Verbs ... 197
LIST OF TABLES

Table 1: Ewe Spatial Prepositions... 102

Table 2: Simple Postpositions.. 104

Table 3: Complex Postpositions... 105

Table 4: Motion verbs used: Manner of Motion Verbs extracted from Adult Tortoise Stories ... 152

Table 5: Path Verbs extracted from Adult Stories 153

Table 6: Neutral Verbs extracted from Adult Stories 154

Table 7: Distribution of Verb Patterns in Ewe Tortoise Stories 155

Table 8: Distribution of Plus-Ground Clauses by the Type of Ground Elements ... 161

Table 9: Number of Event Segments Mentioned by Each Adult Ewe Narrator of the antelope Scene... 163

Table 10: The Entire Collection of Motion Verbs in Ewe – Adult Tortoise Stories .. 171

Table 11: The Entire Collection of Motion Verbs in English and Spanish Languages ... 172

Table 12: Proportion of Plus and Minus Ground Motion Expressions in Adult Spoken Narratives in Ewe, Mandarin, Spanish and English^6 185

Table 13: Description in English, Spanish, Chinese and Ewe 192
Table 14: Manner of Motion Verbs in Tortoise Stories: Frequency and Distribution ... 199

Table 15: Path of Motion Verbs in Tortoise Stories: Frequency and Distribution ... 200

Table 16: Neutral Motion Verbs in Tortoise Stories: Frequency and Distribution .. 202

Table 17: Distribution of Different Motion Verb Combinations in SVCs 205

Table 18: Development of Ground Elements.. 207

Table 19: Number of Event Segments Mentioned by Each Ewe Tortoise Narrator in the Antelope Scene... 210

Table 20: Goal Source and Medium Clauses in Ewe Tortoise Stories 224
LIST OF FIGURES

Figure 1: Talmy’s (1985) typology of path encoding .. 10
Figure 2: Satellite-framed languages ... 34
Figure 3: Verb-framed Languages .. 35
Figure 4: Frequency distribution of manner, path and neutral expressions 159
Figure 5: Frequency distribution of manner + manner 160
Figure 6: Total Type of Frequencies of Different Motion Verb Categories for All Speakers of Each Age Group ... 203
Figure 7: Token Frequencies of Different Motion Verb Categories for Each Group ... 204
Figure 8: Total Token Frequencies of Different Verb Combination Types (in SVCs) for Each Age Group ... 205
Figure 9: Percentage Distribution of Plus Ground Clauses in Ewe Tortoise Stories .. 208
Figure 10: The Number of Segment Mentioned for the Antelope Scene in Ewe Tortoise Stories ... 211
Figure 11: The Development of Static Description of Setting 212
Figure 12: Development of Plus Ground Clauses in English, Spanish, Chinese and Ewe ... 227
Figure 13: Mean Number of Event Segments Mentioned in the Antelope Scene by the Different Age Groups
ABBREVIATIONS IN INTERLINEAR GLOSSES

ABL = Ablative
ACC = Accusative
ALL = Allative
ALTRI = Altrilocal
COMP = Complementizer
COP = Copula
cf = Confer
DAT = Dative
DEF = Definiteness marker
DEM = Demonstrative
DIM = Diminutive
DIST = Distal
FOC = Focus marker
HAB = Habitual
INDEF = Indefiniteness marker
INT = Intensifier
IT = Itive
LOC = Locative
LOG = Logophoric pronoun
NEG = Negative
pFOC = Predicate Focus
PL = Plural marker
POSS = Possessive
POSTP = Postposition
POT = Potential
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRES</td>
<td>Present tense</td>
</tr>
<tr>
<td>PROG</td>
<td>Progressive</td>
</tr>
<tr>
<td>PROSP</td>
<td>Prospective</td>
</tr>
<tr>
<td>PROX</td>
<td>Proximal</td>
</tr>
<tr>
<td>Q</td>
<td>Question marker</td>
</tr>
<tr>
<td>RED</td>
<td>Reduplicative</td>
</tr>
<tr>
<td>REL</td>
<td>Relativiser</td>
</tr>
<tr>
<td>REP</td>
<td>Repetitive</td>
</tr>
<tr>
<td>RW</td>
<td>Run Walk Crawl Climb video Clips</td>
</tr>
<tr>
<td>SG</td>
<td>Singular</td>
</tr>
<tr>
<td>SUBJV</td>
<td>Subjunctive</td>
</tr>
<tr>
<td>SVC</td>
<td>Serial Verb Construction</td>
</tr>
<tr>
<td>TOP</td>
<td>Topicalizer</td>
</tr>
<tr>
<td>TP</td>
<td>Topic marker</td>
</tr>
<tr>
<td>TP</td>
<td>Terminal Particle</td>
</tr>
<tr>
<td>UFP</td>
<td>Utterance Final Particle</td>
</tr>
<tr>
<td>VENT</td>
<td>Ventive</td>
</tr>
<tr>
<td>VT</td>
<td>Verb Transitive</td>
</tr>
<tr>
<td>1, 2, 3</td>
<td>First-, Second -, and Third- persons</td>
</tr>
</tbody>
</table>

Other Symbols

- *e.g.* = for example
- *etc* = etcetera
- *i.e.* = that is
- *klo* = Based on a picture book, “Tortoise where are you?”
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>lit</td>
<td>literally</td>
</tr>
<tr>
<td>p.c</td>
<td>personal communication</td>
</tr>
<tr>
<td>RW</td>
<td>Run Walk Crawl Climb video Clips</td>
</tr>
<tr>
<td>SM</td>
<td>Slobin Manner Clips</td>
</tr>
<tr>
<td>x;y</td>
<td>year; month</td>
</tr>
<tr>
<td>S-languages</td>
<td>Satellite-framed languages</td>
</tr>
<tr>
<td>V-languages</td>
<td>Verb-framed languages</td>
</tr>
</tbody>
</table>
CHAPTER ONE

GENERAL INTRODUCTION

1.0 Introduction

The universal character of language in language acquisition has been discussed by examining the issue from multiple directions and dimensions. The most fundamental issue in the study of first language acquisition is to distinguish between two sources of structure and determine how they interact: the capacities and predispositions learners bring to the task themselves on the one hand, and a combination of properties of the language and the contexts (culture, etc) in which the language is used. This thesis takes up a domain that researchers have examined again and again – the expression of motion events. This linguistic representation of motion events and its impact on cognitive processes has been one of the main research topics explored in recent studies. Motion events are among the earliest and most basic and pervasive events in our lives (Johnson 1987, cited in Chen 2005, Chen and Guo 2009, 2010). They typically involve an entity moving from one place to another along a specified path. We move around the world everyday, we experience the movement of ourselves and others from the first day we are born and we talk about movement of objects and animate beings ever since we start to talk. Although the basic elements of motion events are universal around the world, different languages may verbally represent the same motion in different ways.

Works on motion event expressions in the field of language acquisition have progressed considerably over the past three decades. Since the 1990’s, a
growing number of studies have investigated how adults package and children learn the appropriate packaging of motion event components in their target language. These studies include Tzeltal (Brown, 2004), Chinese (Chen, 2005, Chen and Guo, 2009), Mandarin (Guo and Chen, 2010), English (Slobin, 1996a), American Sign Language (Galvan and Taub, 2004), English, Turkish and Spanish (Ozcaliskan and Slobin, 1999) Basque (Ibarretxe-Antunano, 2004), Korean and English (Choi and Bowerman, 1991), English and Spanish (Hohenstein, Naigles and Eisenberg, 2004) etc.

To the best of my knowledge, no study has been done on how children express motion events in African languages. There have been some formal study on the acquisition of Bantu languages with phonological issues receiving the most attention. Some of these are Chimombo and Mtenje, (1989), Connelly, (1984), Demuth (1984, 1987a, 1987b, 1988, 1992, 1998, etc), Idiata, (1998), Kunene (1979), Lewis and Roux (1996), Suzman (1980, 1982, 1985, 1987, 1991, 1996), and Tsonope (1987). For the West African languages, a limited number of works on the acquisition of phonology can be found in the literature. These include Dangme (Apronti, 1968), Akan (Kumi, 1988, Dyson, 1980) and Ewe (Akordor, 2002). There is very little investigation of children’s use of syntactic and semantic constructions in the West African languages as well. The works that exist in this domain can be counted on the finger tips. These are Saah (1994), a two part study that combines the study of certain construction types like interrogative sentences, focus marking and relative clauses with the acquisition and processing of such structures by Akan-speaking children of a mean age of 5 years, four months. A second work of Saah (2002) shows that ‘by the age of 5/6,
Akan-speaking children have acquired near-adult competence in the use of wh-in-situ questions and that they are also aware of the animacy restriction that regulate the use of overt and null 3rd person object pronouns in the language’ (Saah, 2002:230)

For Ewe, three works have been identified in the literature. These are Adjei (2005), Adjei (in press) and Noyau (2002). Adjei (2005) explored Ewe-speaking children’s knowledge of Ewe colour terms to find out whether they can make syntactic and semantic distinctions between the basic colour terms. Adjei (in press) is concerned with how children use two modal constructions – an epistemic certainty construction and an Undergoer Voice construction. Also found in the literature for the acquisition of Ewe is Noyau’s (2002) work on the development of narrative strategy in bilingual Ewe and French children. This shows that the terrain on the acquisition of Ewe in general lies fallow.

Against this background, this thesis examines Ewe-speakers’ linguistic organization of motion events based on these proposals. It carries out the discussion by looking at Slobin’s (1987) “thinking-for-speaking hypothesis (which calls to mind the Sapir-Whorf hypothesis) in which descriptions of events are coloured at least partly by the relative richness or paucity of the language components available to the speaker. One of the approaches suggested by Slobin and which suits my work is the stages at which children talk about experience in ways that appear specifically shaped by the linguistic system they are acquiring. The thesis finds out how such language patterns develop as Ewe-speaking children grow older. Another suggestion, that children are prepared from the beginning to accept linguistic guidance as to which distinction they should rely
on in organizing particular domains of meaning (Bowerman, 1985) and how specific semantic patterns influence the way speakers of a language talk about motion, was also examined.

1.1 Aims of the Study

This thesis has two goals. First, it examines adults’ use of motion expressions in order to determine the typological classification of Ewe. If the adult Ewe speakers’ speech show a mixture of characteristics typically associated with both verb-framed languages (in such languages, the preferred means of expressing Path is a verb, with Manner expressed in a subordinate constituent) and satellite-framed languages, (those in which the preferred means of expressing Path (the core component of a motion event) is a non-verbal element associated with a verb) then it gives supporting evidence that Ewe is indeed an equipollently-framed language. Second, it examines the developmental path of Ewe-speaking children’s use of motion expressions, and uses it to explore the debate between the “language –specific” and “cognitive-hypothesis” (section 1.5.3) as well as Slobin’s thinking-for-speaking hypothesis. If the characteristics of language use by the youngest age group show similar patterns as those of Ewe-speaking adults, it will provide supporting evidence for the hypothesis or claims made above.

1.2 Research Questions

To serve the above research goals, the following research questions were addressed:
1. How are motion events expressed in Ewe? This question can be divided into four sub-questions:

 (i) how is path of motion expressed in a narrative?

 (ii) how is manner of motion expressed?

 (iii) how is a combination of manner and path of motion expressed?, and

 (iv) how are complex paths expressed?

2. How does the typological category of Ewe correlate with

 (i) the saliency of manner

 (ii) the packaging of multiple path and ground elements, and

 (iii) the elaboration of path in narrations?

3. Do the features that children acquire first in Ewe resemble those of satellite-framed languages, verb-framed languages, or equipollently-framed languages.

4. Do Ewe-speaking children engage in the activity of thinking-for-speaking (Slobin, 1996a) as they select and organize information in discourse?

1.3 Methodology

1.3.1 Participants

Participants for the children’s data were recruited from Akrofu and Sokode in the Volta Region of Ghana through friends and acquaintances.
Participants included 60 Ewe-speaking1 children at age 3, 4, 5, 7 and 9 with 10 participants in each group along with 14 adult native speakers (age range 29–48).

However, for the children, only 50 (ten participants each from each year group) were selected for the analysis. The adults’ selection was based on dialect background to ensure that the major dialect areas were covered. Subjects for the child data were selected based on the following predetermined criteria:

1. Parental willingness for the child to take part in the study.

2. At least one parent must be Ewe-speaking and Ewe is one of the dominant languages spoken at home.

3. All the children were acquiring Ewe as their first language and parents report that none of them had any intellectual or hearing impairment, nor any history of a speech or language disorder. (See Appendix C for a copy of the Information and Consent Form for Parents, child assent letter and researcher’s introductory letter which were translated into Ewe and read to the parents and 5-, 7- and 9-year olds).

There were equal numbers of males and females in all groups. Participants included both monolinguals and educated bilinguals (Ewe and English) because it is scarce to find monolinguals these days. Most parents send their children to preschools by age 4. (See appendix A for information on participants).

1 Ewe-speaking children are children who satisfy all the predetermined criteria listed below.
Suggestions of Eisenbeiss (2005:117) were followed because the study sites are communities where large families are the norm. Eisenbeiss suggests that it is advisable not to record a comparatively large group of individual children and to obtain input samples for each of these children from their primary caretakers. Rather one should try to make recordings in a small number of families who come from different social backgrounds. In this way, less time is required for traveling between recording sites and setting up equipment and one needs to record fewer adults for an analysis of children’s input.

In addition, the recording of all siblings provides a better basis for input analysis as they provide crucial information which is often neglected in studies where only the primary caretaker’s conversations with the target child of the study are recorded and other sources of input are ignored.

Moreover, factors of social group are easier to control if the sample involves several groups of children who share the same social and family background.

1.3.2 Data Collection Tools

I elicited data by using three elicitation tools developed for research into motion expressions.

- 1) Klo, a fi ka nèle? “Tortoise where are you? This wordless picture book invites a rich collection of motion event descriptions and presents an excellent source for cross-linguistic study of motion event descriptions in connected discourse. The same set of events can be narrated by speakers of different languages, and consistent differences, if found, cannot be attributed to the stimulus. For example, if certain
aspects of events shown in the picture are proved likely to be expressed
by one language group but not by others, that means that those aspects
are given special attention by speakers of one language in the course of
verbalization while they are ignored by speakers of other languages.

2) Slobin Manner Clips (Slobin 2002). This is a set of video clips which
show people moving in different manners of motion. I showed these
to four adult consultants and four children from four groups. I asked
them to describe what happened in the videos. Data for the three year
olds were discarded because they could not give any meaningful
description.

3) Run Walk Crawl/Climb – This is a set of video clips designed by
researchers involved in motion encoding in language project at
NTNU (Norwegian University of Science and Technology). They
show moving people and animals. I used these clips in elicitation six
times; three times with two adults and three times with a group of
four children.

1.3.3 Transcription Format and Data Analysis

The transcription conventions excerpted from Berman and Slobin (1994),
was adopted. All the speech of the participants were orthographically transcribed
by the researcher. Reliability was ensured by giving the recording to two
graduate assistants with Linguistics background to transcribe. The various data
analysis procedures were discussed in chapters four and five.
1.3.4 Tape Identification

The following information was stated on the tapes for the children before beginning the recording session: Code for village, Child’s name, Sex, Age (year, month) and date of birth. For the adults, the participant’s name, sex, age, hometown and dialect spoken were stated. (See Appendix A).

1.3.5 Reference to the Data

In this thesis, the source of every Ewe example is indicated in brackets, following the English example translation. Sometimes the source is followed by an indication of the specific elicitation tool used. The following abbreviation are used.

\[\text{SM} = \text{Slobin Manner Clips}\]

\[\text{RW} = \text{Run Walk Crawl Climb video Clips}\]

\[\text{Klo} - \text{Based on a picture book, “Tortoise where are you?”}\]

1.4 Theoretical Considerations

1.4.1 Talmy’s Typology

The research on motion expression has widely been influenced by the typology of motion events proposed by Talmy (1985, 1991, 2000). He asserts that languages can be grouped together on the basis of how they encode the core information of a specific semantic domain onto syntactical and lexical structures. There are two distinct groups: those that allocate information of a specific semantic domain in the verb and those that do so in some other elements called satellites. The two basic types of languages recognized by Talmy are satellite-
framed (where path is lexicalized as a “satellite” to a verb, as in ‘1a’) and verb-framed languages (where path is lexicalized as a semantic component of a motion verb) illustrated by ‘1b’, the Spanish equivalent of ‘1a’, (see figure 1 also).

1a. The bottle floated out
b. La botella salio (flotando)
 the bottle exited (floating)
 ‘the bottle floated out’

Figure 1: Talmy’s (1985) typology of path encoding

Verb framed pattern

Verbal conflation e.g. salir ‘exit’

Satellite-framed pattern

(Adapted from Levinson and Wilkins 2006:18)

However, as more languages are studied, issues have arisen to challenge Talmy’s dichotomous typology. Brown (2004) reports that Tzeltan, a Mayan language, can express path of motion in both main verbs and directional satellites, and consequently, Tzeltal could be classified as either language type. Zlatev and
Yangklang (2004) report that Thai, a serial-verb language, allows juxtaposition of two main verbs with equal grammatical status in one clause, with one verb expressing manner. To add to the problem, serial-verb languages are not a rare phenomenon but rather are represented by a wide range of language families, such as Niger-Congo, Hmong-Mien, Mon-Khmer, Austronesian, Tai-Kadai, and Sino-Tibetan (Zlatev and Yangklang, 2004). Slobin (2004) classified such languages as a third language type – the equipollently-framed languages – because path and manner are expressed by two linguistic forms that have roughly equal morphosyntactic status (see also Ameka and Essegbey, 2001, Lambert-Brétière, 2009).

In addition to Talmy’s typology, other theoretical considerations that are important to the thesis include Slobin’s Thinking for-Speaking Hypothesis and the Cognitive and Language Specific Hypotheses. These are discussed below.

1.4.2 Thinking-for-Speaking Hypothesis

Slobin’s dialectical approach to language has led him to develop one of his current major theoretical positions concerning the psychology of language, the hypothesis of Thinking-for-Speaking, which he formulates as follows (Slobin, 1996a):

[T]he expression of experience in linguistic terms constitutes thinking-for-speaking – a special form of thought that is mobilized for communication. In the evanescent time frame of constructing utterances in discourse one fits one’s thought into available linguistic frames.” Thinking for speaking involves picking those characteristics of objects and events that (a) fit some conceptualization of the event, and (b) are readily encodable in the language. (p.76)
According to this hypothesis, in the course of acquiring the grammar of a particular language, a person has to adopt a particular framework for schematizing experience Slobin (1991:71). Such language specific ways of the schematizing experience constitute what he calls thinking for speaking. Slobin’s hypothesis is that when we present events or experiences in language, we have to take a grammaticalized point of view in order to fit them to the structure of the language. Since each language has its own particular grammatical structure, people who speak different languages must take different grammaticalized points of view. Speakers are required to pay active attention to conceptual distinctions made by the grammar of the particular language they speak. For example, if you were a speaker of Turkish and were asked to describe a past event, you would have to specify whether the event was directly witnessed or not, since such a distinction forms a part of the grammar of Turkish. However, it is highly unlikely that an English speaker would even try to make such a distinction in describing the same event.

In this thesis, I examined the rhetorical style (Berman and Slobin 1994, Slobin, 1996a, 2004) of the CONTROL GROUP’S (Ewe-speaking adults) use of motion expressions as a path or window to measure how children learn and use motion expressions.

1.4.3 Cognitive Hypothesis versus the Language-specific Hypothesis

One of the key debates in child language development is between the Cognitive and the Language-specific hypothesis. The cognitive hypothesis (for general discussion of this position see Cromer, 1976; Bowerman, 1976, Clark,
1977) claims that children come to the task of language learning with a pre-existent cognitive representation of the world. In the initial stages of language learning, children learn how to map the structures of the cognitive system onto the linguistic system. In contrast, the language – specific hypothesis (for general discussion of this position, see Brown, 1958, Bowerman, 1985, Gentner, 1982) claims that the language learning process is often under the “immediate influence of … the semantic structure of the input language” (Bowerman, 1985:1305), and such influence begins, as Bowerman argues, from the very beginning. She states:

I argue that children are prepared from the beginning to accept linguistic guidance as to which distinction … they should rely on in organizing particular domains of meaning. (Bowerman 1985:1284).

The central issue in this debate is not whether the cognitive or linguistic structures do or do not play any role in child language development, since people on both sides would agree that both ultimately play a role. The crucial question in this debate is when and how each of the two factors exerts its influence on language development.

The research on motion events has opened out new research perspectives showing how these three theoretical approaches influence various activities including speaking, writing and translation, etc and how speakers of typologically distinct languages attend to different dimensions of motion event.

There are many studies on language use and on the acquisition of lexical packaging, most of them based on Talmy’s typology of motion event encoding. These three theoretical approaches were examined into detail in Chapter 2 when revising the literature on motion expression.
Other factors were also taken into consideration. Studies on grammatical and lexical development tend to focus on children below the age of six; and studies on phonological development often even start with the very earliest sound productions of children. In contrast, studies on narrative development typically involve older children. Thus, data from a broad age range is required to allow for different types of analysis.

1.5 The Outline of the Thesis

The thesis is further organized into five chapters. Chapter 2 presents a detailed account of the typological frames in which Talmy describes motion events and summarizes the whole gamut of research influenced by the Talmian theory of lexicalization patterns for motion events. Such research will be grouped into two blocks: Slobin’s “Thinking-for-speaking” research (Section 2.8.2) and Linguistic relativity research.

Chapter 3 provides a detailed description of the linguistic resources available for the formal encoding of motion events in Ewe and discusses the place of Ewe in the motion event typology.

Chapter 4 examines the patterns of motion event descriptions by adult Ewe speakers in oral narratives elicited from Ewe speakers from different age groups using the wordless picture book Klo\(^2\) afi ka nele? ‘Tortoise where are you’.

\(^2\) The tortoise was selected in place of the frog because first, nobody in the African sense will keep a frog as a pet. Second, the frog carries negative connotations in the children’s
Chapter 5 investigates Ewe children’s development of motion event expressions through the examination of motion event descriptions in tortoise stories produced by learners/children at ages 3, 4, 5, 7 and 9 and Chapter 6 summarizes the main findings of this dissertation, addresses possible directions for future research and suggests some applications of the work.

Any child who wets the bed is rolled up in his/her mat. A frog is tied at the edge of the mat and the culprit is carried amid singing and clapping and dumped in a stream at dawn. The frog is believed to heal the child of that “illness”. The psychological effect this has on the child, coupled with the shame, makes them to hopefully stop wetting the bed.

Second, in the performance of certain purification rites, a frog and a chick are tied to a palm frond and dragged through people’s homes, footpaths and streets to purify the town/village and ward off evil spirits. The sight of such suffering creatures frighten children a lot and make them fear the frog.
CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

This chapter reviews the typological frames of Talmy in the description of motion events as well as cross-linguistic studies on motion events. The chapter continues to highlight contributions that Slobin and others have also made to research on Motion events.

2.1 Talmy’s Work

2.1.1 Talmy’s Theory of Lexicalization and Motion Events

Talmy (2000) delves into the exploration of the semantic relations in language between meanings and overt linguistic forms – in other words, he delves into the process of lexicalisation. “Lexicalisation is involved where a particular meaning component is found to be in regular association with a particular morpheme” (Talmy, 2000b:24). His basic assumption is that we can isolate elements or components separately within the domain of meaning and within the domain of linguistic expression. Then, the next step (a semanticist has to take) is to examine which semantic elements are expressed by which linguistic elements. Talmy remarks that this relationship is not one-to-one; a combination of semantic elements may be expressed by a single linguistic element, and a single semantic element may be expressed by a combination of linguistic elements. Moreover, semantic elements may be expressed by the same type of surface element, and the same type of semantic elements may be expressed by several different surface elements. For example, an English motion
verb surface element can encode distinct types of semantic information: Manner of motion (e.g. hop), Cause (e.g. kick) and Path (e.g., exit, enter). On the other hand, the Path element may be encoded in English by verbs and by prepositions (e.g., out, into), that is, by two different linguistic elements. According to Talmy, by looking at the relations between meaning and linguistic forms, a range of universal principles and typological patterns might emerge.

Talmy’s approach to lexicalisation (adapted from Talmy 2000b: 22; 2007:67) can be summarized as follows:

a. Determine various semantic entities in a language.

b. Determine various surface entities in the language.

c. Observe which (a) entities are expressed by which (b) entities – in what combination and with what relationship – noting any patterns.

d. Compare (c) - type patterns across different languages, noting any metapatterns (universal principles).

e. Compare (c) – type patterns across different stages of a single language through time, noting any shifts or nonshifts that might be guided by a given universal principle (or a (d) – type metapattern).

f. Consider the cognitive processes and structures that might give rise to the phenomena observed in (a) through (e).
Finally, two directions or perspectives can be adopted for exploring meaning. One direction is to hold constant a selected surface or linguistic entity and observe which semantic entities are variously expressed by it, and the other direction is to keep a particular semantic entity constant and observe the surface or linguistic entities in which it can appear. The two typologies proposed by Talmy, the three-way classification (Talmy 1972, 1985) and the two-way classification of languages (Talmy, 1991, 2000b; cf. Cifuentes Férez 2008:24) result from adopting either of these two directions.

In sum, Talmy’s concern is to find out whether, for a particular semantic domain, languages exhibit a wide variety of patterns, a small number of patterns (i.e., a typology), or a single pattern (i.e., a universal pattern). The semantic domain of Motion, (though his findings are also generalized to other domains) is one of the domains favoured by his research. He has examined the conceptual structure of motion events as well as the typological patterns in which this conceptual structure is parcelled out. In the sections that follow some of these issues were addressed.

2.1.2 The Motion Event

Talmy (2000b) defines an event as a portion of reality which has been delimited or bounded by the human mind. As he explains, ‘(t)he human mind in perception or conception can extend a boundary around a portion of what would otherwise be a continuum, whether of space, time […] and ascribe to the excerpted contents within the boundary the property of being a single unit entity’ (Talmy, 2000b: 215). Moreover, an event can be conceptualized as having a
particular type of internal structure and degree of complexity. Thus, there are complex events, which are made up of a main event or **framing event** and a subordinate event or **co-event** (both of which are ‘conceptualised as unitary events), together with the relation that the co-event bears to the framing event.

The framing event provides the schematic structure for the motion event and can be analysed into four components; (1) a moving figure, (2) a physical ground (i.e., a landmark) with respect to which the figure moves (3) an activating process, namely motion, and (4) a path that relates the figural entity to the ground entity. The co-event may take one of several forms, with the two most common forms being the manner event, which encodes the manner in which the motion is carried out (e.g., floating, running), and the causation event, which encodes the event originating the motion (e.g., kicking, throwing).

Talmy considers a situation containing motion and the continuation of a stationary location alike as a motion event. In his own words:

> The basic Motion event consists of one object (the Figure) moving or located with respect to another object (the reference object or Ground). It is analysed as having four components: beside Figure and Ground, there are Path and Motion. The Path (with capital P) is the path followed or site occupied by the Figure object with respect to the Ground object. The component of Motion (with capital M) refers to the presence per se of motion or locatedness in the event [...]. In addition to these internal components, a Motion event can be associated with an external Co-event that most often bears the relation of Manner or of Cause to it (Talmy 2000b: 25, 2007: 70-71).

Let us illustrate this with the following example:

1. Sika walked slowly down the stairs.
Sika is the Figure, the stairs is the Ground and down is the Path. The verb, to walk expresses simultaneously the fact of Motion (framing event) and the Manner of motion (Co-event).

There are two types of motion found in motion events: Translational motion and self-contained motion. In Talmy’s (2000b:35) words, “[i]n translational motion, an object’s basic location shifts from one point to another in space. In self-contained Motion, an object keeps its position, or “average” location. Self-contained Motion generally consists of oscillation, rotation, dilation (expansion and contraction), wiggle, local wander, or rest’. Let us consider examples (2), (3) and (4) to illustrate these notions.

2. Adzo entered the room. = translational motion

3. The aeroplane hovered over the town. = self-contained motion

4. Joan slid through the hall in her socks. = self-contained + transitional motion.

Example (2) depicts the Figure’s change of location from the outside to the inside of the room. In contrast, example (3) shows self-contained motion; the Figure hovers over the town by gliding its wings. Sometimes, it is difficult to tell transitional and self-contained motion apart, as (4) shows. The manner verb to slide includes a component of friction, or rubbing (i.e., self-contained motion) between the Figure (Joan) and the Ground (the hall). However, such friction can only exist in the course of the Figure’s translational motion (through the hall). Thus, in English, the activity of self-contained motion has often come to be

Self-contained motion is intrinsically linked to manner of motion, in other words, to the Manner relation between the co-event and the motion event. In the Manner relation, the co-event co-occurs with the motion event, as we have seen in example (4), and is conceptualized as an additional activity that the Figure of the motion event exhibits. This activity directly pertains to the motion event but is distinct from it. However, the relation between the co-event and the motion event need not be limited to that of Manner, rather it can bear a wide range of relations (Talmy, 2000b: 42-47):

a. Causal relation: ‘the co-event can precede the main Motion event in the case of onset causation, or it can co-occur with the main Motion event in the case of extended causation’ (Talmy, 2000b: 44-45).

5. Our tent blew down into the gully from a gust of wind – Onset Causation.

6. I squeezed the gel out of the tube = Extended causation.

b. Precursion relation: the Co-event precedes the main motion event but does not cause or assist its occurrence. In the example below, the splintering of the glass preceded but did not cause the motion of the glass onto the carpet.

7. The glass splintered onto the carpet.

c. Enablement relation: the Co-event directly precedes the main motion event and enables the occurrence of an event that causes the Motion but does not itself cause this Motion:
8. I scooped jelly beans up into her sack.

9. Could you reach/grab that bottle down off the shelf?

d. Reverse enablement: the Co-event named by the verb is an event that has previously taken place and that now gets undone. This new event, in turn, enables the main motion event named by the verb particle ‘auf’ in the following example:

10. Ich habe den Sack aufgebunden (German)

Lit: I have the sack open-tied = I untied the sack and opened it.)

e. Concomitance relation: the co-event co-occurs with the main motion event and is an activity that the Figure of the motion event additionally exhibits. But this activity does not in itself pertain to the concurrent Motion, that is, it could just take place by itself:

11. She wore a green dress to the party.

12. I whistled past the arena.

f. Subsequence relation: the co-event takes place directly after the main motion event, and is enabled by, caused by, or is the purpose of that motion event.

13. I’ll stop at your office (on my way out of the building).

14. They locked the prisoner into his cell.
2.1.3 Diversity of Patterns in Motion Expression

Having looked at the definition of a motion event and examined the semantic components which underpin the conceptualization of this event and its varying relations with a co-event, we move on to deal with the characteristic lexicalisation patterns proposed by Talmy in detail. As we briefly mentioned in the introduction, the three-way classification of language (Talmy, 1972, 1985) and two-way classification (Talmy, 1991, 2000b) represent a different perspective taken on the relations between the semantic level and the morphosyntactic (linguistic) level. The former perspective kept constant a morphosyntactic constituent, the verb root, and looked at which semantic components were characteristically placed in it by various languages. It was found that most languages characteristically express either the Path, the co-event (the Manner or the cause), or the Figure in addition to the fact of Motion in the verb. In the later perspective, the semantic component of Path was kept constant, focusing the examination on which morphosyntactic constituent it was characteristically placed in by various languages. It was observed that most languages characteristically place the Path component either in the verb root (in verb-framed languages) or in the satellite and/or preposition (in satellite-framed languages).

3 Talmy (2000:102) defines satellite as the grammatical category of any constituent other than a nominal complement that is in a sister relation to the verb root. It relates to the verb root as a dependent to a head. The satellite which can be either a bound affix or a free word, is thus intended to encompass all of the following forms, which traditionally have been largely treated independently of each other. English verb particle, German separable and inseparable verb prefixes, Latin or Russian verb prefixes, Chinese verb complements, Lahu non-head ‘versatile verbs’ – Caddo incorporated nouns, and Atsugewi polysynthetic affixes around the verb root. The set of forms that can function
2.1.3.1 The Three-Way Typology: The Verb Root

This typology results from looking at which semantic components are characteristically lexicalized in verb roots by several languages. Three typological principal lexicalisation types for verb roots are presented by virtue of the verb root expressing either the Co-event (Manner or Cause), the Path, or the Figure in addition to the fact of Motion. Other conflations or minor patterns may exist within a language, as we shall see in the course of our discussion, although languages are categorized according to the most characteristic lexicalisation pattern they exhibit. In most cases, a language uses only one of these types for the verb in its most characteristic expression of Motion. According to Talmy (2000:27), ‘characteristic means that (1) it is colloquial in style, rather than literary, stilted and so on; (2) it is frequent in occurrence in speech, rather than only occasional; (3) it is pervasive, rather than limited – that is, a wide range of semantic notions are expressed in the type.

2.1.3.2 Lexicalisation Pattern: Motion + Co-event

In one group of languages, including Finno-Ugric, Chinese, Ojibwa, Warlpiri and all branches of Indo-European languages (except for Romance languages), the verb typically expresses at once the Motion and a Co-event, as satellites in a language often overlaps partially, but not wholly, with the set of forms in another grammatical category in that language, generally the category of prepositions, verbs, or nouns.
usually either the Manner or the Cause of the Motion. English is the protoypical example of this group.

Below are English expressions of Motion with conflated Manner or Cause extracted from Talmy (2000:28, 2007)\(^4\).

Move + Manner

i) **Non-Agentive**\(^5\)

15 a. The rock slid/rolled/bounced down the hill.

15 b. The gate swung/creaked shut on its rusty hinges.

15 c. The smoke swirled/squeezed through the opening.

(ii) **Agentive**

15 d. I slid/rolled/bounced the keg into the storeroom.

15 e. I twisted/popped the cork out of the bottle.

(iii) **Self-Agentive**

\(^4\) Talmy (2007) is a revised and expanded version of Talmy (1985). A version that is still further revised and expanded than Talmy (2007) appears as chapters 1 and 2 of Talmy (2000b). And chapter 3 in that volume extends the framework in Talmy (2007) to additional semantic categories.

\(^5\) Non-agentive motion has to do with situations in which entities that are capable of motion on their own perform some motion.

Agentive motion refers to a motion event whose Figure is moved by an agent; the agent causes the motion but the verb can express either its cause or the Manner in which the Figure moves.

Self-agentive motion refers to events in which Figures are able to move by themselves.
15 f. I ran/limped/jumped/stumbled/rushed/groped my way down the stairs.

15 g. She wore a green dress to the party.

Move + Cause

iv) **Non-agentive**

15 h. The napkin blew off the table.

15 i. The bone pulled loose from its socket.

15 j. The water boiled down to the midline of the pot.

v) **Agentive**

15 k. I pushed/threw/kicked the keg into the storeroom.

15 l. I blew/flicked the ant off my plate.

15 m. I knocked/pounded/hammered the nail into the board with a mallet.

2.1.3.3 Lexicalisation Pattern: Motion + Path

In the second typological pattern for the expression of motion, the verb conflates both the fact of Motion and Path. Semitic, Polynesian, Romance, Korean, Turkish, Tamil, Nez Perce, and Caddo belong to this pattern. Spanish motion verbs are perfect examples of this type:

Spanish expressions of Motion with conflation of Path taken from Talmy (2000:49-51).

Non-Agentive
16a. La botella entró a la cueva (flotando)

The bottle MOVED-in\(^6\) to the cave (floating)

‘The bottle floated into the cave.’.

b. La botella salió de la cueva (flotando)

The bottle MOVED-out from the cave (floating)

‘The bottle floated out of the cave?’

c. Metí el barril a la bodega rodándo lo

I MOVED-in the keg to the storeroom rolling - it

‘I rolled the keg into the storeroom.’

d. Saqué el corcho de la botella retorciéndolo

I –MOVED-out the cork from the bottle twisting-it

‘I twisted the cork out of the bottle.’

As examples (16a-d) illustrate, if the Co-event (either Manner or Cause) is expressed in Spanish, it tends to be in an independent element, usually as adverbial or gerundive. In many languages, besides Spanish, the expression of Manner and/or Cause by adverbials and gerundives is stylistically awkward. That is why information about Manner or Cause is often omitted, especially when the Manner of motion is a default or expected Manner of motion of the Figure, or it has been previously established in the surrounding discourse.

In contrast, English verb roots readily conflate the Co-event but not Path. This lexicalisation pattern is not characteristic, though English also has verbs that

\(^6\) Following the glossing system of Cifuentes-Férez (2008) Spanish motion verbs are glossed as MOVED-in/out (for non-agentive motion and MOVED-in/out MOVED-in/out (for agentive motion), to show the conflation of motion and Path.
incorporate Path such as arrive, approach, circle, cross, descend, enter, exit, follow, join, pass, rise, return, separate, etc. but most of them are historic borrowings from Romance languages. Furthermore, Talmy (2000b: 62, 139) notes that this conflation pattern, i.e., Motion + Path in verb roots, rarely extends to conflation of location with site, such as ‘BE-on’ ‘BE-under’, etc., though in English, there are some incidental cases of such conflation; eg. surround (be around), top (be atop), flank (be beside) adjoin (be next to), span (be from one side to the other), line (be in line) and fill.

2.1.3.4 Lexicalisation Pattern: Motion + Figure

In the third typological pattern, the verb root conflates Motion and Figure. Languages in this type are Navajo and Hokan languages (such as Atsugewi). English does have a few forms that conform to this pattern:

English examples of conflation of Motion and Figure taken from Talmy (2000b: 57).

Non-agentive

17a. It rained in through the bedroom window.

Agentive

17b. I spat into the cuspidor.

Talmy uses Atsugewi, a polysynthetic language of Northern California, as the prototypical example of Figure – type languages. In Atsugewi, verb roots tend to express movement of objects, body parts and garments: ‘Atsugewi has verb roots that refer to a particular garment moved or located for wear that takes
affixes indicating whether the garment is on, or is put on or taken off oneself or someone else’ (Talmy, 2000b: 59).

Atsugewi verb roots of Motion with conflated Figure taken from Talmy (2000b: 58).

18a. -lup- ‘for a small shiny spherical object (e.g., a round candy, an eyeball, a hailstone) to move/be located.

b. –caq- ‘for a slimy lumpish object (e.g., a toad, a cow dropping) to move/be located.’

c. –staq- ‘for runny icky material (e.g., mud, manure, rotten tomatoes guts, chewed gum) to move/be – located.

19. Atsugewi expressions of motion with conflated Figure (Talmy, 2000b:59).

a. /’- w – uh – staq – ik - /

Locative suffix: -ik ‘on the ground’

Instrumental prefix: uh- ‘from gravity (an object’s own weight) acting on it’.

Inflectional affix set: ‘-w-’ 3rd person subject (factual mood)

Literal: Runny icky material is located on the ground from its own weight acting on it.

Instantiated: ‘Guts are lying on the ground’

b. /’-w-ca-staq-ict-a/
Directional suffix: -ict ‘into liquid’

Instrumental prefix: ca- ‘from’

Inflectional affix set: ‘-w- - a ‘3rd, person subject (factual mood)

Literal: ‘Runny icky material moved into liquid from the wind blowing on it

Instantiated: ‘The guts blew into the creek’

c. /s-‘ –w-cu-staw-cis-a/

Directional suffix: -cis ‘into fire’

Instrumental prefix: cu- ‘from a linear object, moving axially, acting on the figure’

Inflectional affix set: ‘s-‘ –w- - a ‘I subject, 3rd person object (factual mood)

Literal: ‘I caused it that runny icky material move into fire by acting

on it with a linear object moving axially’

Instantiated: ‘I prodded the guts into the fire with a stick’

Languages can sometimes conflate the same kind of semantic distinctions but in very distinctive ways. For example, Southwest Pomo conflates Motion with Figure, not as Atsugewi does, but rather with the numerosity of the Figure: ‘for one/two or three/several together … to move’ (Cifuentes-Férez 2008:34).
2.1.3.5 Other Minor Patterns

Although these three conflating systems for Motion verbs are apparently the main ones found across languages, Talmy (2000b:62) notes other lexicalisation patterns occur as well. He identified some minor systems of agentive verbs conflating two semantic components:

20. Ground + Path + Motion, such as box and shelve in the following examples:
 a. I boxed the apples = cause to move into a box
 b. I shelved the book = cause to move onto a shelf.

21. Figure + Path + Motion, such as powder and scale in:
 a. She powdered her nose = cause facial powder to move onto her nose
 b. I scaled the fish = cause the scale to move off

These multi-component conflation patterns do not seem to form a language’s characteristic lexicalisation pattern for expressing Motion. Such combinations would require an enormous verb lexicon with fine-grained semantic combinations (Talmy, 2000b: 62).

On the other hand, there are some conflations which are dispreferred. One particular Motion-event component, the Ground, does not by itself conflate with the Motion verb to form any language’s main system or pattern for expressing Motion. Unlike other motion event components, it is not clear why the Ground
component is so disfavoured. Talmy (2000b: 61) thinks that the explanation might be sought in a concept hierarchy:

The different conflation types seem to be ranked in their prevalence among the world’s languages, with conflation of Path as the most extensively represented, of Manner/Cause next, and of Figure least so. It may therefore be the case that Ground conflation is also a possibility, but one so unlikely that it has not yet been instantiated in any language.

Nonetheless, this does not really explain why the lexicalisation of Ground is dispreferred by languages. The prevalence of the three lexicalisation patterns among the world’s languages may be interpreted as if languages are much more concerned with expressing the trajectory of motion, the manner in which the Figure moves and even the entity that moves than with conveying the reference entity. It might be argued that Ground is the least prominent element of a motion scene, thus, it is disfavoured in lexicalisation; however, we have not come across any psycholinguistic research supporting this idea (Cf. Cifuentes-Férez 2008: 35).

2.1.3.6 Split and Parallel Systems of Conflation

Previously, it has been discussed that a language apparently has a characteristic conflation type. However, a given language can characteristically (a) use a different conflation system for different kinds of Motion, that is a language may have a split system of conflation, or (b) use different conflation types with the same type of motion event, that is, a language may have a parallel system of conflation.
To illustrate split systems of conflation, Talmy focused on Spanish, Emai and Tzeltal. As documented by Aske (1989) and Slobin and Hoiting (1994), Spanish uses the Path-conflating type for motion events whose paths are conceptualized as crossing a boundary, and the manner – conflating type when there is no boundary-crossing involved.\(^7\)

A different split pattern is found in Emai (a language spoken in Nigeria, Schaefer, 1986). Emai has a great number of path verbs but generally uses them only for self-agentive motion. For non-agentive motion, it uses verbs conflating the Co-event.

Tzeltal exhibits another split system. In fact, it uses each of the three lexicalisation types for separate types of motion events:

a. Figure – conflating verbs when the Figure is or ends up supported at some location, Tzeltal verb roots ‘largely distinguish Figure objects in terms of their disposition: their form, orientation, and arrangement relative to other objects’ (Talmy 2000b: 65).

b. Path-conflating verbs for autonomous motion of a the Figure, that is, ‘(for a Figure) to MOVE along X Path’ and for controlled agentive motion, that is, ‘(For an Agent) to MOVE (The Figure) along X Path while holding (it)’ (Talmy, 2000b: 65).

\(^7\) Slobin and Hoiting (1994) find that the boundary-crossing constraint (present in events in which the Figure crosses a boundary, such as ‘exit’ and ‘enter’) is at work in French, Japanese, Korean and Turkish as well.
c. Co-event-conflating verbs in constructions with the ‘directional form of the Path verbs (which, according to Talmy (2000b: 65), function like Path satellites).

Finally, for a parallel system of conflation, Talmy (2000b:66) comments on modern Greek, which uses the path- and the co-event conflating types to represent most events of self-agentive motion ‘with comparable colloquiality’:

21. a. Etreksa mesa (s- to split)
 I-ran in (to- the house [ACC])
 ‘I ran in (-to the house)’.

b. bika (trekhondas) (s-ito spiti)
 I-entered (running) to-the house
 ‘I entered (the house (running))’ [ACC]

2.1.4 The Two-way Typology: Path of Motion

Talmy’s binary typology hinges on a single crucial criterion: whether a given language preferentially expresses path (i.e. change of location) in the main verb (as in V-languages) or in satellite elements associated with the main verb as in S-languages as Fig. 2 and 3 illustrate.

Figure 2: Satellite-framed languages
Thus, Path accordingly to Talmy (1991, 2000), is the defining conceptual element, or core schema of motion, while Manner constitutes a subordinate, or supporting piece of information i.e., a co-event. He writes:

Since the figural entity of any particular framing event is generally set by context and since the activating process [the motion] generally has either of only two values, the portion of the framing event that most determines its particular character and distinguishes it from other framing events is the schematic pattern of association with selected ground elements into which the figural entity enters. Accordingly, either the relating function alone or this together with the particular selection of involved ground elements can be considered the schematic core of the framing event … the relating function that associates the figural entity with the ground elements among which the transition takes place constitutes path. The core schema here will then be either the path alone or the path together with its ground locations. (Talmy 1991: 483)

These typological differences are illustrated in (22) and (23) to show the preferential lexicalisation of Path and Manner of motion in these two types of language.

22. Satellite-framed pattern, e.g.

```
Subject_{Figure}  Verb_{Manner}  Satellite_{Path}  Object_{Ground}
```

```
JulieF  ranM  acrossP  the streetG
```

23. Verb-framed pattern, e.g. French

```
Subject_{Figure}  Verb_{Path}  Object_{Ground}  Gerund_{Manner}
```

```
JulieF  runM  throughP  the streetG
```
James ran across the street.

(Adapted from Kopecka, and Pourcel (2008:8-9))

Slobin (2004) provides a detailed list of verb- and satellite-framed languages:

- **Satellite-framed languages:**
 - Germanic: Danish, Dutch, English, German, Icelandic, Swedish, Yiddish
 - Slavic: Czech, Polish, Russian, Serbo-Croatian, Ukrainian
 - Finno-Ugric: Finnish, Hungarian
 - Chinese: Mandarin
 - Australian: Warlpiri

- **Verb-framed languages:**
 - Romance: Catalan, French, Galician, Italian, Portuguese, Spanish
 - Semitic: Moroccan Arabic, Hebrew
 - Turkic: Turkish
 - Basque
 - Japanese
 - Korean
Sign Languages: American Sign Language, Sign Language of the Netherlands

Talmy (1991, 2000b) also suggests that the constituent where Path is characteristically expressed to a great extent is where aspect, change of state, action correlation, and realization are characteristically encoded as well. In other words, the binary typology for motion events extends to at least the other four types of events. Thus, verb-framed languages characteristically lexicalise the trajectory of motion, aspect, change of state, action correlation in the main verb, whereas it is expressed by verb particles or satellites in satellite-framed languages. Let us illustrate this with examples from English and Spanish taken from Talmy (2000b: 240-260).

24. Change of State

I blew out the candle.

Apagué la vela de un

‘I extinguished the candle [by] blowing air on it/with a blow’

25. a. English: I burned him to death
b. Spanish: Lo mataron con fuego quemándolo

‘They killed him with fire [by] burning him’.

26. Action Correlation

a. English: I played the melody along with him.
b. Spanish: (i) Yo lo acompañe cuando tocamos la melodía

‘I accompanied him when we played the melody’

(both he and I played).
(ii) Yo lo acompañe tocando la melodia

‘I accompanied him [by] playing the melody (only I played)’.

c. German: Ich habe mit ihm die Melodie mitgespielt

‘I played the melody along with him.’

d. English (b) I outplayed him.

e. Spanish: Yo le gane tocando la melodia

‘I surpassed him playing the melody.’

In all these examples, changes of state as well as action correlation are expressed in English with the particle or satellite, while the main verb encodes the Co-event (Manner or Cause). In contrast, in Spanish, the main verb expresses the transition to a new state in (25), and coactivity in (26), while the adjunct, either a prepositional phrase (de un soplo, con fuego), or a gerund (solplándolo, quemándolo, tocando), expresses the Co-event.

2.1.5 Typological Shifts

The shift of a language from one preferred lexicalisation pattern to another, or its maintenance through the course of time is still unexplored research area. The factors that may have tilted one language towards maintaining its typological pattern category and another language toward shifting to another must yet be discerned.

In a speculative fashion, Talmy (2000b: 118-119) comments that Latin, Classical Greek and Proto-Germanic all exhibited the presumably Indo-European pattern of using co-event-conflating verb roots together with path satellite that
formed prefixes on the verb roots. Possibly because of phonological changes that made the path prefixes less distinct from each other and from the verb roots, all three languages apparently became unable to maintain their inherited pattern. Both Germanic Greek\(^8\) proceeded to develop a new set of path satellites that largely supplanted the prior set. This permitted the maintenance of the inherited pattern for representing motion events with co-event verb conflation. On the other hand, languages arising from Latin developed a new system of path-conflating verbs, rather than re-establishing the path satellite system. In this process, Talmy (2000b: 119) remarks that each of the daughter languages formed its set of path verbs in its own way by variously coining new verbs so as to fill out the basic directional grid of the new path verb system. For example, the Latin verb *salio* (jump) which combined with path prefixes such as *up* and *out* developed into Italian *salire* (ascend) and Spanish *salir* (‘go out’) (cf. Walchi, ms. cited in Cifuentes-Férez 2008: 40). At the same time, these languages may have undergone the complementary change of advancing their gerundive construction for the expression of Manner and Cause. Kopecka (2004, 2006a, 2009, in press), examines French’s typological shift from a satellite-framed pattern to a verb-framed pattern. Drawing on diachronic data, she provides diachronic evidence of this shift and concludes that this shift can be mainly attributed to the weakening of productivity of verbal prefixes.\(^9\) Although old French prefixes lost their productivity, many remnants are found in modern French. On one hand, there

\(^8\) Papagragou et al. (2002, 2006) categorized modern Greek as a verb-framed language.

\(^9\) Other closely related factors contribute to this typological shift as well, namely, the loss of prefixed verbs by other lexical items.
are verbs with quite transparent prefixes, such as s’en-voler ‘fly away’ and sur-
voler ‘fly over’ which conform to the satellite-framed pattern. On the other hand, there are more opaque verbs, whose composite nature is no longer discernable, such as arriver ‘arrive’ and éloigner ‘move away’ which is consistent with the verb-framed pattern.

2.1.6 Typology Revisited (A Third Category)

Talmy’s typological framework offers an economical way of characterising motion lexicalisation patterns across a wide range of languages, and has been widely discussed. Indeed, an important gap in the typology seems apparent when considering serializing languages, such as Thai (Zlatev and Yanklang 2004) or Ewe and Akan (Ameka and Essegbey (2001). The specificity of these languages is to express both Path and Manner equipollently in a single verb clause containing two or more obligatory verbs, i.e., one verb expressing Path and one verb expressing Manner. In other words, Path and Manner receive equal semantic emphasis within the same verb complex, e.g.

27. Thai

Čán kláp kháw paj/maa naj hɔɔŋ
I return enter go/come inside room

‘I came back into the room’. (Zlatev and Yangklang, 2004: 164, ex. 8).

Ewe

28. Ḑeví – á tá yi xɔ - a me.
child- DEF crawl go room-DEF containing region

‘The child crawled into the room.’
Zlatev and Yangklang (2004) have argued that serializing languages share characteristics of both satellite- and verb-framing languages, and therefore do not clearly correspond to either of the patterns offered by Talmy’s typology.

Moreover, Talmy’s theory of lexicalisation patterns does not seem to take into account the fact that languages within the same typological group show a differing degree of manner of elaborations. For example, Spanish and Basque are both verb-framed languages but their elaborations of Manner and Path are quite different, as has been shown by Ibarretxe-Antunano (2004a, 2004c, 2006a, 2006b). Basque describes Manner much more often than Spanish; thanks to its sound symbolic expressions or movement initiatives, and thus Basque is closer to satellite-framed languages. On the other hand, in terms of Path, Basque generally offers more detailed paths or trajectories than Spanish. As a way of resolving this issue, it has been proposed that ranking languages on clines or continuums of manner (Slobin, 2004, 2006a, 2006b) and path salience (Ibarretxe-Antunano, 2004a, 2004c, 2004b, 2008) would be more useful than placing them into typological categories. Slobin (2004, 2006a) and Ibarretxe-Antunano (e.g., 2004a, 2008) identify a number of factors which contribute to a language’s degree of path and manner salience respectively. This proposal of clines of semantic component saliency were examined after looking at the third category proposed.
2.2 The works of Slobin and others

2.2.1 Equipollently-framed Languages

Slobin (2004:249) proposed a tripartite typology of motion-event constructions: verb-framed, satellite-framed and equipollently-framed languages. Equipollently-framed languages are those languages in which both Path and Manner have roughly equal morphosyntactic status; in other words, Path and Manner are expressed by equivalent grammatical forms as stated earlier in Section 2.1.6. There are at least three subtypes of equipollently-framed languages according to Slobin (2006a: 64):

1. Serial-verb languages: In serial-verb language, it is not always clear which verb in a series, if any, is the main verb. The Niger-Congo, Hmong-Mien, Sino-Tibetan, Tai-Kadai, and Mon-Khmer families and some Austronesian languages belong to this group.

2. Bipartite verb languages: the Hokan and Perutian languages described by Delancey (1989; 1996) are languages in which the verb consists of two morphemes of equal status, one expressing Manner and the other Path. Talmy (2000b:113), drawing from Aoki (1970), provides a similar description of Nez Perce manner prefixes, such as *quqí- láhsa* ‘gallop-ascend’. Rhodes, (cited in Cifuentes-Férez, 2006: 42) in a personal communication with Slobin (in 2003) reports that such constructions are typical of Algonquian, Athabaskan, Hokan; and Klamath-Takelman Huang and Tanangkingsing (2004) report that at least one Austronesian language, Tsou, has apparently developed bipartite manner – path verbs from serial-verb constructions.
3. Generic verb languages: the Australian language, Jaminjung (Schultze-Berndt, 2000) has a very small lexicon of about 24 function verbs. For encoding motion events, one of five verbs is used, expressing a deictic or aspectual function: go, come, fall, hit, do. These verbs are combined with satellite-like elements or covers, which encode both Path and Manner in the same fashion.

In response to Slobin’s proposal of a third group of language, Talmy (in Ibarretxe-Antunano, 2005: 331) agrees that the equipollently-framed category is a good way to view such linguistic variation, but he strongly argues that the criteria used for judging main verb status in those languages have been too few, and that authors need to apply an expanded set of criteria to elucidate which constituent is privileged with main verb status. These criteria or factors range from phonological to morphosyntactic to semantic factors.

Ameka and Essegbey (2001/2013) for instance, drawing on data from Akan and Ewe, Kwa languages, and Sranan, a Caribbean Creole with Gbe substrate spoken in Surinam, investigate the expression of complex translational motion events in serializing languages in the light of Talmy’s typology. They argue that serializing languages pose a challenge to this typology as they express Path as well as the co-event of manner infinite verbs that together function as a single predicate in translational motion clause. They concluded that these languages constitute a type because in terms of discourse properties, verb serializing
languages behave like verb-framed languages with respect to some properties and like Satellite-framed languages in terms of others:

When the properties are tallied, we find that serializing languages share more properties with S-languages than the V-languages to which they are supposed to belong while still possessing a unique property. What this shows is that they cannot be said to belong to either type. Instead, they appear to belong to a class of their own. Ameka and Essegbey 2001/2013:36).

This study also contributed to the revision of the typology hence Slobin’s (2004, 2006) proposal that a third type, equipollently-framed languages be added to include serial-verb languages and other types of languages in which both manner and path are expressed by equipollent elements that is, elements that are equal in formal linguistic terms and appear to be equal in force or significance. The role of verb serialization in the expression of spatial notions and structures that encode motion events is further explored in Ameka and Essegbey (2006) for Ewe. These works that discuss motion provide a starting point for the exploration of the acquisition and use of motion expressions as constrained by typology in the current thesis.

Slobin’s proposal of the equipollently-framed type has been challenged by Talmy (2009) who insists that constructions used in the serializing languages (exemplified mainly with Chinese) for the translational-motion events are satellite-framing. Croft et al (2010), who also proposed a revision of Talmy’s typology, suggested that the framing type should not be used to characterize
whole languages and deconstruct the various framing types into construction types.

Lambert-Brétière’s (2009) paper also challenges the typological classification of serializing languages by proposing that a serializing language like Fon, a Kwa language mainly spoken in South Benin, is better analyzed as a satellite-framed language, lexicalizing the core-schema of motion (path) in a verb satellite rather than as a verb-framed or equipollently-framed language. In this paper, semantic and syntactic arguments are presented, leading to a new definition of verbal satellite in functional terms. An important point that this paper makes is that there is no need for a specific typological classification of serializing languages like Fon. Instead, a representation of Talmy’s motion typology as a cline between the two lexicalization patterns, verb-framed and satellite-framed, accounts for languages sharing characteristics of both framing types. A combination of the structural typology by Talmy (1985, 1991, 2000, 2008) and of the typological continuum by Slobin (2004) and Ibarretxe-Antuñano (2004) is appropriate for categorizing languages of the serializing type like Fon.

On the other hand, van Putten (2009, in press) examining narrative discourse on motion in Avatime, a Ghana-Togo Mountain Language of the Kwa family, concludes that Avatime is equipollently-framed like Thai and Chinese, as well as Kwa languages like Ewe and Fon. There is thus diversity among verb serializing language types that are equipollently-framed.
Schultze-Berndt (2006) presents a case study of the dialectic interaction between linguistic theory and in-depth language documentation in Jaminjung, a Non-Poma-Nyungan language of Mirndi family. Findings show that the lexicalisation and discourse uses of motion expressions in Jaminjung neither fit the characteristics of an equipollently-framed language, as predicted by Slobin (2004) (and previously, Schultze-Berndt, 2000) nor do they reveal satellite-framed characteristics as claimed for the structurally similar language, Warlpiri. A language like Jaminjung does, however, point to the need for a careful definition of ‘verbs’ and ‘satellites’ in the typology in distinguishing between “main verb status” and ‘open class membership’ as a defining criteria. Given the close-class nature of ‘verbs’ in Jaminjung, the language is of particular interest to theories of lexicalisation patterns because ‘path information is in the Inflecting Verbs, but not all types of ‘path’ information are treated equally. While deixis and motion with respect to a reference point is expressed by Inflecting Verbs (IVs), path shape (direction), information about the region at the end point, and boundary crossing information only get expressed by Uninflected Verbs, at par with manner. She however suggests that there is the need to carry out a typological comparison of languages with close-class verbs that might reveal an implicational hierarchy for the lexicalisation of these subtypes of path.

2.2.2 Cline of Manner Salience

Besides allocating languages into three typological categories, Slobin (2004, 2006, 2006) argues for a cline or continuum of manner salience. Independently from the lexicalisation pattern they belong to, languages differ significantly in the amount of manner information that is given, the frequency of
mention of manner details, and the sort of fine grained manner distinctions that they encode. Thus there are *high-manner-salient* languages and *low-manner-salient* languages. In Slobin’s (2004: 250) own words:

> In High-manner-salient languages, speakers regularly and easily provide information about manner when describing motion events, whereas in Low-manner-salient languages manner information is only provided when manner is foregrounded for some reason.

Furthermore, Slobin points out that high-manner-salient languages possess a rich expressive lexicon of manner verbs encoding fine-grained distinctions, and that their speakers are thought to pay attention to Manner. In contrast, low-manner-salient languages have a less extensive verb lexicon expressing Manner, and are thought to attend less to the Manner component of motion.

Slobin has observed that there are a number of factors that interact with lexicalization patterns in influencing manner salience: lexical and morphemic availability, semantic constraints and processing load. One of the factors which plays a role in the amount of manner information given by a language is lexical and morphemic availability. The more accessible and codable the semantic component of Manner is in a language, the more manner information this language is likely to express. According to Slobin (2004), Manner of Motion is more codable in a language when it is expressed (1) by a finite rather than non-finite verb, (2) by a single word rather than a phrase or clause, and (3) by a high frequency rather than low frequency lexical item. In high-manner-salient languages there is an accessible slot for manner made available in a number of ways:
i. A main verb in satellite-framed languages.

ii. A manner verb in serial-verb languages.

iii. A manner morpheme in bipartite verbs

iv. A manner preverb in Jaminjungang languages

v. As ideophones or expressive forms (e.g., Basque (e.g., Ibarretxe-Antuñano, 2006a), Japanese (e.g., Kita, 1997; Ohara, 1995, 2003; Sugiyama, 2000, 2005).

Apart from lexical availability and codability of manner, it is important to explore other factors, such as semantic constraints and processing load, which greatly influence the expression of manner of motion across languages.

Lexical availability and ease of codability are not sufficient to understand why some languages possessing the means to express manner of motion fail to do so. One answer lies in what Slobin and Hoiting (1994) have called the boundary-cross constraint, drawn from Aske’s (1989) observations on the role of telicity in the expression of motion. It seems that verb-framed languages (such as Spanish) only license the use of manner verbs when the motion event depicted is atelic, that is, when the event is a motion activity with duration and no boundary-crossing is predicated. Consider the following example from Aske, (1989 cited in Cifuentes-Férez 2008: 44).

29. Juan bailó en círculos/ de un lado para otro / hacia la puerta/ hasta la puerta

John danced in circles/ from one place to another/
towards the door / to the door
‘John danced in circles from one place to another/towards the door/to the door.’

For telic events where the end location of the Figure is stated, verb-framed languages cannot use a manner verb, as in (30), but necessarily mark this change of location with a path verb (entrar ‘enter’, salir ‘exit’, cruzar ‘cross’, etc.) or neutral verb (ir ‘go’, venir ‘come’, etc.) In order to add manner, some sort of subordinate construction is required (gerundive forms, prepositional phrase, etc.) as in 31.

30. *Nadaron adentro de la

Nadaron adentro de la cueva
They-swam to-inside of the cave
‘They swam into the cave.’

31. Entraron a la cueva nadando

They-enter to the cave swimming
‘They swam into the cave.’

A further specification on the semantic constraints in the use of Manner verbs in Spanish is made by Naigles et al (1998). In their study, they found that Spanish speakers predominantly used path verbs for boundary-crossing events when the boundary traversed was horizontal. In contrast, for punctual vertical boundary crossing situations (e.g. tirarse a la piscine ‘throw oneself/plunge

10 Boundary crossing refers to a path that crosses the limits of a bounded extent (hence the event is telic, whereas non-boundary crossing refers to a path that unfolds) within an unbounded extent, the motion being thus atelic. (Slobin and Hoiting 1994; Aske 1989)
into the pool’), Spanish licenses the use of manner verbs. It appears that a sudden boundary crossing allows the use of manner verbs in Spanish and maybe in other verb-framed languages.

Besides semantic constraints, another factor which comes into play apart from low-manner salience in verb-framed languages is processing effort. Although verb-framed languages have the option of using adjuncts or subordinate constructions to express Manner of motion, this alternative is avoided most of the time. As Slobin (2006: 67) points out, the explanation for this general avoidance of Manner in verb-framed languages may be sought in the unnecessary foregrounding of Manner, which results in heavy processing of these constructions in terms of speaker’s production and hearer’s comprehension. When Manner of motion is expressed outside the verb root, it ‘forms part of the semantic background where it attracts little direct attention’ (Talmy, 2000b: 128). Talmy observes that a semantic concept which is backgrounded is more readily expressed in a language, and ‘its informational content can be included in a sentence with apparently low cognitive costs-specifically, without much additional speaker effort or hearer attention’ (Talmy, 2000b: 129). Thus, in verb-framed languages, the expression of Manner outside the verb root is often neglected as it would direct one’s attention to it causing an extra processing load.

To summarise, languages differ considerably in the amount of manner information they express (even languages within the same typological group). The main factor is the preferred lexicalization pattern (verb-, satellite-, or equipollently-framed languages) though other factors come into play interacting with it and influencing the degree of manner of salience in a given language.
2.2.3 Cline of Path Salience

In line with Slobin’s cline of Manner salience, Ibarretxe-Antuñano (2004a, 2004c, 2008) proposes a cline of Path salience. Languages vary in the degree of detailed description of Path of motion independently from the lexicalization pattern they belong to. Her proposal classifies languages along a continuum between two ends: high-path-salient languages and low-path-salient languages. The former offers detailed and frequent descriptions of Path, whereas the latter, coarse descriptions usually limited to the use of path verbs with or without a Ground.

Although Path is an obligatory constituent of a motion, languages differ in the degree to which they present Path and Grounds as well as complex trajectories. For example, Spanish favours the use of path verbs with no Ground over path verbs with explicit mention of the Ground, whereas Basque seems to favour the opposite. Moreover, when those two languages describe complex paths, Basque generally expresses complex paths with more than two Grounds, whereas Spanish typically uses one.

Also, in Avatime, a Ghana Togo Mountain Language, complex paths can be expressed in serial verb constructions, but only two ground elements can be combined in this way and only one ground argument is ever used per clause in spontaneous speech. Not more than three path verbs can be combined in serial verb constructions and SVCs cannot contain more than one of the same kind of verb (departure, passing, arrival). Consecutive constructions can be used to combine more than three path verbs, more than two ground elements and more
than one of the same kind of verb. The preferred way of expressing complex paths is by using a separate clause for each path element (van Putten 2009: 90).

As already mentioned in the previous section, with respect to the expression of Manner, apart from typological factors, other factors have an effect on the elaboration of a semantic component. At this point, it is necessary to investigate what makes path of motion salient in a language. Ibarretxe-Antuñano (2004c, 2008) argues that some factors such as:

- rich system for space and motion description
- word order
- VP gapping-ellipses
- Dummy verbs
- Cultural systems
- Conceptionally-oral languages

contribute to the degree of path and ground elaboration.

Regarding the first factor, the available linguistic devices for space and motion, high-path-salient languages often have rich lexical and morphological resources such as locational cases, locative nouns, sets of directionals, etc.

The factor of word order is related to the observation that languages whose verbs are in final positions tend to express details about Path and Ground before the verb. Thus, these complements have already provided all the
information for path of motion. This factor is crucial for languages such as Basque, Chantyal, Japanese and Turkish (Ibarretxe-Antuñano, 2008).

The third factor has to do with verb omissions. High-path-salient languages seem to be more likely to allow verb omissions than low-path-salient languages. The former readily omit the verb as the path complements present in the utterance are explicit enough, whereas the latter cannot omit the verb as it is one that conveys the necessary information for the description of the motion event.

The fourth factor has to do with the concept of language oraltity. Ibarretxe-Antuñano (2008) states that Koch and Oesterreicher (1985) and Oesterreicher (2001) think that irrespective of the mode of expression (written, oral) languages can be classified as conceptually written and conceptually oral. Conceptually oral languages are languages characterized by redundancy, elliptic constructions, hyperbolic expressions, self-corrections, etc. Ibarretxe-Antuñano (2008) notes that conceptually oral languages such as Basque and Swiss dialect Muotathal, are more likely to be high-path-salient than conceptually written languages.

Last but not the least, according to Ibarretxe-Antuñano (2008), cultural factors have a say in Path salience. Wilkins (2004) and Bavin (2004) argue that aboriginal communities show a great concern for detailed attention to motion paths and for orientation in space. As a consequence, their linguistic descriptions reflect this concern.
Slobin (1987, 1991, 1996a, 1996b, 1997a, 2000) has taken this typology one step further and proposed a modified version of the classic Sapir-Whorf arguments on linguistic relativity which were much debated in the first half of the twentieth century (Sapir 1924, Whorf 1956): the thinking-for-speaking hypothesis. The next section discusses linguistic relativity and Slobin’s proposal to shift the subject from “Thought and Language” to “thinking and speaking.”

2.2.4 Linguistic Relativity and Slobin’s Proposal to Shift the Subject from “Thought and Language” to “Thinking and Speaking”

The concept of thinking for speaking is by no means unrelated to linguistic determinism/relativity, or the often called Sapir-Whorf hypothesis. Slobin himself refers to the idea of thinking for speaking as “a modified form of the Spair-Whorf hypothesis (Berman and Slobin 1994: 612).

The original idea of what has been called linguistic determinism/relativity, which is more or less attributed to Humboldt, Boas, Sapir, and Whorf, is summarized in Gumperz and Levinson (1996: 2): “the semantic structures of different languages might be fundamentally incommensurable, with consequences for the way in which speakers of specific languages might think and act”.

Linguistic determinism/relativity claims that language and thought, and culture, are deeply interconnected, and that different languages lead to different world-view. The problem with such an argument, pointed out by many scholars/linguists, for example Lucy (1992a, b), Pinker (1989), Slobin (1991), and Lakoff (1987) is that it is primarily concerned with the relationship between
language and an abstract entity called “world-view” or “thought which can hardly be specified.”

Combined with growing criticism against linguistic determinism/relativity for the difficulty to prove its claim of empirical methods, what further discredited linguistic determinism/relativity was the foundation and development of cognitive science in the 1960’s. Researchers of cognitive science emphasize the commonality of the genetic basis of human cognition from which they claim language derives (cf for the basic assumptions of cognitive science, see Garfield, 1990).

More recently, researchers attempting to test the validity and causal link between language and thought try to specify what is meant by “thought” or “world-view”. While some scientists limit their research to some specific areas of language and cognition (for example, Steiner, 1975; Lee 1996; Lucy 1992a, b) Slobin (1991) insists on discarding the notion of language and thought itself. His proposal is to shift the focus of the discussion from static, abstract entities like language, thought, or world-view to the relationship between two dynamic processes of thinking and speaking. Slobin explains what he calls thinking for speaking as something involved only in the process of speaking. It means in Slobin’s words, “a special sort of thinking [which] comes into play, on-line, in the process of speaking in a particular language” (cf 1.5.2).

Slobin’s approach toward linguistic determinism/relativity is more similar to that of Sapir than Whorf. Sapir believes that people tend to pay special attention to what he called, ‘contents of experience [that are] capable of
expression in linguistic terms’ (Mandelbaum 1958, cited in van Kruistum 2006). Whorf tended to claim more radically that language and thought are identical. Slobin is at this point skeptical about any further effects language has on the mind beyond the moment of speaking. ‘We will probably never succeed in demonstrating the effects of grammar on world-view or nonlinguistic behavior. But there is a special kind of thinking that is intimately tied to language – namely, the thinking that is carried out, on-line, in the process of speaking’ (Slobin 1991: 11).

Slobin outlined three approaches to demonstrate linguistic relativity in his thinking-for-speaking sense. One is to find the stages at which children talk about experience in ways that appear specifically shaped by the linguistic system they are acquiring; another is to identify the difficulties that second language learners have in adapting their thinking to the new language; the third is to look at languages historically – the elements most resistant to change being possibly those most deeply ingrained in thought; In each of these approaches, spoken language is the only source of information, and none of them breaks into the logical circle of language representing itself. Child speakers of different languages acquire expressive habits that mirror the semantic-structural differences among their languages (Choi and Bowerman, 1991).

According to Levelt (1989, cited in Riemier (2010: 412) it is during first language acquisition that the effects of thinking-for-speaking are most noticeable. In learning their native language, the child gradually learns what kind of conceptual distinctions are relevant in framing messages:
In learning the language, the speaker (the child) must surely have realized that the language requires him to attend to certain perceptual or conceptual features when he encodes a message. And … the child makes characteristic errors that reveal his successive hypotheses about the conceptual properties required for the assignment of his language’s morphology.

Each native language in other words, ‘has trained its speakers to pay different kinds of attention to events and experiences when talking about them’ (Slobin 1996: 89). Languages without an explicit perfective/imperfective contrast, for example, do not require speakers to attend to this dimension of an event, whereas languages with an explicitly coded definite/indefinite contrast will require speakers to determine the definiteness of values of the NPs they mention. (see also Gentner and Boroditsky, 2001, for the extent to which language exerts an influence on conceptualization in child learning).

Papagraguo et al (2002) discuss the question of linguistic relativity as it has resurfaced in the current psychological and anthropological literature, using motion verb representation and expression as the test bed. The overall findings suggest a good deal of independence between conceptual and linguistic representation. Such findings come as little surprise to recent proponents of the linguistic relativity position for they – as well as Whorf and Sapir themselves, except in their most enthusiastic moment – have no quarrel with the notion that there are certain immutable core concepts shared across the species. Rather, these investigators have tried to show that in addition to these shared concepts there are different ones too, literally caused and imposed by the language differences themselves. Sometimes this view is called ‘weak Whorfianism.’ Based on these findings, the writers have urged quite a different perspective. They assert:
Many apparent effects of language on thought are more appropriately interpreted as effects of language on language. In tasks that explicitly or implicitly call for knowledge of language, subjects can in fact draw upon that knowledge. Because the languages differ, speakers of the different languages will differ accordingly. But this proves no more (and no less!) than that, English speakers speak English and Greek speakers speak Greek. The linguistic relativity question interpreted nonvacuously, is whether by having learned these languages speakers differ in the very basis of their inductions, whether they are representing, categorizing, remembering, and reasoning in terms of a (partially) different set of experiential categories. (Papafraguo et al 2002:190).

In their view, the answer to these questions tends to be no. They argued the case by pointing to the following generalization: the more language-like the subjects’ task, the more speakers of different languages can be shown to vary in their performance; the more language is removed from the task situation, the more subjects exhibit their human conceptual communalities.

Slobin (2003:160) extends thinking-for-speaking to all forms of linguistic production (speaking, writing, translating, signing) and reception (listening, reading, viewing) as well as a range of mental processes (understanding, imagining, remembering) in an attempt to account for the far-reaching effects that language use has on mental processes tied to language. Throughout his work, he argues that serious study of language in use points to pervasive effects of language on selective attention for particular motion event characteristics. Path is the core of the motion event descriptions, though by different linguistic elements (e.g. Talmy, 2000b). However, Manner of motion is an external component optional in verb-framed languages but readily encoded in satellite-framed languages. This fact suggests that speakers of satellite-framed languages may pay more attention to Manner of motion than speakers of verb-framed
languages. In brief, Slobin’s proposal is that habitual on-line attention to Manner has made it especially salient in S-language speaker’s conceptualization of motion events (Slobin 2003: 164). Slobin himself explains the core motivation for this hypothesis which has been stated under Section 1.5.2. This means experience cannot be verbalized without having taken a specific perspective, influenced, if not determined, by the typological characteristics and lexicalization patterns of a given language. What we experience/ perceive might be the same event but the way we choose to talk about it seems to be different across languages.

This is why Slobin (1996a) says any event (in our case, a motion event) can be described in terms of two different cognitive frames. On the one hand, that which refers to the actual event or experience that we want to describe (the translational motion from one place to another), and on the other hand, the tools provided and constraints imposed on speakers in expressing that event in a particular language: what he calls a “discourse frame and a typological frame” respectively. Thus he hypothesizes a number of cognitive consequences of this differential encoding of Manner of motion. He further asserts that if a language provides fine-grained, habitual and economical expression of manner of motion,

a. references to manner of motion will occur frequently, across genres and discourse contents.

b. manner-of-motion verbs will be acquired early.

c. the language will have continuing lexical innovation in this domain, including extended and metaphorical uses.
d. speakers will have rich mental imagery of manner of motion.

e. manner of motion will be salient in memory for events and in verbal accounts of events. (Slobin, 2003: 163-164)

Review of speaking-for-speaking research would be based on the five points discussed above.

To sum up, that languages differ in their thinking-for-speaking demands is a version of the linguistic relativity hypothesis, the proposition that language influences thought in different ways. Thinking-for-speaking differs from the so-called ‘strong’ Whorfian version of the linguistic relativity hypothesis, as we understand it: The later (Whorf, 1956; Lucy, 1987, 1992) refers in general to langue – wide patterns of ‘habitual thought’, patterns that according to the hypothesis, are embodied in the forms of the language and analogies among them. The thinking-for-speaking hypothesis, in contrast refers to how speakers organize their thinking to meet the demands of linguistic encoding on-line, during acts of speaking – what Saussure termed parole rather than langue (de Saussure 1959). The thinking-for-speaking version and the Whorfian version of the linguistic relativity hypothesis are not mutually exclusive, but neither are they identical. The distinction between them parallels the characterization of Whorf as ‘synchronic’ compared to Vygotsky (1987) as ‘diachronic’ that was offered by Lucy and Wertsch (1987, cited in Riemier 2010).
2.3 Cross-linguistic studies on motion events

2.3.1 Introduction

The domain of motion has received a good deal of research since Talmy’s seminal work (e.g., 1985, 1991, 2000a, 2000b). This section provides a review of the whole gamut of research inspired or influenced by the Talmian theory of lexicalization patterns for motion events. Such research could be divided into two parts: Slobin’s thinking-for-speaking research (Section 2.8.2) and linguistic relativity research (Section 2.9). These are examined in the sections that follow.

2.3.2 Thinking-for-Speaking Research

To investigate thinking-for-speaking, Slobin concentrates on the domain of motion. His approach is comparative, initially investigating English and Spanish (e.g., Slobin 1996a, 2000), but later broadening the scope to include other languages (e.g., Slobin, 2003, 2006).

As noted previously, Slobin (2003:160) extends thinking-for-speaking to all forms of linguistic production (speaking, writing, translating, signing) and reception (listening, reading, viewing) as well as a range of mental processes (understanding, imaging, remembering) in the attention for particular motion event characteristics. Path is the core of the motion event and, as such, it is always encoded in motion event descriptions, though by different linguistic elements (e.g. Talmy, 2000). However, Manner of motion is an external component, optional in verb-framed languages but readily encoded in satellite-framed languages. This fact suggests that speakers of satellite-framed languages may pay more attention to Manner of motion than speakers of verb-framed
languages. In brief, Slobin’s proposal is that ‘habitual, online attention to Manner has made it especially salient in S-language speaker’s conceptualisations of motion events’ (Slobin, 2003:164). Thus he hypothesizes a number of cognitive consequences of this differential encoding of Manner of motion\(^{11}\) which have been mentioned earlier in the previous chapter.

Although these five consequences are called cognitive, it should be noted that the first three consequences refer to linguistic cognition, whereas the last two are cognitive hypotheses about speakers’ conceptualization of motion (i.e. non-linguistic cognition). Our view of thinking-for-speaking research in the following section will thus focus on the first three, leaving the final two for Section 2.9.

2.3.3 Narrative Style

A great bulk of research on motion events across a wide range of languages comes from elicited spoken narratives using a wordless picture book ‘Frog where are you’ (Mayer, 1969). This book is about a boy who goes in search of his run away frog. The book depicts several motion scenes, involving multiple types of figures (human and animals), Paths, and Manners of motion.

In the first volume of the frog story studies, Berman and Slobin (1994:198-199) summed up the typological contrasts found between the narrative of three verb-framed languages (Hebrew, Turskish and Spanish) and two satellite-framed languages (English and German):

\(^{11}\) Refer to Chapter 2 (section 2.2.3) for Slobin’s proposal.
Satellite-framed languages allow for detailed description of paths within a clause, because their syntax makes it possible to accumulate path satellites to a single verb, along with prepositional phrases that add further specification (e.g., the deer threw them off over the cliff into the water) [...] The satellite-frames languages in our sample also tend towards greater specification of manner, probably because the lexicon provides a large collection of verbs that conflate manner with change of location (crawl, swoop, tumble, etc.) often conflating cause as well- dump, hurl, shove etc.). In verb-frames languages, such elaboration is more of a “luxury”, since path and manner are elaborated in separate expressions which are generally optional, and which are less compact in form. As a consequence of these differences, it seems - at least in our data – that English and German narrations are characterized by a great deal of dynamic path and manner description, while Spanish, Hebrew and Turkish narrations are less elaborated in this regard, but are often more elaborated in description of locations of protagonists and objects of endstates of motion. (Berman and Slobin, 1994:118-119).

Commenting on this quotation, Cifuentes-Férez (2008:60) notes that narrative styles in verb- and satellite-framed languages are quite distinct in terms of dynamism of the events being depicted. Satellite-framed languages presented more dynamic and lively descriptions of motion events both with respect to manner of motion and paths, while verb-framed languages tended to focus on static descriptions of the setting and the protagonist’s endpoint of location. Applying Ikegami’s (1991) terminology of become-language (i.e., a language which focuses on the change from one state into another, eg., Japanese) versus do-language (i.e, a language such as English which focuses on the activity of an individual.), verb-framed languages might be described as become-languages since they devote more narrative attention to static descriptions of the setting and tend to express more often the figure’s endpoint of location, leaving the figure’s ways of moving through space and the trajectories it follows to be inferred. These ways of moving through space and trajectories, in contrast, are favoured
by satellite-framed languages or do-languages. These differences in narrative style were unexpected consequences of the two lexicalization patterns posited by Talmy. Importantly, the differing ways of expressing Manner and Path in verb- and satellite-framed languages have an impact on narrative style which would not have been observed unless studying language in use.

Berman and Slobin (1994) and Slobin (1996, 1997a, 2004) compare the way motion is described in the two types of languages and conclude that their different lexicalization patterns have resulted in different narration styles. The main differences are that manner of motion is more salient in S-languages than in V-languages, and S-languages tend to elaborate more on the description of the path. For instance, regarding Spanish and English, Berman and Slobin (1994) and Slobin (1996a, 2004) found that expressing Manner, English elicited narratives displayed a greater token and type frequency of manner verbs than Spanish elicited narrative which in turn contained a higher number of path verbs. Furthermore, in Spanish narratives, manner tended to be subordinated, i.e., expressed in optional constituents such as adverbs, gerundives, subordinated clauses, etc., since the Spanish main verb typically encoded Path of motion.

In terms of the expression of Path of motion, Spanish speakers tended to use bare motion verbs, i.e., ‘verbs with no elaboration of path beyond the inherent directionality of the verb itself (Slobin, 1996a, 2000) more often than English speakers, who frequently added locatives and directionals to their motion verbs, as (32) illustrates
32. Se cayó.

3SG fall

(Lit.) ‘S/he fell’

In addition, in Spanish narratives, just one piece of information about the ground was usually given, either the source (e.g., from X) or the medium (e.g., to, towards X). English speakers, in contrast, mentioned more ground elements per clause. In general, Spanish speakers tended not to express complex paths with a single verb; when a complex path was described together with one motion verb in Spanish, the trajectory usually involved the motion from a source to a goal as in (33). In contrast, in English, it is morphosyntactically possible to attach several path segments to a single verb. Thus, English speakers readily compacted several trajectories (expressed by satellites) with a single verb as in (34).

33. Se cayó de la ventana a la calle

3SG fall from the window to the street

(Lit.) S/he fell from the window to the street

34. He threw him over a cliff into a pond.

Finally, when Spanish speakers described complex paths, they typically did so by using several verbs and breaking the event into several segments.

35. El ciervo le llevó hasta un, sitio, donde debajo había un río; Entonces el ciervo tiró al perro y al niño al río. Y despues cayeron.
Lit: The deer took him to a place, where below there was a river. Then it (deer) threw the dog and the boy to the river. And after that they fell.

The same patterns observed in oral elicited narratives are widely attested in novels (e.g., Slobin, 1996a, 1996b, 1997; Mora-Gutiérrez, 2001) and newspapers across a range of languages (e.g., Slobin 2003; Slobin 2006a. Writers of creative fiction and reporters, though free to make full and imaginative use of the language, conform to the same pattern found in the frog stories. In terms of Manner, writers using satellite-framed languages devoted much more attention to Manner of motion than writers using verb-framed languages. Özçalışkan and Slobin (2003) provided interesting insights into the differing functions that manner expressions beyond the verb phrase seem to play in novels written in satellite-framed languages such as English and in verb-framed languages such as Turkish. Turkish writers tended to accompany their path verbs with adjuncts expressing Manner to compensate for the impossibility to encode Manner in the verb on many occasions (such as in boundary-crossing events, etc.). Thus, the high rate of such manner expressions beyond the main verb in Turkish suggests a compensatory function of these expressions. In contrasts, manner verbs in English were very often accompanied by manner adjuncts, which further contributed to and enriched the manner details of the motion scene expressed by the main manner verb. Thus, such manner expressions serve an augmentative function in English. In terms of Path, novels written using satellite-framed languages provided their readers with more elaborate descriptions of path or trajectories of movement than novels within in verb-framed languages. In contrast, writers using verb-framed languages offered
more information about the physical setting and the protagonists psychological state, which allowed their readers to draw inferences about the manner in which the protagonist moves and the trajectories he or she follows. Oh (2003) found that manner verbs were more heavily used in novels written in English (an S-language) than those written in Korean (a V-language).

The Frog stories considered in volume II of Strömqvist and Vernhoeven (2004) offer a more complex picture of the crosslinguistic differences in the expression of motion. In the light of the data from a large number of languages, the rigid dichotomy of verb- and satellite-framed languages has been questioned (e.g., Ibarretxe-Antunáno 2004a, 2004c; Slobin 2004; Zlatev and Yangklang, 2004).

A third typological group was thus proposed, equipollently-framed languages, (see Section 2.1.6) for those languages whose morphosyntactic constituents expressing Path and Manner have equal status. On the other hand, it was argued that it could also be possible to rank languages in clines or continuums of manner and path salience, as languages within the same typological group display different degrees of elaboration of manner and path.

Takashashi (2009) discusses Thai motion event expressions in relation to verb-serialisation. He notes that the entire structure of motion event expressions in a verb-serializing language is difficult to formulate because of the expressions’ diversity and complexity. Comparing three studies (Thepkanjana, 1986/2006; Muansuwan, 2002, and Kessakul, 2005), he concludes that there is evidence that the syntax and the semantics of Thai motion event expressions cannot be straight
forwardly analysed with the principles of the linguistic theories that have been
developed based primarily on analysis of Indo-European languages. He cautions:
“Linguists working on Thai can draw on the theories only after carefully
examining whether the preconditions of the theories fit the nature of Thai

Another important outcome from Strömqvist and Verhoeven’s (2004)
volume has been the proposal or identification of a number of linguistic and non-
linguistic factors which interact with lexicalization patterns. Slobin (2004)
pointed out that the Talmian typology alone cannot account for language use, and
suggested that there are a number of additional linguistic factors playing a part in
the expression of motion. A language provides its speakers with a range of
lexical and morphological means for describing motion events. It has also been
shown that sound symbolic expressions contribute as well to motion event
descriptions in some languages, such as Basque (e.g., Ibarretxe-Antunano,
2004b), Japanese (e.g. Hamano, 1998, Kita, 1997), Ewe (Ameka and Essegbey,

Examples of sound symbolic expressions in Zulu, Emai and Ewe, (taken
from Slobin 2004:233) are:

36. a. *gulukudu* ‘rush in headlong’ (Zulu)

 b. *kítíktí* ‘at a stomp’ (Emai)

 c. *minyèminye* ‘stealthily’ (Ewe)
In addition, a variety of non-linguistic factors, including cognitive and cultural factors have to be taken into consideration to fully account for patterns of narrative style.

Processing load (as stated in Section 2.2.2) is a cognitive factor that might account for the tendency to omit manner information in verb-framed languages. Although these languages have the option of using adjuncts or subordinate constructions to express Manner of motion, this alternative is avoided most of the time. The reason seems to lie in the heavy processing of these constructions in terms of speaker’s production and hearer’s comprehension (Talmy, 2006:128).

With regard to cultural factors, as Bavin (2004:17) suggested: ‘[c]ultural values will influence what a speaker determines as important when telling a story’. Wilkin’s (2004) and Bavin (2004) pointed out that culture seems to play a role in the great attention Arrente and Warlpiri speakers give to path details. Australian aboriginal culture highlights the importance of journeys as well as locations, and this is without doubt reflected in narrative style. Thus, in their frog stories, Arrente and Warlpiri speakers overall described scenes with many more path fragments than speakers of other languages. Moreover, Bavin reported cultural preferences for repetition of old information together with new information.

Information is repeated with some new added […] telling the frog story, a speaker might give the information that someone fell to the water, then someone fell down to the water and then specify that the child and dog fell. (Bavin, 2004:20)
In Akan, a Kwa language, some research has been carried out on motion events. Drawing data from naturally spoken and written texts, Afreh (2011) explores the lexical and syntactic resources Akan uses for the expression of Motion (in the sense of Talmy 2000) and the semantics of motion verbs in Akan. In addition, the thesis also considers metaphorical motion in Akan by examining the types of metaphorical mappings that are structured by spatial motion. The study reveals that the components of Motion, Manner and Path are mainly expressed through verbs. Path is also expressed through postpositions. It is shown that the Path verbs in Akan encode different components of a single trajectory. Another finding of the study is the persistent use of serial constructions to convey information about Motion, Manner, Cause and Path. It has been established that speakers of Akan use posture verbs not only to describe the location and specify the spatial configuration of humans and animals, but also of inanimate entities, in which case the central meanings are extended for the purpose. An examination of some of the metaphorical motion events has revealed that the target domains in such expressions can be classified into four domains; those that relate to time, those that relate to emotional states, those that relate to events, and miscellaneous ones. It was also found out that Akan has the Moving Time, the Moving Ego and Sequence as Position on a Path metaphors.

In sum, Talmy’s dichotomy of satellite- and verb-framed languages provides valuable insights into lexicalization patterns of motion in language. It has been shown however, that lexicalization patterns alone cannot account for how language is used in narrative discourse. Verb- and satellite-framed rhetorical styles could not have been understood, except through a close examination of
language in use. Furthermore linguistic and non-linguistic factors should be taken into consideration so as to offer a more complete picture of how different languages talk about motion.

2.3.4 First Language Acquisition

Event description is common in our lives. Our daily conversation usually involves motion event descriptions (Johnson 1987; cited in Chen, 2005). Besides, motion verb and verb complement are two pivotal elements in motion event description, indicating how the object moves and its movement trajectory respectively (Slobin, 1996). Studies by Clark (1993), and Pulverman, Hirsh-Pasek, Golinkoff, Pruden and Salkind (2008) found that motion verbs like *fall* and *jump* play a crucial role in the acquisition of children’s early verb lexicon. It was reported that English-speaking children started to use path satellite (e.g. *up*) and manner verbs (e.g. *run*) in single-word utterances around 14-16 months and 17-18 months respectively (Choi and Bowerman, 1991). This suggests that children start talking about movement and motion in space rather early in their language development. Other studies also found that Chinese-speaking children have more verbs than nouns in their early vocabularies and verbs tend to appear in the salient position in the sentence (Tardiff, 1996; Choi and Gopnik 1995). Therefore, investigation of the acquisition of motion events is important as it could provide information on early verb development in children.

It has been attested that cross-linguistic differences can be observed in how children talk about motion in elicited oral narratives (e.g. Berman and Slobin, 1994; cited in Cifuentes-Férez 2008:74; verbal descriptions of video clips
(e.g., Hickamn, 2006; Oh, 2003) and spontaneous conversations, (e.g., Semilis and Katis, 2003). Research using the frog story picture book as an elicitation tool has shown that children acquiring their mother tongue are guided by the set of distinctions in their language to attend to specific features of events while speaking (Berman and Slobin, 1994; Ozçaliskan and Slobin, 1999; Slobin, 1996a, Slobin, 2001). Generally speaking, children speaking satellite-framed languages use a higher percentage of tokens and types of manner verbs than children speaking verb-framed languages, who tend to use path verbs instead. As Slobin (2003) hypothesized, manner-of-motion verbs are acquired very early by children learning satellite-framed languages. Furthermore, children speaking satellite-framed languages use motion verbs with some path elaboration, whereas such descriptions are hardly used by children speaking verb-framed languages. As age increases, they are capable of providing more detailed descriptions of the motion event in line with the adult system. Verb-framed-language speaking children are more concerned with setting the scene and asserting changes of location (results) than satellite-framed-language speaking children, who assert trajectories and attend to Manner of motion (actions).

Oh (2003) elicited verbal descriptions from 3-year-old Korean-speaking and English-speaking children using clips depicting everyday motion by humans. In line with the previous findings, she also found that children are influenced very early by the typological properties of their native language. Korean-speaking children produced manner verbs less frequently and path verbs more frequently than English-speaking children, who produced verbal descriptions encoding both Manner and Path. On the other hand, some common
characteristics were noted between Korean-speaking and English-speaking children. At an early age, both groups rarely expressed Path and manner together in their descriptions, though English children did so more frequently. Oh speculated that at an early age children might be too limited cognitively to attend to various components of a motion event at the same time, though another possibility might be that they have not yet mastered the skill to pack both manner and path information into a single description. In addition, it was found that children from both language groups seemed to be more biased toward Manner than toward Path, and that they tended to produce coarse manner of motion verbs (such as walk, or run).

Hickman (2003, 2006) used animated cartoon on a computer screen to elicit verbal descriptions. English and French as satellite-framed and verb-framed languages respectively strongly influence how children (three- and five-year-olds) talked about motion. In line with previous findings, she noted that English- and French-speaking children used more complex descriptions of both Path and Manner together with increasing age.

In terms of spontaneous or naturalistic conversations, Selimis and Katis (2003) showed that Greek- and English-speaking children’s descriptions followed the typological patterns of their mother tongue in preferring verbs which lexicalize either Path (for Greek) or Manner (for English). Moreover, it was found that these differences appeared even earlier than two years of age, but then diminished with age as the manner verb lexicon in Greek children got richer in later development.
Cross-linguistic research have also unveiled variations in how children acquire spatial language (e.g., Bowerman, 1996; Bowerman and Choi, 2001; Casasola, 2005; Choi and Bowerman, 1991; Choi et al, 1999 all cited in Cifuentes-Férez 2008). Such variability across languages casts doubts on the existence of universals in the acquisition of spatial language, and suggests that language-specific patterns have an impact on linguistic and cognitive development. At an early stage, children are guided by their language and seem to construct a spatial language which closely fits the adult system.

Bavin (2004) also reports on the uses of locative markers in Walpiri children’s and adult’s narratives. The findings show that narrative length, the frequency and type of locative elements differ across age groups – older speakers produce longer narratives and refer to more specific locations. For instance, in addition to mentioning where the main characters were going, the older storytellers thought it was important to say where the boy and his dog were located and where they were looking.

Brown (2004) examines position and motion in stories by Tzeltal-speaking children and adults. The study shows that even 3-5 year old children are already attuned to language-specific properties of Tzeltal narration, such as integration of position and motion/path in one clause.

Engberg-Pedersen and Trondhjem (2004:62) shifting the focus to action in motion description in West-Greenlandic, also examined narratives by children and adults. Their findings show that West-Greenlandic differs from other verb-framed languages, such as Spanish; “the rhetorical style of the West-Greenlandic
frog stories seems to be influenced not so much by what is ‘readily encodable as by what is coded semantically richly in the verb’

Regnarsdottir and Strömqvist (1997) compare time, space, and manner expressions in narratives elicited from children and adults in two closely related satellite-framed languages, Swedish and Icelandic. The findings of the study confirm the qualitative change in the discourse and structure of stories elicited from children between the ages of 5 and 9. In comparing the two languages, the authors have observed an increase in cross-linguistic similarity in grammatical development and an opposite tendency, that is a decrease in cross-linguistic similarity in lexical development.

Wilkins (2004) also compares the discussion of motion in narratives told by children and adults in English and in Arrente, a language spoken in the deserts of Central Australia. This comparison shows that Arrente-speaking children differ from their English-speaking counterparts in the channeling of attention and complexity of the motion-event description.

In Zlatev and Yangklang (2004), motion events are also central. The writers examine Thai narratives collected from children and adults. The authors argue that despite the fact that Thai expresses path through verbs and not satellites, it is not necessarily a verb-framed language, since on several dimensions it behaves like satellite-framed languages.

Aksu–Koç and Tekdemir (2004) study narratives collected from Turkish- and English-speaking children and show that the two groups do not differ in terms of mindreading but do differ in terms of preferred narrative strategies –
English-speakers favour topic shifting and Turkish-speakers topic maintenance, continuing the narration from the point of view of the boy.

Küntay and Nakamura (2004) compare Turkish and Japanese narratives elicited from children and adults and suggest that these data do not show any age-related differences in the number of evaluative devices. The two groups did differ however in the types of devices used; for instance, Turkish narratives displayed evaluative remarks, while Japanese narrators did not use such remarks.

Strömqvist, Nordqvist, and Wengelin (2004) expand the discussion of frog stories to include written narratives and compare thinking-for-speaking, with thinking-for-writing. Their study shows that 9 year olds are still influenced by thinking-for-speaking when thinking-for-writing, while 15 year olds behave more strategically when composing their written narrations.

Overall, the volume represents a major advance in the study of narrative development and language typology. The contributors extend narrative inquiry to languages in which little narrative research has been conducted before, including but not limited to Arrernte, Basque, Icelandic, Thai, Tzeltal, Walpiri, and West-Greendlandic. They also represent an array of important findings in terms of development of written and spoken narratives across age groups, contexts and modalities. The key contribution of the volume is the argument, backed by evidence from several languages, that Talmy’s (1985) dichotomous view of verb-framed and satellite-framed languages is oversimplified and should be replaced by a scale or a continuum, where languages can show a combination of properties of verb- and satellite-framed languages.
Chen (2005) investigates Chinese children’s first language acquisition and adult’s description of motion events embedded in the general theoretical framework of Talmy’s (2000) linguistic typology of motion events. Fifty-nine subjects in five different age groups of children (age 3, 4, 5, 9) and adults (between age 18 and 22) were involved. He found that Mandarin-speaking children did not seem to show any significant developmental difference in the use of different types of motion verbs. In his study, a motion event containing two motion elements (i.e., manner and path) was defined as “manner expression whereas it was defined as manner + path expression in this thesis. He reported that the percentage of “manner expressions” was always higher than that of path expressions across ages.

Similarly, Chau (2006) studied motion event expressions in Cantonese narratives. A total of sixty children aged 3, 4 and 5 and twenty adults participated in telling the frog story. She found that the adult group produced significantly more types of manner and path verbs than the children’s groups but with no statistically significant differences among the children’s groups. Whether a developmental group trend exists in the use of motion event expression is thus still a controversy amongst linguists and further investigation is required, she added. (Chau 2006, cited in Cheung Lai Yee 2008:8).

Chen and Guo’s (2010) paper reports results from the analyses of three different types of data; one from the adult speakers’ narratives, one from elicited children’s spoken narratives from age 3 to 9 and one from written narratives in nine contemporary novels. The three types of data reported in this paper show a converging pattern of language use regarding motion expressions. Regarding
The diversity of Manner verbs, the three sets of data show consistently that Mandarin speakers have very diverse and rich lexicon for Manner verb, very similar to the patterns found among S-language speakers. Whereas the original binary typology distinguishes between verb-framed and S-framed languages, Chen and Guo’s cross-linguistic comparison of the structural and discourse patterns of motion event descriptions treat Chinese as an equipollently-framed language exhibiting hybrid pattern associated with both English and satellite-framed languages.

Section (2.3.4) has concentrated on child language acquisition research. A number of studies discussed in this section have concluded that children are influenced very early by the typological properties of their languages. Verb-framed-language speaking children are more concerned with setting the scene and asserting changes of location (results) than satellite-framed language speaking children, who assert trajectories and attend to manners of motion (actions). Irrespective of language, it has been shown that older children are closer to the adult system than younger children. At an early age, children rarely express Path and Manner together in their descriptions, though English children do so more frequently than verb-framed language speaking children. With increased age, children are capable of providing more detailed descriptions of motion events in line with the adult system. It might therefore be concluded that children are trained to think-for-speaking in terms of their mother tongue, acquiring some language-specific properties earlier than others.

All in all, these studies provide linguistic data suggesting that children adopt language-specific characteristics from a very early age. However, some characteristics seem to be mastered early, while others develop more slowly.
Findings from the studies above go to support Bowerman and Choi’s (2001:505) suggestion that ‘children are sensitive to language-specific categorization principles from their earliest productive uses of spatial forms, and at least in some cases in comprehension even before production begins’ and Hickman’s (2006: 281) study also suggests that ‘[L]anguage properties influence how children select or organize spatial information during the course of development’.

2.4 Linguistic Relativity Research

The domain of motion has received special attention in linguistic relativity research. According to Pourcel (2002: 127, cited in Cifuentes-Férez 2008:82) motion events are an ideal arena for investigating Whorfian effects for a number of reasons. First, languages differ in how they carve up the domain of motion. Second, motion events are referred to in language use with a high level of frequency, and they are representative of actual language use. And third, unlike the domain of colour, in this domain there are no ‘biologically-determined concepts waiting to be labelled’ (Slobin, 2000:122).

Research on linguistic relativity effects in the domain of motion addresses whether the differences in lexicalization of Path and Manner result in divergent conceptualizations of motion events. More concretely, these research focus on whether the selective lexicalization of Manner, optional in verb-framed languages but readily expressed in satellite-framed languages, ‘entails

12 Information on Linguistic Relativity research is drawn from Cifuentes-Férez (2008).
differential levels of cognitive salience of that variable across verb- and satellite-framed language speakers, resulting in overall divergent conceptualization of motion events’ (Pourcel, 2005: 126).

A number of studies have been carried out to find out whether motion description has any bearing on cognition. Section 2.4.1 offers a summary of research which provides positive evidence for the claim that cross-linguistic differences in the encoding of motion, have an impact on the way we think about motion, in particular on mental imagery, on memory for manner of motion and on how people form new concepts. In contrast, research on the negative side suggesting that language does not affect cognition is assessed in Section 2.4.2. Even though the same methods are approximately followed, studies in this arena have produced mixed results. In light of this conflicting evidence, Section 2.4 reviews research by Pourcel (2004a, 2004b, 2005) and Kopecka and Pourcel (2005) which suggest that the intrinsic nature of the stimuli employed may be responsible for a significant portion of the divergent results.

2.4.1 Positive Evidence

As we saw in the introduction, Slobin (2003) hypothesised two cognitive consequences concerning linguistic effect on imagery and memory: speakers of satellite-framed languages will have rich mental imagery of Manner of motion, and Manner of motion will be more salient in their memory.

Slobin (2000) reported richer mental imagery of manner of motion in English speakers than in Spanish speakers. In a suggestive experiment, he gave passages from novels to be read to English and Spanish native speakers as well
as English and Spanish bilinguals, asking them later to report mental imagery for the protagonist’s Manner of movement. The examples were extracted from Isabel Allende’s *La casa de los espiritus*, and did not contain manner verbs, but the author provided information about the setting and the protagonist’s inner state allowing inferences of manner of motion. His findings showed elaborated mental images for Manner in English reports and less vivid or poorly detailed mental images for manner in Spanish. Interestingly, bilinguals behaved according to the text’s language: if the text was in English, and therefore, they were asked to provide reports in English, their mental images for manner were significantly richer than when the text and the task were in Spanish.

Kershten et al. (2003) showed that greater attention to Manner of motion by English speakers relative to Spanish speakers is revealed as well in learning tasks. English and Spanish monolingual participants viewed animated cartoons in which bug-like creatures moved along various non-nameable paths in various non-nameable manners. They were told that those creatures belonged to four different species and they had to guess which by pushing one of four buttons. After each choice they were told if they had guessed correctly or not. On the whole, no differences in how long they took to learn to distinguish the bug-like creatures in terms of Path was observed, but English speakers were significantly faster in learning to distinguish them in terms of Manner despite the fact that none of these manners of motion could be lexicalised in English manner verbs. Furthermore, they also tested bilinguals in Spanish and in English, and their results were similar to those found with monolingual speakers. They concluded that the observed differences between the two groups regarding learning Manner
of motion concepts, were a result of the different languages they spoke. In sum, people learn to attend to the sorts of event details that are encoded in their language.

Oh (2003) reported differences in recall of manner details between English and Korean monolingual speakers. She devised an experiment in which the initial task of the participants was to view and describe some video clips. The clips included several manner of motion (e.g., walking, striding, jogging, strolling, trudging, sprinting, etc.) as well as several paths (e.g., out of, up, down, around, along, etc.). Also, some filler clips which did not depict motion or displacement were included (cooking in a kitchen and working with a computer). As predicted for this task, English speakers provided more tokens and types of manner verbs and extended manner descriptions than Korean speakers. The two language groups differed according to their language-specific lexicalisation patterns. The difference across languages was more pronounced in the descriptions of Walking-and-boundary-crossing video clips. After participants completed this task, they were presented with an unexpected task. In this surprise task, they were told to compare their memory of each clip with a standard clip of the same actor walking at a normal rate and then answer a questionnaire on details of the events. The results showed that English speakers were more accurate in identifying the length of stride and degree of arm swing, in the original clips than Korean speakers, although those specific manner details were not present in their verbal descriptions from the initial task. Overall, English speakers performed better than Korean speakers on memory for manner information and answering manner questions about the videotapes.
Pourcel (2005) compared English and French speakers’ performance on two recall tasks. English and French speakers were asked to view a short extract from a silent Charlie Chaplin film; City Lights, and they had to recall the scene verbally (free prose recall). 24 hours later, participants were presented with a questionnaire about the film in which they had to recall varying aspects of the film extract. Like Oh (2003), she used real-life motion, but her stimulus represented contextualized motion events whereas Oh’s stimuli were not fully contextualised. Error rates in immediate recall (after watching the short film) indicated significant cross-linguistic differences in line with the semantic dimensions highlighted in French and English. French showed better recall of agent details and path types (i.e., telic and atelic paths), but worse recall of manner types (i.e., default manners e.g., run, walk) were equally recalled by both groups. These findings suggest that English speakers pay closer attention to fine-grained manners than do French speakers. Pourcel (2005: 285) concluded that difference in memory across the two languages ‘appear to be in line with the conceptual dimensions highlighted in French and English prototypical linguistic encoding of motion, suggesting the possibility of relativistic effects of habitual language patterns on memory.’

2.4.2 Conflicting Evidence

Before reviewing those studies yielding contradictory results, it is necessary to provide a brief summary of the experimental paradigms adopted in order to better understand the findings and conclusions. Most of this research usually combine three tasks; naming, similarity judgments and memory tasks (recall and recognition). In naming tasks, speakers are told to either fully
describe or just label with one word what is happening in visual motion video clips (e.g., Oh, 2003; Pourcel, 2005). In similarity judgments, the triad paradigm is preferred. Triads consist of three video clips: one is the target which displays both a Path and a Manner, and the other two video clips are the path- and manner- alternates. That is one of the video clips shares the same Manner as the target, and the other shares the same Path. The three videos in a triad usually display the same Figure (human or any other entity that moves) and Ground, so as not to bias participants’ responses. Other tasks examine participants’ memory, either through recall (i.e., memory for details of what they saw) or recognition tasks (i.e., just asks participants if the video clip they are watching is ‘new’ or ‘old’),

Gennari et al. (2002) were interested in investigating whether different lexicalization patterns of motion events in English and Spanish had any effect on speakers’ performance in two non-linguistic tasks: recognition memory and similarity judgments. They also investigated Slobin’s thinking-for-speaking hypothesis asking some participants to verbally describe the motion events but not asking others. The stimuli consisted of 36 triad of videotaped human motion. Overall, no significant difference between English and Spanish speakers was obtained in their memory for Manner of motion. However, they did find a linguistic effect in the similarity task after verbal encoding. Spanish speakers in the verbal description condition were more likely than English speakers to select the clip with same path. Thus, the verbal coding task had an effect on Spanish speakers’ later performance in the similarity task. In contrast, English participants behaved in the same way whether they linguistically described the
stimuli before or after the similarity judgments. Finally, when no linguistic encoding was required, performance across languages did not show any preference for one dimension of motion over the other. Their research suggests that linguistic and non-linguistic performance are dissociable, but language made available in the experimental context may mediate the speaker’s performance in other tasks.

Papafragou et al (2002) conducted a study similar to Gennari et al. (2002), using English and Greek (a verb-framed language). Their participants were both children and adults. The tasks included (a) verbal descriptions and recognition memory of static pictures adapted from the frog story, and (b) similarity judgments using triads of static human motion pictures. They found that the two language groups differed in terms of their linguistic descriptions, but their performance in the two non-linguistic tasks was similar. Unlike Gernnari et al. (2002) they did not find a facilitating effect of verbal encoding in later non-linguistic tasks. Taken together, however, these two studies are consistent with the Universalist approach to language and cognition: cross-linguistic variability in the expression of motion does not reflect any substantive differences in the ways humans think about motion.

Zlatev and David (2004) focused on French and Swedish (a satellite-framed language). They used sets of triads showing tomato man13 performing the motion scenes, which varied in terms of Manner (rolling spinning, sliding

13Tomato man is a virtual elicitation tool developed at the Max Planck Institute for Psycholinguistics (Nijmegen, NL).
and jumping) and Path (e.g., from right to left). As in previous studies, participants saw triads and were asked to choose which alternate is most similar to the target. Their results showed an overall preference for Manner across languages. Unlike the research we have just reviewed, which concluded that there was not a preference for either motion dimension over the other, Zlatev and David’s results showed a significant preference for the dimension of Manner.

In sum, this section reviewed research addressing the linguistic relativity hypothesis. This line of research addresses whether differences in the lexicalisation of Path and Manner in verb- and satellite-framed languages has an influence on speakers’ conceptualization of motion. This question has been extensively investigated, yielding mixed results for the influence of language on cognition. On the one hand, several studies suggest that speakers of satellite-framed languages seem to have richer mental imagery of Manner of motion, and that the Manner dimension of motion appears to be more salient in their memory for events than for speakers of verb-framed languages. On the other hand, a number of studies which suggest that language does not influence non-linguistic cognition have been reported. Although both sets of studies use similar methodologies, their results are contradictory. Research by Pourcel (2004a, 2004b, 2005) and Kopecka and Pourcel (2005) shed some light on this conflicting evidence by demonstrating that the stimuli employed in linguistic relativity research may be responsible for such divergent findings. These scholars show that the intrinsic nature of the stimuli, specifically, the types of Path, Manner and Figures, appear to have a significant effect on the salience of Manner and Path across typologically distinct languages.
CHAPTER THREE

FORMAL ENCODING OF MOTION EVENTS IN EWE

3.0 Introduction

This chapter contains introductory material about the Ewe language and gives a description of the four basic semantic components of motion events as proposed by Talmy (1985) and Slobin (2000) and how these elements are encoded in the language. This will help in the classification of Ewe in the motion event typology.

3.1 The Language and Its Speakers

Ewe14 also written as \textit{Eve [æβε]}, \textit{Evhe}, is a major dialect cluster of Gbe or Tadoid (Capo 1991, Duthie 1996) that belongs to the sub-group of the Niger-Congo family (Steward 1985, Williamson and Blench 2000 cited in Ameka 2005). It is spoken in the south-eastern part of the Volta Region of Ghana across to parts of southern Togo and across the Togo-Benin border by about three million people. Ewe dialects vary enormously. Groups of villages that are two or three kilometers apart use distinct varieties. Nevertheless, across the Ewe-speaking area, the dialects may be broadly grouped geographically into coastal or southern dialects, e.g., Aŋlo, Tɔŋu, Avenor, Dzodze, Watsyi and inland or northern dialects.

14 The information on the Ewe language is not different from the explications of other writers (Duthie 1996, Capo 1991, Ameka 1992, Ameka and Essegbey 2006, Essegbey 1999 etc.)

Speakers from different localities, however, understand each other and can identify the peculiarities of the different areas. In spite of dialectal differences, motion events are expressed the same way.

In addition, there is a written standard that was developed in the nineteenth century based on the regional variants of the various sub-dialects with a high degree of coastal content. With it, a standard colloquial variety has also emerged (spoken usually with local accent), used very widely in cross-dialectal contact sites such as schools, markets, and churches (Ameka and Essegbey 2006:359).

3.2 Phonology and Morphology

Ewe is a tone language with high and non-high tonemes. Complex rising and falling tones also occur. It has a seven vowel system. Each of these has both an oral and a nasalized counterpart. There are 30 consonants including double articulated labial velar stops and bilabial fricatives written ŋ and ñ that contrast with labio-dental fricatives /f/ and /v/. Similarly, there is a voiced apical post-alveolar stop /ɬ/ which contrasts with a voiced dental stop /d/.

15. The ‘Klo afíká nèlé’ narrators used their various dialects. As such their language is the spoken form and hence does not necessarily conform to the expectations of someone familiar with the standard dialect; for example, the use of yèyi xe ‘when’ to introduce the adverbial clause instead of the standard written form esi (me) ‘when’.
Tones may also fuse when morphemes combine in much the same way that the vowels may fuse. Tone is not customarily marked in the traditional orthography except on a few items with identical segmental forms to distinguish them. Thus, è second person singular pronoun (2SG) has a low tone compared with e third person singular pronoun which is not marked for tone. Similarly, lé ‘catch’ contrasts with le ‘be at’. A practice to mark all high tones in addition to the customarily marked low tones in the orthography introduced by Duthie (1996) is gaining currency in academic linguistic writings.\(^{16}\)

Ewe syllable structure may be represented as (C1) (C2) VT (C3). Each syllable bears a tone. C1 may be any consonant except r, C2, a liquid as in fle ‘buy’, trà ‘to collapse’, ‘become watery’; or a palatal or a labial velar approximant as in fia [fya]’show, teach, burn’ and sue [swe] ‘small’. The nucleus may be a vowel or the bilabial or velar nasal, in which case it carries tone. For example, ëdli ‘morning’, ëkeke ‘day’, fomì ‘beat me’ ñunì ‘bit me’. The nucleus may also be filled by two vowels which are the same, yielding a long vowel or yielding a diphthong e.g. laol, lai/. For example: dzaa ‘welcome’, kpáo ‘no’, yoo ‘Ok’. C3 is only filled by a nasal as in boŋ ‘rather’, sŋy ‘several’, kam = pé ‘scissors’.

\(^{16}\) Duthie’s (1996) approach to the marking of tones was adopted in the writing of this thesis.
Morphologically, Ewe is isolating with agglutinative\(^{17}\) features. It makes use of compounding as well as reduplication, triplication and affixation processes in the formation of new words.

Nouns have a non-high tone vocalic prefix à- or è- which are relics of Proto Niger Congo noun class markers. The è- prefix tends to be elided when the noun is not said in isolation e.g. a-me ‘prefix-person’, (e-) gli ‘prefix-folktale’. Some temporal nouns have a high tone prefix and they are never elided, égbe ‘today’, éto ‘to night’, and dzô ‘now’.

Ewe has ideophones – a set of sound symbolic words with interesting phonological and syntactic properties, some of which code manner (or motion) concepts as we shall see in this section. Westermann (1930:107-109) gives forty ideophones that can be used in collocation with the general motion verb zô ‘move, travel,’ “according to the manner of going” Westermann (1930:107).

3.3 **The Syntax of Ewe**

Syntactically, Ewe is an SVO language with alternative OSV and SOV orders being systematically linked to the basic one, and determined by semantic and pragmatic factors like topicalisation and focusing (cf. Ameka 1998. Essegbey

\(^{17}\) An isolating language is a language in which almost every word consists of a single morpheme. It is a linguistic typology category that defines a language with a low morpheme-per-word ratio. In the extreme case of isolating language or analytic language words are composed of single morphemes. On the other hand, an agglutinative language is a language where each affix typically represents one unit of meaning (such as “diminutives, ‘past tense’, ‘plural’ etc.), and bound morphemes are expressed by affixes (and not by internal changes of the root of the word, or changes in stress or tone). Additionally, and most importantly, in an agglutinative language affixes do not become fused with others, and do not change form conditionally by others.
In Ewe, who does what to whom is expressed by constituent order where the doer comes first followed by what is done (the verb) followed by one to whom it is done (the object). This can also be followed by the recipient action hence Ewe is an SVO language. The following examples illustrate this.

1. a. Danye to fufu

 Da – nyé tó fufu

 ‘My mother pounded fufu.’

 [SVO]

 b. Fufue danye to

 fufu - e da – nyé to

 ‘It was fufu my mother pounded’

 [OSV]

 c. Dzodoje danye toe le.

 Dzodoje - e da - nyé to – e le.

 ‘It was in the kitchen that my mother pounded it.’

 [SOV]

Clausal negation is marked by a discontinuous negative morpheme: *mè…o*.

Me occurs just before the VP and tends to be cliticised onto the first element in the VP while *o* occurs at the end of the clause but before sentence final utterance particles as in (2a) and (2b).

2. a. Yawa megayi ařeme o.

 Yawá me – ga - yi ařéme o.

 ‘Yawa should not go home’

 b. Megadzo o sea?

 Me -ga dzo o se - a?

 ‘Didn’t you leave your house?’
Don’t leave, you hear/understand?

There are different kinds of nonclausal or constituent negation. One of these is the negative cleft construction in a clause, an NP or a predicate. Consider the following example.

3a. Abi makumaku aɖe le afɛnɛɛ.
 Abi ma – ku - ma- ku aɖe le afɛ nɛ - ɛ.
 Wound NEG-die-NEG-die INDEF be LOC foot/leg DAT -3SG
 ‘S/He has some ulcer on the foot or leg.’

In this last example, the me part of the derivational negation is also marked in Ewe by the affix ma ‘un’, the privative marker. This affix is used in the derivation of adjectives and adverbials. It is usually prefixed to a verbal element and reduplicated together with it when necessary: mǎ–ʋɔ (NEG – finish)

‘everlasting’. Makumaku (ma-ku-ma-ku – NEG die-NEG-die ‘ulcer wound’/’will never heal’

Ma can occur with or without standard negation as in (4).

4. Menye numaɖumadʒe ná wôdze dɔ o.
 Me - nye nu ma - ḥu - ma - ḥu - e na
 NEG-be COP thing NEG –eat NEG – eat –FOC cause
 wɔ - dze dɔ o.
 3SG-fall sickness NEG
 ‘It is not his abstiencene from food that has made him fall sick.’

In example (4) above, this construction is used to emphatically negate a particular constituent in a clause, an NP or a predicate. The constituent that is

18 This information on negation is taken from Ameka (2001).
thus negated is focus marked, either by the argument focus marker or the
predicate focus marker.

The language also has a logophoric pronoun ye (plural yewó) which is used in
reportive contexts to designate the individual(s) (except for the first person)
whose speech, thoughts, feelings and so on are reported or reflected in the
linguistic context in addition to personal pronouns which are distinguished for
subject and non-subject. The reflexive is formed by juxtaposing an independent
pronoun (including the logophoric) to the noun ṃökui ‘self’ e.g. É-bé ye-sì ye
ṁökui ‘she said that she (LOG) cut her (LOG) self’ as in (5a) ans (5b). Similarly,
the reciprocal comprises a plural independent pronoun, and nxe – wó ‘reciprocal
–PL’.

5. a. Ebe ye sì ye ṃökui.

É -bé ye sì ye ṃökúi
3SG – COMP LOG cut LOG self
‘S/He said she/he cut herself/himself.’

b. Minya mia nxe wo
Mí -nyá mía nxe -wó
3PL-know 3PL self-PL
‘We know each other/one another.’

There are particles for framing discourse. A scene-setting expression may be
preposed to the clause, and separated from the rest by a pause and/or marked by
a particle lá or ḍé. (See examples (6) and (7).

6. Né ḍeviáwo kpá tsó suku lá, wóyia aǰéme.

Né ḍeví - á - wó kpá tsó suku la wó - yi - a aǰéme
If the preposed constituent is coreferential with a core argument of the clause, their relationship is indicated by an anaphoric pronoun in the clause. An argument of the clause may be front-shifted to the pre-core clause position for focus, that is before the subject slot but after the preposed constituent slot. The fronted element is marked by an argument focus marker. Typically, a gap is left in the slot within the clause structure where the fronted element would have occurred.

 Kofi fi ga
 Kofi steal money
 ‘Kofi stole money.’

 b. Gaé Kofi fi.
 Ga - é Kofi fi
 Money – FOC Kofi steal
 ‘It is money Kofi stole.’

Ewe has a speaker anchored two-basic demonstrative system with dialect variants: a proximal (sia, yi, ke) and a distal (kemá, má, kemí). The following are examples.

9. a. ðeví síá dím wóle.
b. Eyi dim mele.

É - yi - dim - me - le
3SG – PROX - look/search – PROG 1SG - PROG
‘It is this one I am looking for.’ [coastal dialect]

c. Eke di wóle.

E - ke - di - wó - le.
3SG- PROX look/search 3PL – be.at PRES
‘They are looking for this one. ’ [inland dialect]

d. Tsó ekema/ema/ekemi nam.

Tsó ekema/ema/ekemi na - m
Give/Take DIST/DIST/DIST DAT - 1SG
‘Give/Take this one for me.’

The distal forms can be argumented by the suffixation of -i ‘deictic’ to get kemí ‘that yonder’ or by the adverbial particle ɖí ‘in the distance’: kemí ɖí ‘that in the distance’. The distal terms have truncated forms; kem, m which are always accompanied by a gesture either a manual, lip or head point. In a presentational construction, obligatorily accompanied by a gesture, the demonstrative terms occur by themselves as predicate as in Ama-é-má ‘That/there is Amá (Coastal) or Nye-é ké ‘Here I am/This is me’ (Inland)’. In the standard dialect, however, the focused NP and the demonstrative predicate are linked by the equative copula nyé ‘be’. In addition, the predicate has to be the pronominal form of the demonstrative as in Awó -e-nyé é -má ‘That/There is Awó’. Amuzu (p.c) however thinks that the Anlo dialect has a three demonstrative system:
3.4 **Ewe Verbal System**

Ewe is an aspect rather than a tense language like many other Kwa languages in West Africa\(^\text{19}\) because it does not have any overt marking for present and past time. Habitual aspect is the only category marked on the verb by a toneless suffix \((n)a\) which inherits its tone from the preceding syllable. Preverbal markers express various modal and aspectual categories such as \(\text{vá}\) ‘ventive/eventually’ (see Ameka 2008, Essegbey 2008). For example, the verb in sentence (10) can be interpreted as denoting present or past time.

10. \(\text{Ama yi xome.}\)

\begin{center}
Ama yi xome \\
Ama go room \\
‘Ama went into the room.’
\end{center}

A bare verb or the aorist form has a past semantics. For active verbs, this signals a past occurrence of the action. For inchoative verbs, it indicates the prior occurrence of the change of state hence the state is current. The Potential can have future time interpretation in context. All these temporal interpretations can be reinforced by adverbials. The Potential and the Subjunctive are mutually exclusive with the Habitual (cf. Ameka and Dorvlo 2009).

\(^{19}\) See Ameka and Kropp Dakubu 2008 (eds.) for a detailed information on Aspect and Modality in Kwa languages. This volume explores the thesis that in the group of West African languages known as ‘Kwa’, Aspect and Modality are far central to the grammar of the verb and the clause than Tense.
Consider the following examples.

11. Kofi yia suku gbe sia gbe.

Kofi yia - a suku gbe sia gbe
Kofi go – HAB school day every day
‘Kofi goes to school everyday.’

12. a. Ele be wòavá kpɔm.

E le be wò – a vá kpɔ - m
3SG be at PRES COMP 3SG-SUBJV come see 1SG
‘S/He has to come and see me.’

b. Êle bé wóává kpɔm

Ê le be wò – á vá kpɔ - m
3SG be at PRES COMP 3PL SUBJV come see – 1SG
‘They have to come and see me.’

13. a. Wóavá kpɔm.

Wó – à vá kpɔ - m
3PL – POT – come see 1SG
‘They will come and see me.‘

b. Êvá kpɔm.

Ê vá kpɔ - m
3SG:POT come see – 1SG
‘You will come and see me.’

In (12a) the underlying tone of the Subjunctive is high but it becomes low when preceded by a pronoun with a low tone. (See Essegbey (2008) for more details on the Habitual, Subjunctive and the Potential).

The Potential differs from the Subjunctive both in its variant and in tone. Some dialects of Ewe have la- as the variant of the Potential, as opposed to the nd of
the subjunctive. Secondly, the Potential has a basically non-high tone which is often realized as low (See examples (12a) and (13a) above). The potential captures the invariant meaning of the à morpheme, and the subjunctive, the (n)à segment which expresses wishes and command.

Ewe also has the Progressive and Prospective aspect constructions. The prototypical function of the progressive construction is to signal that the states of affairs represented in the clause is on-going at the relevant reference time indicated by the verb. There are two verbs that can fill the verb slot in this construction: the suppletive locative verb set le ñ ñ ‘be. at’ and a contact verb dze ‘contact’. The structure of the prospective construction is the same as that of the progressive except that the aspect marker that heads the aspectual phrase is the prospective marker ge ‘PROSP’ or its dialect variant gbé ‘PROSP’. The general meaning of the prospective construction is that the state of affairs characterized in the rest of the clause will happen after the reference time specified in the verb. (see Ameka and Dakubu 2008:215-289) for more details.

Ewe has several multiverb constructions. A serial verb construction (SVC) is a sequence of two or more verb phrases (including any complements and adjuncts) without any marker of syntactic dependency used to express what constitutes one state of affairs. The VPs in the sequence occur within the same temporal frame, share the same mood (e.g. imperative) and can be formally marked for different aspect categories. The individual verbs can function as independent verbs in simple clauses (in the same form). All VPs in the series have one syntactic subject which is expressed only once on VP1. The VPs cannot be formally
independently negated but they can be individually focused or questioned. There is no limit on the number of VPs that can constitute an SVC, except for restrictions on production and comprehension. For example, the sentence:

14. Đzođeke 20 - è ts5 ɲutsuvi -é ñú du vá de - e
deer -DEF take boy DEF run come throw - 3SG
dé tɔ - ɔ me
ALL river DEF inside
‘The stag took the boy, ran and threw him into the river.’
is an SVC. The single subject is Đzođeke ‘stag’ The first verb is tsɔ ‘take’. The second verb is ñú du ‘ran’, modified by the preverb vá ‘vententive’ and the third verb is dalde ‘throw’.

3.5 Ewe Adpositions
Ewe has both preposition and postpositions (cf Ameka 2003, 2005). Prepositions in the language constitute a small closed class of less than ten elements, distinguished from verbs by the fact that they cannot occur with the habitual suffix –na. The prepositions provide the general orientation of a Figure (located object). It is demonstrated that spatial relations, such as those encapsulated in “the basic typological prepositions at, in and on in English (Herskovits 1986:9), are not encoded in single linguistic elements in Ewe but are distributed over members of different form classes in a systematic string.

20 We do not have “the deer” in Ghana. The animals that resemble the deer are fẹđekadzdẹ̆kẹ̆kẹ̆ (an animal that grows an extra horn every year), gbagbadzdẹ̆kẹ̆kẹ̆ (the unicorn), aʃiã or aʃidzdẹ̆kẹ̆kẹ̆ (the stag) and zi ‘the antelope’. These were names substituted for the ‘deer’ in the narratives and their English translations will be used as substitute for the deer.
3.5.1 Prepositions

They are distinguished from verbs by the fact that they cannot occur with the habitual suffix –*na*. Spatial prepositions are given in Table 1 with an indication of their verbal sources. Two other non-spatial prepositions, *kple* ‘with’ COMITATIVE/INSTRUMENTAL and *ná* ‘to/for’ DATIVE, also occur (see Ameka 1995, 2003b).

Since the prepositions have evolved from verbs they have been referred to as a class of verbids (Ansre 1966a, 2000). Serial verb constructions (SVCs) are the channel for the general development of verbs into verbids (see Lord 1993, cited in Ameka and Essegbey 2006). Note that *váśéɖé* ‘until’, for example, is the result of the compounding of the grammaticalized forms of three verbs, *vá* ‘come’, *sé* ‘stop’, *ɖé* ‘reach’. The combined semantics of these verbs is consistent with the meaning of the preposition. It is also important to note that there is no erosion or difference in form between the verbal source and the prepositional forms. From a semantic point of view, then, the grammaticalization of the verbs has resulted in the development of heterosemy of the forms (cf. Lichtenberk 1991 cited in Ameka and Essegbey 2006:368).
Table 1: Ewe Spatial Prepositions

<table>
<thead>
<tr>
<th>Preposition</th>
<th>Function</th>
<th>Gloss</th>
<th>Verbal Sources</th>
<th>Source Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>le</td>
<td>LOCATIVE</td>
<td>‘at’</td>
<td>< le</td>
<td>‘be at’</td>
</tr>
<tr>
<td>dê</td>
<td>ALLATIVE</td>
<td>‘to, towards’</td>
<td>< dê</td>
<td>‘reach’</td>
</tr>
<tr>
<td>dô*</td>
<td>ABLATIVE</td>
<td>‘from’</td>
<td>< dô</td>
<td>‘arrive’</td>
</tr>
<tr>
<td>tsô</td>
<td>ABLATIVE</td>
<td>‘origin from, come, arise’</td>
<td>< tsô</td>
<td>‘originate from, come, arise’</td>
</tr>
<tr>
<td>tó</td>
<td>PERLATIVE</td>
<td>‘through’</td>
<td>< tó</td>
<td>‘to pass (by)’</td>
</tr>
<tr>
<td>va sé dê</td>
<td>EXTENT</td>
<td>‘up-to, until’</td>
<td>< vá</td>
<td>‘come’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< sé</td>
<td>‘stop’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< dê</td>
<td>‘reach’</td>
</tr>
</tbody>
</table>

Adapted from Ameka and Essegbey (2006:368)

*The form dê and dô and are alternants. dô occurs when the complement of the preposition is not adjacent to it.

3.5.2 Postpositions

Postpositions constitute a closed class of about thirty members. They have evolved historically from nouns but now constitute a distinct form class which is not necessarily a sub-class of the nominal class.

Postpositions have evolved mostly from body part terms. In the literature, only one, dzì ‘sky’ comes from a landmark term. Thus, Ewe exemplifies two of the sources, even if one only minimally, that have been noted in the literature for the development of adpositions from nouns (cf. Heine, Claudi and Hünnemeyer 1991, Heine 1998, Svorou 1994, all cited in Ameka and Essegbey 2006:369).
Table 2 and 3 show that the sources of some postpositions are not entirely obvious.

The postposition *gbe* is rather productive and occurs with several nouns to indicate the region where the figure can be found. It occurs in terms of different kinds of vegetation as in *avegbe* ‘forest area’, that is a place with forest; *dzogbe* ‘fire area’ grassland that is a place where grass is when one can set fire to; *tógbé* ‘mountain area’ (mountainous region). It is lexicalized with *dzì* ‘sky’ and *anyì* ‘down’ to form terms for upper region and lower region respectively, as in *dzìgbé* ‘upper region’, ‘upper area’; and *anyígbe* ‘lower region, lower area’.
<table>
<thead>
<tr>
<th>Post-positions</th>
<th>Gloss</th>
<th>Putative Source</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dzí</td>
<td>upper surface</td>
<td>< dzí</td>
<td>sky</td>
</tr>
<tr>
<td>Fóo</td>
<td>flat horizontal surface</td>
<td>< fóo</td>
<td>belly</td>
</tr>
<tr>
<td>gbó</td>
<td>place, vicinity</td>
<td>unknown</td>
<td>N/A</td>
</tr>
<tr>
<td>Gbá</td>
<td>Surface around something</td>
<td>unknown</td>
<td>N/A</td>
</tr>
<tr>
<td>Gbè</td>
<td>purpose</td>
<td>unknown</td>
<td>N/A</td>
</tr>
<tr>
<td>Gbèe</td>
<td>area, region</td>
<td>unknown</td>
<td>N/A</td>
</tr>
<tr>
<td>Xa</td>
<td>beside</td>
<td>< axa</td>
<td>side (of body)</td>
</tr>
<tr>
<td>Me</td>
<td>containing region of</td>
<td>unknown</td>
<td>N/A</td>
</tr>
<tr>
<td>Núu</td>
<td>entrance, opening, end point</td>
<td>< núu</td>
<td>mouth</td>
</tr>
<tr>
<td>ñgó</td>
<td>front</td>
<td>< ñgó</td>
<td>forehead</td>
</tr>
<tr>
<td>ñú (ti)</td>
<td>outer surface</td>
<td>< ñú (ti)</td>
<td>skin, body</td>
</tr>
<tr>
<td>Ta</td>
<td>upper end, peak</td>
<td>< ta</td>
<td>head</td>
</tr>
<tr>
<td>Té</td>
<td>under, bottom</td>
<td>unknown</td>
<td>N/A</td>
</tr>
<tr>
<td>Tó</td>
<td>edge</td>
<td>< tó</td>
<td>ear</td>
</tr>
<tr>
<td>Sí</td>
<td>domain</td>
<td>< sí</td>
<td>hand</td>
</tr>
</tbody>
</table>

Tables 2 is adapted from Ameka and Essegbey 2006 (pp. 368-309).
Table 3: Complex Postpositions

<table>
<thead>
<tr>
<th>Post-positions</th>
<th>Gloss</th>
<th>Putative Source</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godó</td>
<td>outside of, other/opposite side</td>
<td>< go</td>
<td>Side, direction, region, part, shore, beach, strand</td>
</tr>
<tr>
<td>Godzí</td>
<td>in the direction of</td>
<td>< go+dzí</td>
<td>bank + upper surface</td>
</tr>
<tr>
<td>Góme</td>
<td>part, region</td>
<td><go+me</td>
<td>bank + containing region of</td>
</tr>
<tr>
<td>Dome</td>
<td>between, among</td>
<td><do+me</td>
<td>(hole)+ containing region of</td>
</tr>
<tr>
<td>ɗomé</td>
<td>under, bottom</td>
<td><do+mé</td>
<td>female genital organ + containing region of</td>
</tr>
<tr>
<td>ɗome</td>
<td>under, bottom</td>
<td><ag+me</td>
<td>anus+ containing region of</td>
</tr>
<tr>
<td>Đkúme</td>
<td>front</td>
<td><ŋkúme</td>
<td>face</td>
</tr>
<tr>
<td>Tame</td>
<td>apex, peak</td>
<td><ta+me</td>
<td>head+ containing region of</td>
</tr>
<tr>
<td>Megbé</td>
<td>back, behind</td>
<td><me+gbé</td>
<td>back (of body) + containing region of</td>
</tr>
<tr>
<td>bɔfo</td>
<td>around, in the direction of</td>
<td><(a)bɔ+fo</td>
<td>arm + belly > horizontal surface</td>
</tr>
<tr>
<td>Tome</td>
<td>hollow, interior</td>
<td><to+me</td>
<td>cavity + containing region of</td>
</tr>
<tr>
<td>kɔgo</td>
<td>outside</td>
<td><akɔ+go</td>
<td>chest, breast-bank</td>
</tr>
<tr>
<td>Yome</td>
<td>trails</td>
<td><yo+me</td>
<td>?? + containing region of</td>
</tr>
</tbody>
</table>

Adapted from Ameka and Essegbey (2006:370)
To summarise, this section outlined some typological features of Ewe, some of which will be necessary for/in the discussion as the chapter unfolds.

3.6 The Linguistic Encoding of Motion Events

3.6.1 Introduction

This section provides an introduction to the linguistic devices available to speakers of Ewe for encoding the semantic components of motion events discussed above (see 2.2). Special attention was paid to how the Ewe language differs from a satellite-framed language like English and verb-framed languages such as Spanish and Turkish in which lexical categories or syntactic/morphological structures may be typically used to encode the semantic components of *path* and *manner*. Some preliminary conclusions regarding the place of Ewe in the motion event typology was discussed as well.

3.6.2 The Linguistic Encoding of Figure and Ground in Ewe

The linguistic encoding of *figure* and *ground* often involve a one-to-one correspondence between the two meaning components and the linguistic forms of their surface representation. In Ewe, as in most languages of the world, figure and ground are encoded in linguistic elements of the same grammatical category: nominal phrases. In addition, Ewe also uses postpositions. Figure (in motion events) is conceptualized in two ways: spontaneous and caused motion. In spontaneous (or self-directed) motion, the figure entity initiates its own movement resulting in a change of location. It is typically encoded in Ewe as the subject of the sentence as in (16).
16. Eklo - ó tá do le eze - e me.
 Tortoise DEF crawl exit from POT-DEF inside
 \begin{itemize}
 \item \text{figure}
 \item \text{manner + motion}
 \item \text{path}
 \item \text{ground}
 \end{itemize}

In (16) the subject is in the preverbal position. In the caused motion events, however, some agentive entity causes the figure/entity to move from one place to another. In Ewe caused motion, the figure is encoded as the direct object of the verb (17).

17. Đzođeké-ɛ da ŋútsuví-e dọ dé tɔyoo - ɔ me
deer -DEF throw boy -DEF reach into river DEF inside
 \begin{itemize}
 \item \text{figure}
 \item \text{ground}
 \end{itemize}

 ‘The deer threw the boy into the river.’ [MV]

In example (17), the moving entity, i.e. the figure, is linguistically represented by the noun phrase ŋútsuví ‘boy’ which occupies the direct object position of the verb da ‘throw’.

\subsection*{3.6.3 Ground}

The syntactic position for linguistic elements that represent the ground are versatile in Ewe. The ground can be either the object of the verb or verb sequence, the object of a preposition, or the specifier/modifier of the subject in (18a), (18b) and (18c) respectively.

18. a. Ńutsuvî-ɛ ɗíá dzime.
 boy -DEF climb up
 ‘The boy climbed up.’

18. b. Éyé eklo - ɔ tá do le eze - -á me.
and tortoise-DEF crawl exit from pot DEF inside
‘And the tortoise crawled out of the pot.’

19. Eklo-ɔ xé le eze-é me do sí dzó.
tortoise DEF COMPL be PRES pot-DEF inside exit run go
‘The tortoise which/that was in the pot ran away.’

Ground does not always need to be encoded explicitly. Rather, it can sometimes be left to inference from the context or world knowledge. Or the speaker can be interpreted as the reference object via the use of the two deictic verbs va ‘come’ or yi ‘go’. In example (20), the ground is not explicitly specified. Rather, the goal (or destination) of the tortoise’s movement can be roughly identified as some place away from the speaker. The source (or origin) of the tortoise’s movement, that is ze ‘pot’ can only be inferred from the discourse context provided by example (21), which immediately follows example (20) in a story about a boy and a dog going out to search for a runaway pet, tortoise.

20. Eklo-ɔ tá ɖɔɖɔɖɔ sí do dzó le ze-é
tortoise DEF crawl slowly escape exit leave be.LOC pot–DEF inside me
‘The tortoise crawled slowly out and escaped from the pot.’

21. Xé eŋu ke ŋútsu ví – é kplé avu-ɔ
When day-break man little DEF and dog DEF kpş bé eklo-ɔ sí dzó le ze-é me see COMP tortoise DEF run go be.LOC pot–DEF inside
‘When day broke, the boy and the dog found out that the tortoise has ran away from the pot.’

In some motion events, there can be several ground elements. These ground elements specify the source, goal, milestone or medium of movement. They
serve as reference points with respect to which figure moves. As such, they are typically integral components of the path, marking the origin, the end-point, the middle ground, or a salient feature along a path. These different ground elements can all be illustrated by the English example in (22) taken from Slobin (1997, cited in Chen 2005:17).

22. He went from the station [source] along the avenue [medium] and through the crowds [medium] past the monument milestone] to his office [goal].

The five noun phrases in example (22), the station, the avenue, the crowds, the monument, and his office, represent different ground objects. They are attached to a single verb went along with the five spatial prepositions. All these elements work together to trace out the trajectories of movement.

Similarly, several ground objects can sometimes be mentioned within a single clause in Ewe. The example in (23) may serve to illustrate this.

23. Ñutsuvíá kplé avua wózɔ do le dua me [source] dze agble mó áđé dzí [medium] vá tó ave tsitsi áđé me [medium] nɔé tó gbedóxɔ áđé xa [milestone] vá do đé atí gá áđé si me eto le lá té. [goal]

Ñutsuví - á kplé avu - a wó - zɔ do le du -á Man – DIM – DEF and dog – DEF 3PL – walk exit be LOC town- DEF me dze agble - mó áđé dzí vá tó ave inside set off farm – road INDEF POSTP/top come pass forest tsi - tsi ađé nɔé - é tó gbedóxɔ ađé xa RED-grow INDEF branch – 1SG pass chapel INDEF side vá do đé atí gá áđé si me eto le lá té come appear at tree big INDEF REL inside hole LOC TM under
'The boy and the dog left the town and set off on a path leading to the farm, passed by a chapel, and appeared under a big tree that has big a hole in it.' [AR]

Here in example (23), the prepositional phrase *le dua me* ‘from the town’ specifies the source of movement whereas the prepositional phrase, *ɖe ati gá aɖe* ‘under a big tree in which there is a hole’ specifies the goal of movement. Together, they further elaborate on the details of the path of the movement.

As stated above, ground elements specify the source, goal, milestone or medium of movement. I therefore take a brief look at *Goal and Source*.

3.6.4 Goal and Source

Serializing languages have a distinct pattern for expressing Source or Goal of motion as well. In Ewe, the source expression can be a direct argument of the verb, that is its role is read off the semantics of the verb (Ameka and Essegbey 2006:395). This is the case with verbs which can function as two place predicates and which have a beginning anchor, e.g. *tsó* ‘come from, originate.’ Source can be explicitly indicated by the use of prepositional phrases headed by the LOCATIVE [*le*] and the ABLATIVE [*tsó*]

24. É - mli gago - á do le xɔ - ɔ me.
3SG roll drum DEF exit LOC room DEF inside
‘S/He rolled the drum out of the room.’

and the ALLATIVE preposition (*tsó*). For example,

25. É - gé tsó néti - ɛ dzí.
3SG drop ABL coconut DEF POSTP/top
‘It/S/He fell from the coconut tree.’
Goal can also be just a direct argument of a verb that entails an end point. Thus the direct complements of deictic and directional verbs such as yi ‘go’, va ‘come’, de ‘reach’ as well as the boundary crossing verb do ‘exit’ are all goals. The Allative preposition ɖe ‘into’ also introduces goal complements and can co-occur in instantiations of a one-place construction with verbs like yi ‘go’ and do ‘exit’.

Source and goal of motion are both generally expressed in one clause, typically using a serial verb construction where there is at least one ground phrase per verb. The boundary-crossing verb do ‘exit’, however, can occur by itself with both a goal NP and a source Preposition in a two-place construction.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>É</td>
<td>do</td>
</tr>
<tr>
<td>go</td>
<td>tsó</td>
</tr>
<tr>
<td>xɔ</td>
<td>á</td>
</tr>
<tr>
<td>me.</td>
<td>3SG</td>
</tr>
<tr>
<td>exit</td>
<td>outside</td>
</tr>
<tr>
<td>ALL</td>
<td>building-DEF</td>
</tr>
<tr>
<td>inside</td>
<td></td>
</tr>
</tbody>
</table>

‘He came (to) outside from the room.’

The more iconic order of source followed by goal occurs in a serial verb construction where the goal argument is always introduced by one of the directional (end-point anchored) verbs as the last verb in the series (see 27).

<table>
<thead>
<tr>
<th>Goal</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kpé</td>
<td>á</td>
</tr>
<tr>
<td>mli</td>
<td>tsó</td>
</tr>
<tr>
<td>tó</td>
<td>á</td>
</tr>
<tr>
<td>dzí</td>
<td>vá</td>
</tr>
<tr>
<td>stone</td>
<td>DEF</td>
</tr>
<tr>
<td>roll</td>
<td>ALL</td>
</tr>
<tr>
<td>hill</td>
<td>DEF</td>
</tr>
<tr>
<td>surface</td>
<td>come</td>
</tr>
<tr>
<td>aga</td>
<td>-</td>
</tr>
<tr>
<td>me.</td>
<td>inside</td>
</tr>
<tr>
<td>valley</td>
<td>1SG</td>
</tr>
</tbody>
</table>

‘The stone rolled from the top of the hill into the valley.’

All the examples of goal NPs given so far can be interpreted as ‘to place X’. The distinction between a ‘to – a place’ and ‘towards –a – place’ goal is not lexically
coded in Ewe, but it is derived from aspeсtual distinctions on the verb. Thus, the
two verbs yi ‘go, and gbɔ ‘come back to base’ when marked with the habitual na
have a motion in – progress – at the current – time’ interpretation and thus have a
‘towards – the goal’ reading21 (Ameka and Essegbey 2006:396).

28. Awúsí yi - na afé - me.
 Awusi go - HAB house inside
 ‘Awusi goes (towards) home.’

The ‘moving-towards-a-place’ interpretation of utterances such as those above is
stronger when these motion verbs marked with the habitual occur in a final
position in an SVC. Similarly, telic verbs such as ḏò ‘reach, arrive’ in contexts
where they can be interpreted as having a ‘getting to V’ interpretation also have a
‘towards-the-goal interpretation’22. In addition, the verb ḏò ‘set, put’ in
collocation with, tǎ ‘head’, ḏò tǎ ‘to head for’, can take a goal complement. Such
a structure is interpreted as ‘moving towards the goal’. For instance,

29. Mié - ḏò ta Deme.
 1PL - set head Deme
 ‘We headed for Deme’ (i.e., ‘we went towards Deme’).

21 These are the only two verbs in the language whose habitual form has a progressive
 interpretation (Ameka and Essegbey 2008:396).

22 It should be mentioned also that when such verbs co-occur with the perfective marker ɔ
 ‘FINISH’, they have a near-completion interpretation and are therefore also interpretable as
 ‘towards the goal.’
3.6.5 Motion Interpretation from Non-motion Expressions

Motion can also be interpreted from non-motion expressions. One of the constructions which can be interpreted as motion is the stative-continuative aspect construction. Schematically, the construction has the form:

30. \[\text{NP}_1 \text{le/νɔ} [\text{NP}_2 \text{dzí}] \text{Postposition} \]

(Ameka and Essegbey 2006:288)

For motion interpretation, \(\text{NP}_1 \) must be animate and \(\text{NP}_2 \) filled by a nominal that can be the means, e.g., \(\text{gасɔ} \) ‘bicycle’ or the medium or site of motion e.g. \(\text{du} \) ‘course’ as for example in the sentence

LOG beat PROG TM, 3SG - hold course take
‘When the pupil saw that the teacher was coming to beat him/her he took to his/her heels.’

Sentence (31) shows that motion can also be expressed using contact verbs such as \(\text{le} \) ‘hold, catch; and \(\text{tsɔ́} \) ‘take’ with motion-related nominals or other complements such as \(\text{du} \) ‘course’. In sentence (31) above, the pupil started running away when he saw the teacher coming. The second line of the example above is an SVC and \(\text{du} \) ‘race’ is the so-called shared object of both verbs. The contact verbs tend to

\[\text{Ameka and Essegbey (2006) glossed } \text{du} \text{ as ‘course’ may be in the context (space) in which the word was used. I would like to gloss it as ‘race’ because of the context (motion) in which the word is used.}\]
contribute an inceptive reading to the structures, as the translation of the sentence in (31) shows.

Similarly, the verb dze ‘contact’ in collocation with a postpositional phrase headed by the postposition yome ‘trails’ yields a motion interpretation of ‘move, following someone/something.’

Motion interpretations can also be derived from the collocation of the verb dze ‘move/ make way’ with prepositional phrases headed either by the dative, or the locative or the allative prepositions. Let us examine the following typical utterances.

32. a. Dzè ná ŋkúŋø - ñ.
 Move/make way DAT blind person DEF
 ‘Move to give way to the blindman/person.’

 Dzè dë mɔ - á tô.
 move ALL road DEF edge
 ‘Move to the side/edge of the road.’

Like contact verbs, structures involving change of location verbs and their complements which could be construed as having motion-related features can yield motion interpretation. For example, in (33)

33. Fià lá dë afɔ dɔdɔdɔ.
 Chief DEF move/remove leg slowly
 ‘The chief walked/moved slowly.’

the use of the verb dë ‘remove’ plus the complement afɔ ‘leg’ gives a motion reading. Other complements which this verb can take yielding a motion
interpretation include àblà ‘speed’, azɔlî ‘deportment’ and du ‘race’ see (34) and

(35)

34. a. Awô ɖè azɔlî -a dzí kpɔta.
 Awo remove walk -DEF top reduce
 ‘Awo slowed down (her walking).’

 b. Dûtsu –á ɖè abla.
 Man DEF remove speed
 ‘The man moved quickly/fast.’

35. a. Gatsî – a gé dze detsi – a me
 Spoon – DEF drop land soup – DEF inside
 ‘The spoon dropped into the soup.’

 b. È – dzɔ le ati – é dzí
 3SG – fall LOC tree - DEF POSTP top
 ‘S/He fell off the tree.’

The allo-dialectal forms gé, (Aŋlo) and dzɔ (Inland) ‘drop’ ‘fall off’ in collocation with the allative preposition can also yield a boundary-crossing 24 interpretation of ‘enter’ in Ewe as was demonstrated above (Ex. 35).

From the discussion so far, we can say that even though there may not be many motion verbs in the language, the fact of motion can be inferred from various collocations and constructions involving stative-locative, contact and change-of-location verbs.

24 Refer to Chapter 2, Section 2.1.3.6 for the definition of boundary crossing constraint.
3.7 Verbs that have a Motion Semantics

In Ewe, there are no criteria to distinguish a form class of verbs dedicated to the expression of motion. Verbs which have motion semantics pattern with other verbs in various subclasses (Ameka and Essegbey 2006:387). These can be categorized into three groups.

i) Those in the first group are those which undergo causative alternation, where the single argument which functions as the subject in the one-place construction functions as the object in the two-place construction. Motion verbs like, gé ‘drop, fall’ dzó ‘drop, fall’, mli ‘roll’ and tró ‘spin’, come under this group.

ii) Verbs in group 2 have the following characteristics. The single argument that functions in the one-place construction as subject also functions as subject in the two-place construction. Motion verbs such as vá ‘come, yi ‘go’, zɔ ‘travel’, do ‘exit’ and tsà ‘wander’ belong here.

iii) For group 3, one-place predicates function only in the one-place construction. Verbs such as dzó ‘leave’, tɔ ‘limp’, kli ‘stumble’, sɔ ‘move in a quick way’ fall into this group. All the examples cited above are monovalent verbs.

There are bivalent motion verbs as well. These include lá ‘climb up’ and Ḉù ‘move limbs in a medium’. On the whole, Clements (1972:236) notes that the verb lexicon in Ewe is itself not too large, probably, not more than 600 verb roots with no morphological means of verbal derivation.
As a result, motion semantics is derived from other forms and their collocations.

There are generic motion verbs which code the fact of motion and nothing more or else some further minimal component. Examples are ɔ̀ ‘move, travel’ and tsà ‘move about, wander’ which are primarily monovalent, and kplə ‘accompany, move, with’ and ŋũ ‘move limbs in a medium’ which are primarily bivalent.

Ameka and Essegbey (2006:390) illustrate how distinct collocations involving kplə yields various interpretations depending on the constructions in which it occurs. In a two-place construction, the verb can be interpreted in a couple of ways depending on the semantics of the complement. It has a conventionalized interpretation as ‘sweep’ in the physical sense when its complement is the generic nominal nú ‘thing or a location’. For example:

36. Sena kplə nu.
 Sena move with thing
 ‘Sena swept.’

Another interpretation of kplə is that of ‘accompany’ or ‘lead’ as in

37. Abôtsí kplə nyi -á – wó yì gbeme.
 Abotsi lead cow -DEF PL go bush
 ‘Abotsi led the cows into the bush.’

In collocation with the satellite ɖó ‘reach/after’ the verb kplə means ‘follow, chase after’ with the intention of catching up with him or her as in (38a or 38b).
38a. Đevî – á kplɔ fofó – á ɖó.
Child – DEF follow father DEF after
‘The child is following the father’

38b. Duá – me ñekâkpuíwó kplɔ fiafi – á ɖó.
town-inside youth chase thief - DEF reach
‘The youth of the town chased the thief.’

In an SVC, where kplɔ occurs as the first verb and the second verb is a motion verb, kplɔ has a similar ‘accompany’ or ‘lead’ sense as in (39).

39. Wó- kplɔ kpovítɔ -wó fé amegå di tsa le gakpó – á me.
3PL-move police PL POSS boss go roam in prison – DEF inside
‘They accompanied the police boss as he roamed in the prison.’

Although the various interpretations relate to other components of motion such as path, manner and goal, these are derived from other things in context and not from the verb kplɔ itself. Nevertheless, there are small sets of verbs that conflate the fact of motion and either manner, speed or path. Frequently occurring manner and motion conflated verbs are mli ‘roll’, tro ‘spin’, gli ‘glide, slide’, which can occur in both one-place and two-place constructions, and tá ‘crawl’ (of babies and cripples), move slowly (of vehicles) tɔ ‘limp’ and nínì ‘slip’ which are all one-place predicates.
3.8 Verbs that Express Direction

There are less than a dozen verbs which could be said to express direction in the verb (cf. Schaefer and Gaines 1997 cited in Ameka and Essegbey, 2001). Some of these are anchored at the destination or goal of the motion: ɖó ‘arrive at a place’, vá ‘come to a place thought of as place where the speaker is’, gbɔ ‘return, come back to a place, to leave a place thought of as a place where the speaker is’; he (yi) ‘go away from a place, to leave a place, dzó ‘depart, leave’, tsó ‘arise, originate, come from a place’. These verbs can be used in the construction of motion trajectories.

3.8.1 Verbs that Conflate the Fact of Motion and the Speed of Movement

Some verbs in Ewe conflate the fact of motion and the speed of Movement. Verbs belonging to this set include vlâ ‘move fast’ (intr), gogo ‘fast approaching (tr/intr), sí ‘move quickly, escape, flow (of water) and minya ‘move stealthily, gently, sneakingly’. This last verb is related to the ideophonic adverb minyaminya ‘stealthily’ as in (40) shows.

40. Adelã ɔ minyaminya da tu kese la.
 hunter walk stealthily shoot gun monkey DEF
 ‘The hunter walked/moved stealthily and shot the monkey.’

3.9 Motion-cum Purpose Constructions

The realization of motion-cum-purpose constructions occurs in Ewe (Ameka 2007a). The construction involves a motion verb plus an event nominalization headed by a nominal, meaning ‘place’. In inland Ewe especially, the form
involves –fé ‘place’ and the event is similar to the way the progressive aspect construction is formed (see example (41).

41. a. Me - tsó hɔ – ŋu fé.
 1SG-come door DEF open place
 ‘I have come from opening the door.’

 b. Kɔdzo yi ɔkɔdi –é si ɔf.
Kɔdzo go lamp DEF light place
 ‘Kɔdzo has gone to put on the light.’

This construction implies that the referent of the subject argument moves to a place for the purpose of carrying out the event expressed in the nominalization headed by the ɔf ‘place’ noun (cf. Ameka 1991).

3.10 The Linguistic Encoding of Path

Path refers to the translational motion of a figure, which, in the most elaborated sense, moves from a source to a goal through some medium, passing one or more milestones. Put in another way, Path is the trajectory of the figure or trajectory of the motion. The core of a motion event might be thought to be displacement of the figure in space along a trajectory where this trajectory constitutes the path. (refer to section 2.1.2).

3.10.1 Path Verbs in Ewe

In Ewe, prepositions, particles and verbs encode path as compared to English where prepositions and particles are the most important elements in the encoding of path. These path expressions (in English) can be divided into three broad
types that encode different kinds of spatial relationship (Jackendoff 1983, cited in Chen 2005:21): (a) TO paths (b) FROM paths, and (c) VIA paths. Landau and Zukowski (2003, cited in Chen 2005) provide the following examples to illustrate the three types of path that are distinguished in English by the sets of spatial prepositions that encode them.

45.
 a. TO paths – to, in (to), on (to)
 b. FROM paths – from, out, off, away
 c. VIA paths – past, over, around, through

When a verb encodes both motion and path along which the figure object travels, it is a path verb. There are verbs that include a specification of path in their meanings. Verb-framed languages such as Spanish often have a large set of surface verbs that express both motion and path of movement at the same time. Chinese, for example, typically employs verbs to encode movement along various paths and motion in verbs. Most of these path verbs can either function alone in a single clause, or participate in a serial verb construction, i.e, a verb sequence without any marker indicating the relationship between them. When they occupy a verb slot other than the first in a serial verb construction, they are considered as complements (e.g. Li and Thompson, 1989, Chen 2005) or satellites (Talmy, 2000) to the first verb.

In this dissertation, the path verbs in Ewe are divided into Path-focused verbs and verbs that express direction in the verb root. There are path-focused verbs in Ewe (Ameka and Essegbey 2006). These are lìá ‘climb, go up’ and ìì ‘go down.’ For the two verbs, the site of the movement, e.g. tó ‘mountain’ or àgà
'slope' or tsodoe ‘ladder’ ətì ‘tree’ is expressed as the direct argument of the verbs. Source is added to these by prepositions and the goal by the direction verb va ‘come’ and yi ‘go’. Sometimes the allative preposition dé ‘into’ is added to the ‘go’ verb for this purpose. Change of orientation is coded in the intransitive verb trɔ ‘turn’ which collocates with some inherently directed verbs such as va ‘come’, yi ‘go’ and gbɔ ‘return’ or prepositions to express various nuances of return paths. The verb tra ‘lose one’s way, go astray’ can be viewed as a change-of-direction verb. It takes the site noun mɔ ‘road, way’ as a direct argument.

woman- DEF lose one’s (way) way
‘The woman lost her way.’

3.10.2 Boundary Crossing Verbs

There are a number of boundary-crossing verbs too such as dɔ ‘exit’ which when used in a plain one-place construction can be interpreted as ‘appear, emerge’. Typically, the single argument in such a construction is a meteorological noun such as tsi ‘water, rain’, ŋdɔ ‘sun’ or dzinu ‘moon’. When it occurs in a two-place construction, the goal of the exiting is expressed as the direct argument but this is restricted to a noun like (go) ‘outside’. More commonly, the same resource for source and goal as described above for path-focus verbs are employed for this verb as well. There are other boundary crossing verbs such as tsɔ ‘cut, go across’ as in
47. a. Sukuví - á - wó tso tɔ - á.
 Pupil - DEF -PL go cross river DEF
 ‘The school children crossed the river.’

 b. É - fú tsi tso tɔ - á.
 3SG move limbs water go across river DEF
 ‘S/He swam across the river.’

In the sentences above (47a and 47b), the site crossed is expressed as a direct argument of the verb. The verb tó ‘to pass by’ also has the site or landmark passed expressed as direct argument. However, gbagba/tútú ‘overflow’ is an intransitive verb and leaves the boundary exceeded implicit to be deduced from context.

Conspicuously absent from the boundary-crossing verbs in the language is a monomorphemic verb, equivalent to ‘enter’. The collocation of a change-of-location verb gé or dzɔ ‘drop, fall’ is used to express the motion of ‘enter’, with the allative preposition dél and the region crossed coded in a postposition me ‘inside/containing region of’. In some contexts, a reach/arrive verb in collocation with a bounded region denoting complement can be interpreted as ‘enter’ as well. For example,

48. a. É - dó du - a me.
 3SG arrive town-DEF containing region inside
 ‘S/He entered/arrived in the town.’
b. É – dò akró – á.

3SG entered canoe DEF

‘S/He boarded the canoe.’

In the Aŋlɔ dialect, the verb de ‘reach, been to’ is regularly interpreted as ‘climb’ when it takes a postpositional phrase headed by dzi ‘surface’.

Kɔku reach coconut tree DEF top/surface

‘Kɔku has climbed to the top of the coconut tree.’

3.10.3 The Directional Complement Verbs

Path of motion can also be expressed by directional complement verbs. Ewe contains less than a dozen verbs which could be said to express direction in the verb root (Ameka and Essegbey 2006). Some of these are anchored at the destination or goal of motion. These are listed below.

50. dò ‘arrive’

va ‘come to a place by moving towards a place thought of as (a) place where the speaker is’

gbɔ ‘return, come back to a place’

he ‘go away from a place, to leave a place’

dzó ‘depart, leave’

tsó ‘arise, originate, come from a place’; and

vlɔ ‘to go far away from a place’
3.10.4 Deictic Path Verbs in Ewe

There are two deictic path verbs in Ewe. They are *va* ‘come’ and *yi/dzó* ‘go/leave’. They indicate deictic spatial direction; they indicate whether the figure is moving toward or away from the speaker. They are used productively in the expression of motion events. They can be used alone or they can occur in a sequence with other (non-deictic) path verbs, or manner verbs (of motion or of general action), to express the goal.

3.11 The Linguistic Encoding of Manner

Manner refers to factors such as motor pattern, rate, and degree of effort of the figure’s movement. It can also be defined as how motion events are performed in terms of speed and intensity. There is considerable cross-linguistic variation in the realization of specific kinds of manner in motion events. Languages seem to differ with regard to the subtlety of the distinctions they make in the manner of movement. Slobin (1997a, p. 457, 2000) notes that languages differ with respect to the attention they pay to manner in the verbalization of motion events which is determined by whether a language is verb-framed or satellite-framed. He suggests that languages have a two tier lexicon with respect to manner. Tier one consists of the common everyday basic motion verbs like *run, fly*, etc. and tier two comprises the more expressive tier with verbs like *dash, swoop*. While all languages have tier one verbs, Slobin suggests that it is satellite-framed languages that have an elaborate tier two of expressive manner of motion lexicon (refer to Section 2.2.2).
Manner-of-motion verbs in English for example, make finer distinctions and are more expressive than those in Spanish (cf Slobin 2000:119).

3.11.1 Some Semantic Categories of Ewe Manner of Motion Verb

Looking at the semantic categories of Ewe manner of motion verbs listed below, it could be said that Ewe divides the semantic domain of various manner of motion differently.

52. da, ŋu du ‘bolt’
 wó, dë ve, gbã ‘burst’
 dzò, kpó, dzé-dzi, lù dë dzi ‘dart’
 dô dji, de nu tsi me ‘plunge’
 ŋu du, ke du dëme ‘race’
 ŋu du, si du, dë abla ‘run’
 si du sesë, lu dë nu dzi ‘rush’
 gó dë nu ñu/dzi ‘rush’

53. kli nu, kli afɔ ‘stumble’

54. tá ‘crawl’
 tá ‘creep’
 zɔ mínyamínya ‘sneak’

55. zɔ ‘match’
dë abla ‘to move or walk very fast’

dá gbá ‘plod’

dë afɔ, zɔ, yi ‘step’

do gò, yi dë aga, yi ŋɔ ‘step out/ step aside/move forward’

dë afɔ/dë zɔ ‘stride’

tsi tre le afɔbide nu/zɔ le afɔbide nu ‘tiptoe’

zɔ gbudugbudu, ‘tramp’

tsa, zɔ, dĩ tsa ‘walk’

56. dzo kpó, tí kpó ‘jump’

dzo kpó, tí kpó ‘leap’

dzo kpó dze ‘spring’

Most of the distinctions made in English for the various domains are sparsely populated in Ewe. The motion verb lexicon seem to be repeated for most domains. For example, under manner of jumping, the same verbs dzo kpó, tí kpó are used for the English varieties, ‘jump’, leap’, ‘spring’ etc. This seems to support Chu’s (2004) conclusion that [manner + motion] conflation is much less pervasive in most languages (Chinese being one of them) than in English. Examining how these semantic categories are rendered in Ewe, Ameka and Essegbey (2006) note that the commonest means of expressing manner, including manner of motion, is by the use of ideophones. “The collocation of
motion verbal expressions with ideophones encode not just manner but intensity as well.” Westermann (1930:107-109) for example, listed the verb ɔ ‘move, travel’ with various ideophones to describe various manner of motion situation. He gave about 37 illustrations among which are ɔ tyaty to walk quickly; ɔ dziadzia ‘energetic walking’; ɔ tyatratyatyra ‘describes powerful but stiff walking’; ɔ takataka ‘to walk without care’. Westermann however noted that the list does not exhaust the number of adverbs which describe going. In addition, most of them may be found reduplicated in their simple or diminutive forms according to the size of the figure – whether large or small.

From the list, it is obvious that some English verbs like ‘slip’, ‘tramp’, ‘sneak’ can only be translated as ɔ ‘walk’ and collocated with ideophones like mínyamínya, gbudugbudu. In the examples above, the ideophones help to bring in not only the manner of motion but also features of the figure and, in general, add expressiveness to the meaning of the verb.

SVCs also play an important role in the coding of directional manner of motion. In this case, the manner-encoding verbs occur first and the path and directional verbs follow. This pattern is commonly found in serializing languages (Schaefer and Gaines 1997).

In addition, in Ewe, SVCs in which the first is a handling or manipulative verb, such as tsɔ ‘take’ with a motional nominal complement such as du ‘race’ can be interpreted as expressing manner (Ameka and Essegbey 2006:396) as in example (57).
57. Ési aʃenɔ – ɔ kpɔ tągasitɔ – wó
when woman DEF see sanitary inspector PL
ko lá, é - lé du tsɔ.
then TP 3SG hold course take

‘When the woman saw the sanitary inspectors then she took to her heels (she started running).’

Another way of expressing manner, they noted, was the comitative or instrumental preposition kple with a motional nominal complement. This can also be interpreted as manner as (58) shows.

58. Nyónú – á tsɔ nya lá yi ná fia
woman DEF take word DEF go DAT chief
lá kplé du.
DEF COM race

‘The woman took the matter to the chief running (with agency).’

Manner of motion can also be interpreted from collocations of generic verbs with nominal complements, as for example, when ‘stroll’ is the interpretation of ɖe aʃ gɔme ‘remove foot under.’

59. Da - nye ɖe – a aʃ gɔme ɖáá.
mother –my remove HAB foot under always

‘My mother strolls always.’

The expression of manner does not have to be restricted to the verb root or to one lexicon item. Manner information can be expressed in several different words.
and constructions. It can be ‘distributed’ over different elements including adverbials. For example, in English, it is very common for an adverb such as ‘quickly, fast, slowly’ etc. to modify run as in (60) despite the fact that the manner verb run already expresses the speed of movement.

60. Seyram ran quickly to pick the child.

In Ewe, manner adverbs such as sesē ‘very fast’ ɖɔɖɔɖɔ ‘slowly’ kaba kaba ‘very very fast’, usually appear after the verb or verb sequence to indicate manner of movement. Example (61) exemplifies this.

61. a. É - ḍe zɔ kábá yi aƒeme.
 3SG stride fast go home
 ‘She walked quickly home.’

 b. É – tá ɖɔɖɔɖɔ vá sọlìme.
 3SG crawl slowly come church
 ‘S/He crawled to church.’

 c. É - zɔ ɖɔɖɔɖɔ do vá dzó.
 3SG move/walk slowly exit VENT leave
 ‘She moved quietly and left.’

As already noted, ideophones when used to modify manner of motion verbs might be used to express the same motion event.

62. É - zɔ mínyamínyá vá yi.
 3SG - walk stealthily VENT go
 ‘S/He walked stealthily and passed by.’
To summarise, manner of motion in Ewe is conflated in a few verbs and can be interpreted from various collocations of adverbs, ideophones and verb nominal complement collocations as well as from some commutative prepositional phrases. Different types of multiverb constructions also play a crucial role in the expression of manner.

3.12 The Linguistic Encoding of Cause of Motion

A characterization of the expression of translocative motion in Ewe would not be complete in Ewe without considering “transitive motion” as well, i.e., utterances where the grammatical subject is not identical to the trajectory but rather constitutes the agent (or cause) of motion, while the trajectory is expressed by the direct object in the sentence as in (63).

63. Ḟo Ḟe ᵇɛ - ᵇɛ da Ṿtsuvi - ᵇɛ ṭɔ - ɔ me. Antelope -DEF throw boy DEF reach ALL river - DEF inside ‘The antelope threw the boy into the river.’

Talmy (1985:61) defines cause of motion as what originates the motion itself. Let us illustrate this with Talmy’s example.

64. The pencil blew off the table

Figure Motion Path Ground

‘blew’ in (64) offers information about the Cause of motion in the verbs as in

65. Yawá tutu ze – ɔ ᵇá le Yawa [cause + motion] pot – DEF off LOC
to – ɔ dzí wò gé gba. mortar DEF top 2SG fall broke

‘Yawa pushed the pot off the motar (and), it fell and broke.’
Verbs conflating motion with Cause-of-Motion are numerous in Ewe: e.g., tsɔ ‘take’, da/tsɔ (nu) fu gbe ‘cast’ tutu ‘push’ tege, mía, xaxa -ɖo ‘push’ etc.

Cause of Motion verbs can also combine with Manner verbs. Example (65) above shows that Ewe conflates Manner and cause with Motion in its verbs (Talmy 1985:68). However, three issues are worth mentioning regarding Talmy’s claim above. First, the cause component can be combined with the motion component, and be represented in the same transitive verb. These verbs may include but are not limited to dro ‘lift’, tsɔ ‘take, da ‘throw’, tutu ‘push’ and so on. The position of these verbs is the same as manner-of-motion verbs when they occur in a serial verb construction.

Second, some transitive verbs such as wɔ/wa ‘make’, xɔ ‘get’ and so on may appear in sentences expressing caused motion, but they do not encode the meaning of motion themselves. These may also include contact verbs such as ka asì (nu ŋu ‘to touch’, and placement verbs such as da ɖí ‘put down’, da ɖé ngɔgbè ‘throw forward’, da ɖé anyí ‘put down’). Rather, the motion component is usually encoded or implied in the directional serial verb construction as example (66) shows.

66. Dzoɖeko (y)é wa/wɔ ɖɛvì – ɛ wò – ɡé ɖé
 unicorn LOC do child DEF 2SG drop/fall into
tɔ – ɔ me ya/eye wò yi vá tsɔ eklo
 river DEF inside and 2SG go come take tortoise
ví – ɛ dzó yi afeme.
 little DEF leave go home
'The unicorn made the child fall/drop into the river and he went and picked the (little) tortoise and took it home.'

Thirdly, cause motion focuses on the disposal nature of the action verb. In example (67) below, the figure object (anyaː ‘beehive’) beehive ended up changing its location from presumably the tree to the ground.

67. Avu - a dí bé ya ká así ányíxɔ/ányítɔ
dog DEF want COMP to touch hand beehive
ŋu éyá tá é - vúvú atí - é éyé ányíxɔ/ányítɔ
skin and so 3SG shake tree DEF and beehive
gé vá dze anyí.
drop/fall come land down
‘The dog wanted to touch the beehive and so it shook the tree and the beehive fell down.’

The movement of the beehive was caused by the dog’s attempt to touch (ka así ŋu) it. Roughly speaking, (67) expresses events in (68a and b) in a compact way.

68. a. É - ká así anyíxɔ/tɔ ŋu.
3SG touch hand beehive skin
‘S/He touched the beehive.’

b. Anyíxɔ/tɔ - ó gé dze anyí.
beehive DEF drop/fall land ground
‘The beehive fell on the ground.’
Cause of Motion verbs can also combine with Manner verbs, as in (69)

69. Э - kplɔ ɖəví - á do go ɔdzó.

3SG lead(out) child DEF exit outside walk leave

‘S/He led the child outside and walked away.’

However, it is impossible to combine cause of Motion with most Motion Path verbs in a single clause, as shown in (70).

70. * Э - da ábó - ɔ eye wò da.

3SG throw ball DEF and 2SG pop
dʒo dʒe dzi do go ɔ - a me
reach into sky exit outside from room DEF inside

*‘He threw the ball and it pop out exist go.’

The interpretation is supported by the fact that when the Motion Path verb does not imply agency, as is the case with ge dze/fu anyi ‘fall’ as in (71).

71. Э - tutu ɖəví - ɑ fú anyi.

2SG push child DEF land down

‘S/He push the child down.’

Where a combination with a cause of motion verb is indeed possible, we cannot combine Cause of Motion with Motion Path verbs.

On the other hand, Path verbs combine freely with cause of motion verbs, provided of course that they do not specify conflicting spatial values. Thus (72) is possible whereas (73) is not possible.
72. **É – dé ábó – só aɖáká me.**
 3SG put ball DEF box inside
 ‘S/he put the ball inside the box.’

73. *É – dé ábó – só do go le aɖáká - á me.*
 3SG put ball DEF exit outside in box DEF inside
 ‘He put the football out of the box.’

In conclusion, we can say that “those verbs which undergo causative alternation, where the single argument which functions as the subject in the one-place construction functions as the object in the two-place construction encodes cause of motion in Ewe (Ameka and Essegbey 2006:388). There are several transitive roots lexicalizing caused motion events of insertion and extraction and events which imply a particular manner of causation (e.g. *tutu* ‘pushing’, *he sesiê* ‘haul’; ballistic motion such as *da* ‘throwing’, *tu afɔ* ‘kicking’).

3.13 The Place of Ewe in Motion Event Typology

The classification of Ewe and for that matter African languages in motion typology has been a very controversial issue. Having done an extensive survey of discourse patterns in a wide variety of languages, Slobin proposes characteristic ways in which motion events are put together in different kinds of languages. These patterns correlate with the status of the language as an S-language or a V-language. One such characteristic is the expression of manner, which according to him, has a distinctly different status in the content and organization of narrative in the two types of languages. Slobin shows as a way of illustration that it is not possible in a V-language to string a number of path
expressions with a single manner expression. As already noted in the second chapter (2.2), serializing languages do not have this kind of problem. “All that is required for the expression of complex translational motion in Ewe is for the manner of motion verb to occur as the first verb. Any other Path verb that comes after it will be within its scope (Ameka and Essegbey 2001:7). This is illustrated by the Ewe sentence below.

74. Kafui ɗɛ aʃɔ dzí tó aɡa – á
Kafui limp on foot top pass valley - DEF
me do vá ɪfa babakɔ – ɔ dzí
in exit VENT climb anthill DEF top
‘Kafui limped through the valley and came and climbed to the top of the anthill.’

Also, Slobin makes a distinction between two kinds of Path; path-focus and boundary focus. Path-focus is one which simply refers to a non-interrupted path while boundary focus refers to a path, where there is crossing of a spatial boundary. Ewe does not distinguish between path focus and boundary focus types of Paths (cf. Schaefer (1986); Slobin and Hoiting 1994 cited in Ameka and Essegbey 2001). Since Ewe does not distinguish between these two types of paths, we can say that it is an S-language. However, Ewe differs from other S-languages because it has the tendency to express one ground per verb. It also has the possibility of stringing a number of verbs together in a single clause. This latter property means that Ewe inevitably divides scenes into more components than V-languages.
Slobin again reports that S-languages differ from V-languages in the description of scenes. V-languages present static description of scenes while S-language make use of dynamic descriptions. On static description, he notes,

…V-languages which are as culturally different as Spanish and Japanese show a predilection of such descriptions, perhaps determined by their linguistic typology. (Slobin 1997:452)

Ewe seems to lean towards a static representation of scenes as well as dynamic movement.

Looking at all the properties discussed above and others, it could be said that Ewe shares more properties with S-languages than V-languages to which it is supposed to belong (being a serializing language) while still possessing a unique property. Talmy places such languages under V-languages while Slobin (2000) places them somewhere between S-languages and V-languages. Ewe is thus neither here nor there (to borrow Ameka and Essegbey’s (2001) words).

3.14 Summary

In this chapter, the formal encoding of motion events in Ewe was looked at. The nature of features that are conflated with the fact of motion in various verbs was examined. It was noted that some verbs conflate motion and direction/path, others motion and different categories of manner while others conflate motion and some characteristics of the figure. It was also pointed out that some verbs which do not conflate manner or path as such with motion can be interpreted as manner-of-motion path verbs. Based on these facts, Ameka and Essegbey (2006) concluded that “It is difficult to classify Ewe as a predominantly path-
type, manner-type of figure-type language à la Talmy (1985).” This means that relying on these findings to settle on the issue of the place of Ewe in motion event typology through pure linguistic analyses will not be appropriate. Talmy’s typological framework provides a starting point for the exploration of language acquisition and use but we need to go beyond formal analyses of motion events based on linguists’ intuitions, and base our analysis on actual language use as suggested by Slobin (1995a:195). In order to characterize the linguistic encoding of such events, then, one must attend to usage as constrained by typology. The next chapter therefore looks at the expression of motion events in Ewe in elicited adults’ spoken narratives. Evidence from this type of data will set the stage for analyzing how children learn such a language and how the various patterns develop as children grow older.
CHAPTER FOUR

MOTION EVENT EXPRESSION IN NARRATIVES OF THE CONTROL GROUP (ADULT EWE SPEAKERS)

4.0 Introduction

Many scholars argue that the study of discourse and language in use should be the primary task of studies of language structures and that such research focus is more fruitful and may provide solutions to many questions that cannot be answered by focusing merely on the static structures of language (Fox and Thompson 1990, Gries 2003, Halliday 1961, Tao 1996 all cited in Chen and Guo 2010). Over the past two decades, the field of Linguistics has increasingly seen a shift in focus. Language is conceptualized as a dynamic and ever-changing system that is shaped by discourse and communication (Biber 2001, 2007). Hopper (1987:42) in his proposal for Emergent Grammar argues that “structure or regularity, comes out of discourse and is shaped by discourse as much as it shapes discourse in an on-going process.” He claims that “the concept of grammar as emergent … sees all structure as in a continual process of becoming, epiphenomenal, and as secondary to the central fact of discourse” (Hopper, 1992, cited in Chen and Guo 2010:32). Similarly, in advocating the concept of “Thinking-for-speaking”, Slobin (2004:253) argues that “[L]inguistic patterns don’t occur in the abstract. They arise in the course of language in use.” In his view, the structure of utterances are a product of the thinking process at the time of communication, which is constrained by multiple communicative and cognitive factors. Hence Chen and Guo (2010:32) for instance suggest that the
analysis of the actual discourse in vivo, which is, language in the making, are indispensible for a comprehensible understanding of language structure.

Against this background, this chapter analyses the usage patterns of motion event description in the oral narratives of adult Ewe speakers which will serve as a standard against which Ewe-speaking children’s developmental data can be compared. This will enable us find out how (Ewe-speaking) children conceive Ewe in their developmental process. The chapter thus examines the patterns of motion event description in oral narratives elicited from Ewe adult speakers from different age groups (28-50) using the wordless picture book, *Klo afí ká nèle?* as the major tool as well as some other tools listed under Chapter one section 1.4.2 where applicable. Results were sometimes compared with comparable data from English, Spanish, Turkish and Chinese. The focus was on the use of motion verbs, the descriptions of ground elements and the description of the physical setting in which movement takes place.

4.1 Methodology

4.1.1 The Control group and Data

Fourteen Ewe-speaking undergraduate students from the Department of Ewe, University of Education, Winneba were recruited. Their ages range between 29 and 50. Data was elicited using the story, *Klo afí ká nèle?* “Tortoise where are you?”, a description of which has been presented in Chapter 1, Section 1.4.2.

This wordless picture book tells a story of a boy who, together with his dog, goes in search of his best pet tortoise. The original narratives are called
“frog stories” and the research method is now commonly known as the frog method (Berman and Slobin, 1994).

4.1.2 Data Collection Procedure

The participants were video-taped at a recording studio. They were seated opposite the researcher so that the researcher could not see the pictures. The participants then went over the picture book page by page from the beginning to the end to familiarize themselves with the story. The participants were instructed to examine the pictures as long as they wanted before beginning. When the participants were ready, they were asked to return to the first page and tell the story from beginning to end (see Appendix E for a description of the Tortoise story elicitation tool extraced from Berman and Slobin (1994) and modified)

4.1.3 Transcription

The recorded narrative texts were transcribed verbatim into motion event (i.e., units consisting of one predicate and its argument) following the guidelines given by Berman and Slobin (1994: 655-664). Two native Ewe research assistants first transcribed the recordings, and to assess inter-rater agreement, I reviewed all the audiotaped samples for correspondence to the transcript. Where there were any disagreement, we reviewed and then transcribed the texts jointly until a consensus was reached.
4.2 Coding Categories

The motion event descriptions were marked and coded for each tortoise story. Slobin’s (1998) coding system for the analysis of motion event descriptions in oral narratives was followed. A motion expression is defined as a clause that consists of at least one linguistic unit that expresses what Talmy (2000:25) calls “translational motion” in which the location of the Figure changes in the time period under consideration (see Section 2.1.2). The focus is on descriptions of actual changes of location, and therefore plans, desires, possibilities, reminiscences, habitual motion events, etc. are excluded from the analysis. For example, those in (1a and 1b) were excluded.

 1SG:NEG-climb tree - DEF NEG
 ‘S/He did not climb the tree.’

 dog – DEF want COMP LOG pull bee – nest DEF
 ‘The dog wants to pull the beehive.’

4.2.1 Motion Verb Categories

Three general categories of motion verbs were identified according to which motion meaning component they convey: manner verbs, path verbs (deictic and non-deictic, indicating path), and neutral verbs. Manner verbs are those that indicate what Talmy (2000) calls co-event of motion, including manner (in various relations to the motion event, (Talmy 2000:42) and cause (e.g., crawl and kick). Path verbs are those that indicate “the path followed by the Figure object with respect to the Ground object” (Talmy 2000:25) e.g., exit, ascend up, return). As pointed out in Chapter 3 Section 3.10.4 there are only two
deictic verbs indicating path in Ewe; *va* ‘come’ and *yi* ‘go’ for motion away from the speaker. *Neutral verbs* are those verbs that do not express any notion of translational motion in the normal context. However, in the data, they are used in the first verb slot in the serial verb construction, and consequently acquire a sense of manner of motion (e.g., *wa/wɔ* ‘make/cause/get – something into-the-state of’, *nɔ anyi* ‘sit’, *lɛ* ‘catch’, *ɖɛ* ‘remove’).

Each motion event description coded a single event, and took the form of a clause containing either one single verb (2a), or several verbs in a serial verb construction (2b).

2. a. Ekloá do go.

Eklo – á do go.
Tortoise – DEF exit outside
‘The tortoise went out.’

b. Avua ʋu du kplɔ ɛxɔlɔ ɖɔ.
Avu – a ʋu du kplɔ ɛ - xɔlɔ - á ɖɔ
dog- DEF run follow 3SG:POSS friend – DEF all
The dog ran and followed its friend. =
‘The dog ran after its friend.’

As a first step, all verbs in the motion event description were identified. Percentages of different types of verbs (i.e. path verbs, manner-of-motion verbs, and neutral verbs) and percentages of different types of serial verb constructions (i.e. *manner* + *path* verb sequences, *path* + *path* verb sequences, and *neutral* +
path verb sequences) were computed. The examples in (3a – 3c) present the different types of verbs included in the analysis.

3. a. Path verbs

V:p (non-deictic path verb)

gé/dzɔ ɗe ‘enter’

V: (deictic path verb)

va ‘come

yi ‘go’

b. Manner of motion verbs

V:m (intransitive manner-of-motion verb)

tá ‘crawl’, dzɔ ‘fly’

VT:m (transitive manner-of-motion verb) =

liá ‘climb’, nye vusí ‘to shake off’

c. Neutral verbs non-motion activity verbs.

V:o (intransitive verbs that are not motion verbs)

wɔ ‘do, make’ lɔ ‘collect’

VT:o (transitive verbs that are not motion verbs)

fɔ ‘pick’, lé ‘catch, hold, lift’

Example (4) presents the different types of serial verb constructions included in the analysis.

4. a. Manner + path (a transitive or intransitive manner-of-motion verb followed by a non-deictic path verb or a deictic path verb or both)
Second, linguistic elements that specify the ground of movement (i.e. source, goal, or landmark along a path) were identified for each motion event description. A distinction was made between minus-ground clauses without any specification of movement (5a), and plus-ground clauses that attach one or more pieces of information about ground of movement (5b).

Minus-ground clauses

5. a. Éyé éyiké wóyia, wóbá tsa kákááká.
Éyé éyiké wó – yí - a wó – vá tsa ká – káá - ká

And when 3PL-go – TP 3PL. VENT roam TRIP for a long time

‘And when they went they roamed for a long time’ [AH]

Plus-ground clauses

b. Ḗútsúvi á kplé avuá wóvá yi xome vé mló anyí dq aba dzí.

Dútsúví - á kplé avu - á wó - vá
boy - DEF and dog- DEF 3PL - VENT
yi xome vé mló anyí dq aba dzí
go roam come-go sleep down ALT mat/bed POSTP/top/on
‘The boy and the dog went and lay on the bed.’ [ST]

The number of ground elements in each motion event description was computed too. The example in (6) illustrates this point. While there is no ground element in (6a), the one in (6d) include five pieces of information about ground, and presents a series of linked paths or path with waystations (Slobin, 1996a, p. 203).

6. a. Égé.
 É – gé.
 3SG – fall
 ‘S/He fell.

b. Égé dze tɔɔ me.
 É – gé dze tɔ - ɔ me
 3SG- fall land river – DEF inside
 ‘S/He fell down into the river.’ [goal]
c. Égé tsó agaa tó vá dze tɔɔ me.
É – gé tsó aga – a tó vá – dze tɔ - ɔɔ me.
3SG fall from cliff - DEF edge VENT – land river - DEF inside
‘He fell from the cliff [source] down into the water [goal]

d. He went from the station [source] along the avenue. [medium], past the monuments, [milestone] to his office [goal] 25

Slobin’s analysis does not stop at the description of complex paths. As he argues, languages may differ in the way they structure complex paths (clause-compacting) as for example, in English and Basque (Ibarretxe-Antuñano, 2004). There is therefore the need to look at the content of the narration, at what is narrated, and see whether speakers of Ewe have the same degree of event granularity, the same degree of detailed description for the same event.

In order to test this possibility, Slobin chooses the deer scene in the frog stories (See appendix C for the scene pictures of the adapted tortoise stories). This is a very rich and complex scene that depicts how the boy and the dog fall from the cliff. Though all the descriptions of the 24 scenes were looked at in coding the events, particular attention was paid to the following pictures.

Verbal description of the stag/ antelope scene

Picture 13: The boy, fleeing from an owl, starts to climb a large rock. Something that appears to be bare branches is sticking up.

Picture 14: The boy is standing on top of the rock, holding on to branches.

25 This example is cited from Slobin (1997a, p. 439). It has already been cited in Chapter. 3, Section 3.6.3 (ex. 22) page 138 but repeated here for illustration.
Picture 15: The boy is caught up in the bare branches, which turn out to be the antlers of an antelope/stag/unicorn.

Picture 16: A stag/antelope/unicorn, with the boy still on its head, is moving toward the edge of what seems to be a cliff. The dog is leaping in front of the stag.

Picture 17: The stag/antelope/unicorn stops at the edge of the cliff.

The boy and the dog are falling.

Picture 18: The boy and the dog land in a stream, while the stag/antelope is smiling over the edge of the bank at them.

According to Slobin (1997b), there are six narrative segments in the stag/unicorn scene. They are listed in (7) below.

The six narrative segments of the deer scene are:

7. a. Antelope/stag/unicorn starts to run.

 b. Antelope/stag/unicorn runs carrying boy.

 c. Antelope/stag/unicorn stops at the cliff.

 d. Antelope/stag/unicorn throws boy (off the antlers/down).

 e. Boy and dog fall.

 f. Boy and dog land in water.

The Spanish narration (Slobin, 1996a) of the scene in (8) exemplified the description of the setting in which the movement takes place.
8. El ciego le llevó hasta un sitio, donde debajo había un río. Entonces el ciervo tiró al perro y al niño al río, y después, cayeron.

“The deer took him until a place, where below there was a river. Then the deer threw the dog and the boy to the river. And then they fell”

[Age 9, Slobin, 1997b, p. 25, his example (10b)].

The static descriptions of the physical setting in which the action takes place: a place where below there was a river in (8) allows one to infer the trajectory as moving from some elevated place to the river. Previous studies on motion event descriptions in English and Spanish frog stories have found that English narrators tend to mention more narrative segments but provide no description of the physical setting in which movement takes place whereas Spanish narrators do the opposite. Chinese narrators, according to Chen (2005:73), are more likely to attend to the description of physical settings than English speakers. The rich means for path description in English allows its speakers to leave the setting to be inferred. The examination of these three categories of language groups may therefore enable us to see whether Ewe narrators will pattern with English, Spanish or Turkish, or Chinese narrators.

Results from previous studies on motion event description in English and Spanish frog stories are chosen as reference points for several reasons. First, English and Spanish represent opposite poles of the typological dichotomy between satellite-framed and verb-framed languages. Second, motion event description in English, Spanish, Turkish and Chinese have been analysed and reported in a number of studies (e.g., Berman and Slobin, 1996; Slobin 1996a, 1997b, 2000; Özçaliskan and Slobin, 1994; Slobin 1996a, 1997b, 2000;

4.3 Results

4.3.1 Uses of Motion Verbs

Motion verbs in Ewe can be examined in two ways. First, they can be considered as individual entities regardless of whether they function alone or occur in a serial verb construction; e.g.

9. Kofí gé ḍé xɔá me.

Kofi enter -DEF inside
‘Kofi entered the room.’

In this case we are interested in the different types of motion verbs and their frequencies of use (tokens). This examination allows one to find out the relative distribution of manner-of-motion verbs compared to path verbs. Second, motion verbs can be examined as components of different types of serial verb constructions. In this case we are interested in the relative distribution with a manner-of-motion verb:

10. Kofí ŋú du do go vá yì xɔa godó.

Kofí up do go vá yì xɔ - á godó.
Kofi run exit outside VENT: go house – DEF behind
‘Kofi ran to the back of the house.’ [AH]

as contrasted with

11. Kofi do go va.

Kofi do go vá.
Kofi exit outside come
‘Kofi came out.’

This examination allows us to find out the relative frequencies of serial
verb constructions that are used to describe motion events in the adult narratives.

Table 4 presents the entire collection of verbs (both motion, path and
neutral) produced by the Ewe-speaking adult narrators in the 14 tortoise stories.
Table 4: Motion verbs used: Manner of Motion Verbs extracted from Adult Tortoise Stories

<table>
<thead>
<tr>
<th>Verb</th>
<th>English Translations</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ƒú vo/si/té/bé du</td>
<td>run</td>
<td>92</td>
</tr>
<tr>
<td>2. si/shí</td>
<td>run away, escape</td>
<td>32</td>
</tr>
<tr>
<td>3. ti/tsí/dzo kpo, flo</td>
<td>jump</td>
<td>13</td>
</tr>
<tr>
<td>4. zɔ</td>
<td>walk, move</td>
<td>12</td>
</tr>
<tr>
<td>5. ƒú tsi</td>
<td>swim</td>
<td>9</td>
</tr>
<tr>
<td>8. tá</td>
<td>crawl</td>
<td>6</td>
</tr>
<tr>
<td>9. ḍi tsa</td>
<td>to stroll</td>
<td>5</td>
</tr>
<tr>
<td>10. dzo</td>
<td>fly</td>
<td>3</td>
</tr>
<tr>
<td>11. mli</td>
<td>roll</td>
<td>3</td>
</tr>
<tr>
<td>12. ḍiḏi</td>
<td>to slip</td>
<td>3</td>
</tr>
<tr>
<td>13. sa agba</td>
<td>to float</td>
<td>2</td>
</tr>
<tr>
<td>6. blá/nye ḍé ŋú</td>
<td>to move around, surround, attack from all angles</td>
<td>6</td>
</tr>
<tr>
<td>7. ku (a) ḍɔ/ku ḍé (é)ŋú</td>
<td>to hang on</td>
<td>6</td>
</tr>
<tr>
<td>14. fo asagba</td>
<td>to glide (in air)</td>
<td>2</td>
</tr>
<tr>
<td>15. minya</td>
<td>to move gently, walk stealthily</td>
<td>2</td>
</tr>
<tr>
<td>16. tró</td>
<td>to spin</td>
<td>1</td>
</tr>
<tr>
<td>17. gó</td>
<td>walk very fast</td>
<td>2</td>
</tr>
<tr>
<td>18. hò (Ďe dzí)</td>
<td>to float</td>
<td>1</td>
</tr>
<tr>
<td>19. uli</td>
<td>to struggle/free oneself</td>
<td>2</td>
</tr>
<tr>
<td>20. foxlá</td>
<td>to circle, go round</td>
<td>1</td>
</tr>
<tr>
<td>21 dó to godō</td>
<td>to move round</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>202</td>
</tr>
</tbody>
</table>
Table 5: Path Verbs extracted from Adult Stories

<table>
<thead>
<tr>
<th>Verbs</th>
<th>English Translations</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. va</td>
<td>come (main verb)</td>
<td>24</td>
</tr>
<tr>
<td>2. va</td>
<td>come (ventive)</td>
<td>182</td>
</tr>
<tr>
<td>3. yi</td>
<td>go</td>
<td>62</td>
</tr>
<tr>
<td>4. liá/de/xé (dzi)</td>
<td>climb up</td>
<td>50</td>
</tr>
<tr>
<td>5. gé, ḍé</td>
<td>enter</td>
<td>50</td>
</tr>
<tr>
<td>6. gé/dzó</td>
<td>fall down</td>
<td>49</td>
</tr>
<tr>
<td>7. do</td>
<td>appear, exit</td>
<td>35</td>
</tr>
<tr>
<td>8. kplो ḍó nya/ḍé nú</td>
<td>follow, chase</td>
<td>34</td>
</tr>
<tr>
<td>9. dzó</td>
<td>leave</td>
<td>24</td>
</tr>
<tr>
<td>10. dí/dzí</td>
<td>search for</td>
<td>21</td>
</tr>
<tr>
<td>11. tsa</td>
<td>roam, wander</td>
<td>19</td>
</tr>
<tr>
<td>12. ḍó/de</td>
<td>arrive</td>
<td>19</td>
</tr>
<tr>
<td>13. te ḍé ḡú</td>
<td>get closer (to something)</td>
<td>9</td>
</tr>
<tr>
<td>14. tso/fɔ (tɔ)</td>
<td>cross (river)</td>
<td>9</td>
</tr>
<tr>
<td>15. dze mɔ</td>
<td>to set off</td>
<td>9</td>
</tr>
<tr>
<td>16. ḍì</td>
<td>come/climb down, descend</td>
<td>6</td>
</tr>
<tr>
<td>17. tó</td>
<td>to pass</td>
<td>6</td>
</tr>
<tr>
<td>18. da/fũ gbe</td>
<td>throw away</td>
<td>6</td>
</tr>
<tr>
<td>19. mu (dze anyi)</td>
<td>fall down</td>
<td>6</td>
</tr>
<tr>
<td>20. kplो</td>
<td>accompany</td>
<td>5</td>
</tr>
<tr>
<td>21. ka hlé/kaka</td>
<td>scatter</td>
<td>5</td>
</tr>
<tr>
<td>22. nyrɔ/ ḍò tɔ</td>
<td>submerge (in river)</td>
<td>4</td>
</tr>
<tr>
<td>23. ḍò/tu tã</td>
<td>head for</td>
<td>4</td>
</tr>
<tr>
<td>24. ḍè du</td>
<td>to go after (something, someone)</td>
<td>3</td>
</tr>
<tr>
<td>25. kó ḍó ḍè dzì</td>
<td>to lift up</td>
<td>2</td>
</tr>
<tr>
<td>26. dó ɔgɔ</td>
<td>to take the lead</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 6: Neutral Verbs extracted from Adult Stories

<table>
<thead>
<tr>
<th>Verb</th>
<th>English translations</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. tsó/kóe</td>
<td>take</td>
<td>40</td>
</tr>
<tr>
<td>2. wɔ</td>
<td>do</td>
<td>12</td>
</tr>
<tr>
<td>3. lé</td>
<td>catch, hold, grap</td>
<td>6</td>
</tr>
<tr>
<td>4. dé</td>
<td>put</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>68</td>
</tr>
</tbody>
</table>

From the figures in Table 4, there are altogether 55 different types of motion verbs, including 21 types of manner-of-motion, From Table 5, 30 types of path verbs and 4 types of neutral verbs. It is important to note that the narrators used adverbials and ideophones that express manner-of-motion. There were 6 types of adverbials (38 tokens) and 44 (68 tokens) different types of ideophones which were used with manner, path and neutral verbs. Manner of motion, as we have seen in Chapter 3 Section 3.6.5, can also be interpreted from collocations of generic verbs with nominal complements as for example when “stroll” is interpreted as afɔ gɔmɛ ‘remove foot under’ (Ameka and Essegbey 2006: 397). Another example found in one of the narrations is dé du afɔ nu (ná ame) ‘put race foot/leg mouth (for person) ‘to make one roam and search
anxiously for something’. Table 7 presents the use of different patterns found in motion event descriptions in tortoise stories.

Table 7: Distribution of Verb Patterns in Ewe Tortoise Stories

<table>
<thead>
<tr>
<th>Types</th>
<th>Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion event descriptions</td>
<td></td>
</tr>
<tr>
<td>containing a serial verb construction</td>
<td></td>
</tr>
<tr>
<td>Manner + path</td>
<td>24</td>
</tr>
<tr>
<td>Path + path</td>
<td>43</td>
</tr>
<tr>
<td>Neutral + path</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
</tr>
<tr>
<td>Motion event descriptions</td>
<td></td>
</tr>
<tr>
<td>containing a verb only</td>
<td></td>
</tr>
<tr>
<td>Manner very only</td>
<td>19</td>
</tr>
<tr>
<td>Path verb only</td>
<td>13</td>
</tr>
<tr>
<td>Neutral verb only</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
</tr>
<tr>
<td>Alternative manner expressions</td>
<td></td>
</tr>
<tr>
<td>Manner + adverbials</td>
<td>6</td>
</tr>
<tr>
<td>Manner + ideophones</td>
<td>44</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>198</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
</tr>
</tbody>
</table>

In Table 7, two observations can be made. First, all the 10 adult narrators used 198 different types of serial verb constructions (i.e., sequences of two or three verbs and even four in some clauses) to express motion events. Figures in the table show that a combination of two, three or more verbs in a single clause is 198 (56%) out of the motion 365 clauses identified. Examples of such serial verb constructions are given below (Examples (12) to (17).
Manner + Path

12. Elǎa vó yátá wòtí kpó kpata dé afɔ du me sésiè dó tā tómamyafé, nómamyafé.

Elǎ - á vó yátá wò - tí kpó kpata dé afɔ Animal- DEF frighten so 3SG - jump suddenly put, foot/leg du me sésiè dó tā tō - ma - nyā - fé, race inside very fast put head father NEG know place nō - ma - nyā fé mother NEG know place

‘The animal got frightened so it jumped suddenly and started running very fast heading towards no particular (intended) destination.’ [YT]

13. Adzexe ádé koé dzo do go ulu tsó atsítóa me héfo mo nɛɛ.

Adze - xé ádé ko - é dzo do go Witchcraft bird INDEF only- FOC fly exit outside ulu tsó atsí - tō - á me hé - all of a sudden from tree - hole/hollow inside ITIVE fō mo nɛ - ε beat face DAT - 3SG

‘An owl flew out suddenly/unexpectedly from a hole in the tree and slapped his face.’ [AK]

Path + Path

14. Yé nię kea wótsōe do go vá dį tsa hétró vá aféme.

Yé ňu ke - a wó -tsō - e do go When eye open - TP 3PL 3SG exit outside vá dį tsa hé - trō vá aféme. VENT stroll IT - return come house
‘So when day broke, they brought it outside and they went and strolled and came back home.’ [AR]

Neutral + (Manner ideophone) + Path

15. *Alé ésí zã dó lá klo wo mínymińye tá do go le eze víá me gayí tsaðį fé.*

 Alé ésí zã dó lá, klo wo mínyé - mínýé

 So when night fall TM tortoise do RED - stealthily

 tá do go le eze ví́ - á me ga - yí
crawl exit outside from pot DIM - DEF inside REP - go

 tsaðį́ - fé

 stroll - place

 ‘So when night fell, the tortoise crawled stealthily and came out from the small pot and went out strolling.’ [AK]

Path Alone

16. *Wóame eveá gé dze wó nǽwó dzí le etsíá me.*

 Wó - ame eve - á gé dze wó nǽ - wó dzí

 3PL person two DEF fall land 3PL each – others POSTP

 le etsí - á me

 be.LOC water - DEF inside

 ‘The two of them fell on each other in the water.’ [YT]

Manner Only

17. *Edu ko ʃúm wọle.*

 Edu ko ʃú - m wó - le.

 Race only run- PROG 3SG PROG

 ‘He was only running (seriously).’
Neutral Only

18. Élé du dé me.

É - lé du dé me
3SG – catch/hold/grab race ALL inside
‘S/He set off running.’ [AM]

The verb patterns in Table 7 fall into three groups: manner expressions, path expressions and neutral (motion) expressions. Manner expressions include those containing a manner-of-motion verb followed by one or more, path verbs (e.g., fú/sí té du ‘run’; fú du va ‘run come’, fú du do vá ‘run-exit-come’).

Path expressions include those containing path verbs only (e.g., do go ‘exit outside’ do go va ‘exit outside come’ or qí va ‘descend come/climb down’).

Neutral verbs are those verbs that do not express any notion of translational motion in the normal context, but when used in the V₁ slot in the V₁ + V₂ serial verb constructions acquire the function of and meaning of motion verbs (e.g., de afɔ du me ‘put foot/leg race inside = to speed off’, wɔ, dzáá dzáá do ‘do/make quietly exit; tsɔe na du ‘take it give race = sped off.’

The percentage distribution of tokens of the three groups of expressions is presented in Figure 4.
Figure 4 shows that more path verb motion event expressions occur in the narratives (47% as against 41%). This shows that more path verbs were used. Path verbs of motion thus have a slight edge over manner-of-motion verbs. However, if collocations of manner and ideophonic adverbs are added to the manner tokens (additional 106 tokens) then the frequencies for manner will increase and new percentages for the various categories of motion expression will be those represented in Figure 5 below.
4.3.2 Description of Ground Elements in Individual Clauses

Table 8 summarizes the distribution of motion event descriptions with some specification of the ground movement. Only 63 (i.e. 34%) of motion event descriptions contain some specification of source and medium movement. The majority of the ground elements mentioned are related to the goal or endpoint of movement.
Table 8: Distribution of Plus-Ground Clauses by the Type of Ground Elements

<table>
<thead>
<tr>
<th></th>
<th>Token</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal-marking clauses</td>
<td>122</td>
<td>66</td>
</tr>
<tr>
<td>Source-marking clauses</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>Medium-marking clauses</td>
<td>22</td>
<td>12</td>
</tr>
</tbody>
</table>

An examination of all the plus-ground motion event descriptions (i.e. those with some specification of the source, goal or medium of movement) shows that only two examples (cited as (19) and (20) below) which mentioned more than one ground element were found in the data.

19. Ési wòva víé koa, ŋútsúvíá dà vá gé dze abu à tô mli yi agado si yo kple tsi la me.

Ési wò - va víé koa, ŋútsú - ví - á
When 3SG – shake small then, man - DIM – DEF
dà vá gé dze abu - à tô mli lose balance VENT fall land valley – DEF edge roll
yi agado si yé kple tsi lá me
go gorge REL full with water DEF inside [KA]

‘When it shook itself a bit, the boy lost balance and fell at the edge of the valley and rolled into the gorge which was full of water.’
20. Wótó *bedóx* nútí hézɔ do ɗé *aveá* me, tsa atí gāwɔ té gaké wómékpɛe o.

Wó - tó *bedóx* nútí hé - zɔ do
3PL – pass chapel side ITIVE walk/move appear
ɗé ave - á me, tsa atí gā - wó té
ALL forest – DEF inside comb tree big - PL under
gaké wó - mé - kpɔ e o.
but 3PL – NEG see - 3SG NEG

‘They passed by the chapel into the forest and searched under the big trees but did not find it.’ [AK]

Source and goal of movement were both mentioned in six clauses. Two of such clauses appear in examples (21) and (22) below.

21. Avuá tí kpó le fésreá tó vá gé dze ɔxɔ gódɔ le anyígbá.

Avu - á tí kpó tó fésre - á tó vá
Dog – DEF jump pass window – DEF edge VENT
gé dze ɔxɔ - á gódɔ le anyígbá.
fall land house – DEF back/behind be.LOC ground

‘The dog jumped from the window and fell behind the house.’ [AT]

22. Yá wódze mɔ dzó le duɔ me vá gé ɗé *aveé* me.

Yá wó - dze mɔ dzó le du - ɔ
Then 3PL set off road, leave from town - DEF
me vá gé ɗé ave - é mé
inside VENT enter forest - DEF inside

‘Then they set off, left the town and entered the forest.’ [TE]
From the data provided by the consultants, Ewe narrators of tortoise stories tended not to provide ground elaboration in individual clauses. Their tendency was to provide no specification of ground of movement, and to limit themselves to one piece of information (source, goal or medium) if the ground was described.

4.3.3 Description of Narrative Segments of the Antelope Scene

Table 9 presents the results about the narrative segments mentioned by each adult speaker.

Table 9: Number of Event Segments Mentioned by Each Adult Ewe Narrator of the Antelope Scene

<table>
<thead>
<tr>
<th>Participants</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Segments</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Total = 43
Mean = 4.3

Results show that all but one (i.e, 95.2%) of the Ewe adult narrators mentioned at least four event segments of the scene. Half of them mentioned more than 4 segments. Moreover, the mean of narrative segments produced by adult Ewe-speakers in their narration of the antelope/stag/unicorn scene was 4.2 segments. These results suggest that Ewe narrators tend to break a complex motion event into several components, and describe individually separate action clauses. Let us examine one narration of the antelope/stag/unicorn scene by one of the adult Ewe speakers.
23. A narration of the antelope/stag/unicorn scene by an Ewe adult speaker.

Wò - de ati - á dżi le ekó tame
3PL –climb tree - DEF POSTP be.LOC hill POSTP
vá lé atí klayí-klayí ádɛ - wó.
VENT hold tree IDEO-disorderly INDEF- PL
Atí yá wò - lé - á, mi - nyà
tree DEM 3SG- hold - CEM 2PL:NEG - know
o ðe, mmhh, wò – a - kpó ko - a, kásia
NEG PART 2PL see all of a sudden
elá ðé - é yi. Mi - nyá elá má
animal INDEF FOC DEM 2PL – know animal DIST/DEM
fè njkɔ - a? Elá má fè njkɔ - é nyé
POSS name – QUE animal DEM POSS name - FOC be.COPU
fè - ðékà - dzo - ðe - kė. Eyí Kofi kpɔ elá
year – one - horn one –DIM When Name see animal
The expression *dzidzi fo ame* is derived from the fish named *dzidzi*. This type of fish produces some form of electric shock into a person when it is touched alive. The electric shock renders one inactive such that one cannot move any part of the body. The electric shock that is produced is likened to the effect of beating. The shock made the dog fall off all of a sudden and the antelope taking off suddenly. (see Dogbe 2012:98)
‘They climbed the tree to get to the top of the hill and the boy held onto some dry and disorderly branches. The tree he held onto (you can’t believe it) he realized it was not the branches of a tree but the horns of an animal. Fear gripped him at once and he fell on the animal. When he landed on the animal, the animal too became frightened. Because it was afraid, it also took to its heels, running and running and running. The animal too was frightened thinking that may be a hunter has caught him. Then when it took to its heels, the dog, which is called Love saw that its friend was in trouble so it also started barking and running (the animal and the dog) were running, running for a long time then the antelope/stag realized that it has gotten to the edge of the hill where there was no land. Then it stopped all of a sudden. When it stopped suddenly, the dog did not know that the animal had stopped because it was not looking back. It was barking with its long mouth and running. Before it realized, it had fallen into the valley full of water. As for the animal when it stopped all
of a sudden, Kofi fell off its horns easily because he was not heavy. God being so good the river was not deep, it was shallow, so they fell into the river and swarm gradually to the river bank.’ [AH]

The narration by this Ewe adult narrator provides/gives a very elaborate description of the antelope/stag scene. The sequence of separate action clauses also enables the reader or listener to create a vivid image of the actions involved, which in turn enables one to trace out the trajectory of movement.

4.3.4 Static Setting Versus Dynamic Movement

A careful examination of the Ewe tortoise stories revealed that only 3 (i.e., 21.4%) of the adult Ewe narrators provided a locative elaboration of the antelope scene by describing the physical setting in which the movement takes place. Consider the following narration by one of the adult Ewe narrators.

24. Ye wòde édzí nenémá koa, feđékádzọđékéá hā tsi kpo. Ye wōtsi kpó nenémá koa đeviá hā dó ylí ... Ye feđékádzọđékẹa hā vō ta élé du dzi đeviá xāxā đe edzoawó dome ně ... Wole dua dzi, le dua dzi uu kékéké feđékẹa va lía etó. Éle dua dzi vá dō étóá fē nwůwů. Wótó kaŋu. Wótó kaŋ alea zi đéká koa énye vusí đeviá koa đeviá gē tsō ayame uu vá gē dze tōú si do tō agado lá me.

Ye wò - de é - dzí nenémá ko - a, fe - đeka when 3SG - climb 3SG - POSTP that way then - CFM year - one dzo - đe - ké - a hā tsi kpó. Ye wō - tsi kpo nenemá horn - one - DIM - DEF too jump. When 3SG - jump that way ko - a đevi - á hā dó ylí ... Yē fe - đeká - dzo then - CFM child - DEF too shout because year - one - horn đe - ké - á hā vō ta é - lé du dzi one - DIM - DEF too frighten so 3SG - be.at.PRES race POSTP
‘When it climbed it, the antelope too jumped. This frightened the boy and he shouted. Because the antelope was frightened it took to its heels with the child trapped between its horns; it was running and climbing the mountain/hill until it came to the edge of the slope. It stopped all of a sudden and shook the child off its horns into the valley through which passes a waterway.’ [ED]

The narrator of example (24) first mentions the antelope’s approaching the cliff, then the antelope’s throwing the boy down, and then a description of the river below the cliff. It loosely conveys the information that is conveyed compactly in the English example in (25). In this case, the static information about the physical setting serves to compensate for the sparse description of the trajectory of movement.
25. The antelope starts running and he tips the boy off over a cliff into the water [Age 9, Slobin, 1997b, p. 22]

The difference, however, reveals different narrative strategies. The English narration in (25) allows one to infer that there is a cliff located above some water while the static scene-setting in the Ewe narration in (24) allows one to infer the trajectory as moving from some elevated place to the river.

4.4 General Discussion and Conclusion

4.4.1 The Use of Motion Verbs

The Ewe Tortoise stories suggest that while adult-Ewe speakers have access to manner expressions, path expressions and few neutral expressions to describe motion events, they favour the use of manner and path expressions, and particularly serial verb constructions involving a manner-of-motion verb plus one or more path verbs (e.g., ŋu du do va ‘run exit-come’). Manner of motion can be made more specific by manner ideophones which are combined with a general motion or a manner verb. In the narratives, 44 ideophones and 6 types of adverbials (a total of 106 tokens) and manner + path expressions 24 types as well as 19 Manner only types were identified. The diversity of manner + path verb combinations in Ewe parallels the diversity of manner-of-motion verb + satellite combinations that Slobin (1996a) reports in English frog stories. English frog stories contain 123 types of verb + satellite constructions most of which involve a manner-of-motion verb in combination with one or more satellite elements. Therefore, Ewe and English both allow for productive encoding of manner and
path of movement in the same clause in contrast to a language like Spanish which typically encodes manner and path in separate clauses. This is not surprising if we consider the lexical resources associated with motion event descriptions in these two languages. In English there is a large collection of verbs of motion which can be flexibly combined with a collection of satellites marking path information and prepositional phrases encoding goal or landmark along a path. In Ewe there are many motion verbs that can be readily used to build up serial verb constructions. By contrast Spanish has a small collection of verbs of inherent direction. These are combined with manner expressions when manner is relevant to the discourse. Table 10 and 11 show the contrast between the entire collection of motion verbs in the tortoise stories in Ewe (same as those listed in Tables 4, 5 and 6), English and Spanish.
Table 10: The Entire Collection of Motion Verbs in Ewe – Adult Tortoise Stories

<table>
<thead>
<tr>
<th>Ewe</th>
<th>Ewe</th>
</tr>
</thead>
</table>
Slobin (1996a) reports that motion event description in the 60 English frog stories and the 60 Spanish frog stories differ sharply in the number and type of motion verbs produced by speakers of these two languages. The contrast can be seen from the entire collection of motion verbs in Spanish and English in Table 11 (adapted from Slobin 1996a, p. 198). It shows that English narrators used a total of 47 distinct motion verbs while Spanish narrators used only 27).

Table 11: The Entire Collection of Motion Verbs in English and Spanish

<table>
<thead>
<tr>
<th>Languages</th>
<th>English</th>
<th>Spanish</th>
</tr>
</thead>
</table>
The results in Table 11 correspond to those in Table 8 and show that there are more verbs that conflate motion and manner in English frog stories than in Ewe and Spanish. There are 35 different types of manner of motion verbs in the English list, that is 74 percent of the total. By contrast, Ewe has only 21 types (38.6%) of the total in the narrative and Spanish has 11 types (41% of the total in that language). Comparing English and Spanish with Ewe, Ewe narrators pattern very closely with English narrators with respect to the use of manner of motion verbs. Even though Ewe does not have a large collection of manner of motion verbs, it has other means of describing or suggesting manner of movement. Various alterative lexical means (as noted in section 3.11) have been used by the adult Ewe narrators in communicating information about manner of movement. These include the use of adverbial expressions that describe or suggest manner of movement as well as the copious use of ideophones. Other means include descriptions of features of the physical setting that could influence manner of movement, for example.

26. É gé dze etá -á me toyii.
 3SG fall submerge creek/pond – DEF inside with a splash
 ‘He/She fell into the pond with a splash.’ [PK]

The ideophone toyii suggests that the boy fell into a pond which is very deep. Adverbial specifications of manner of movement constituted the major option in the adult Ewe tortoise narratives. Özçalışkan and Slobin (2003) also show that these alternative lexical means of encoding manner of motion is available to English and Turkish. Ewe however has a slight edge over English in the use of these means.
In English, the verb root typically conflates the movement and the specific manner in which the movement takes place. A satellite to the verb is typically used to convey the core information about the path of movement whereas “supporting information” about manner of movement is conveyed in the verb. As a result, Slobin (1996a) notes that manner of motion is more codable (i.e. readily included in sentences) in English than in Spanish. Ewe according to Ameka and Essegbey (2001) differs from both English, Turkish and Spanish. Ewe encodes both the core information of path and the supporting information of manner of movement in two separate verbs of equal grammatical status. Consider the examples below.

27. Atukpá - á sagba do le kpétó – á me.
 bottle DEF float exit from cave DEF inside
 ‘The bottle floated out of the cave.’ Ewe
 ‘The bottle floated out of the cave.’ English

 La botella salió de la cueva flotando Spanish
 The bottle exited from the cave floating’

One typology-related difference in narrative style that Slobin (1997a) notes is that in V-languages path is described less elaborately than in S-languages. In this case serializing languages seem to pattern with S-languages. Slobin’s findings is based on the deer scene. This motion trajectory is divided by Slobin into the following four components.

(1) Change of location: deer moves, runs, arrives at a cliff

(2) Negative change of location: deer stops at cliff
(3) Caused change of location: deer throws boy, makes boy/frog fall

(4) Change of location: boy/frog fall into water

Slobin finds that speakers of S-languages on average mentioned three of these components in their stories, whereas speakers of V-languages mentioned only two.

Ameka and Essegbey (2001) extended this research to two serializing languages, Sranan and Ewe. They found that all five Ewe consultants used at least three components and out of four Sranan speakers, only one mentioned two components. The rest mentioned at least three. van Putten (2009) notes that Avatime (or Siyase, a Ghana Togo Mountain language of the Kwa language family) behaves very much like Ewe and Sranan. Zlatev and Yangklang (2004) found that Thai also fits into the pattern reported for Ewe, Sranan and Avatime. Out of 10 Thai frog stories, 80% of the narrators mentioned at least three components of the trajectory. So the possibility of using path verbs in series causes a finer segmentation of events in narratives. Thus in this respect, serializing languages resemble S-languages and not V-languages.

The results of the current study fit in with the patterns noted for Ewe and Sranan (Ameka and Essegbey 2001). All the 10 adult Ewe tortoise story narrators expressed component 1, 3, and 4 and used ɖo a word meaning ‘arrive’ which could also be seen as an instance of component 2 (even though Slobin included it in component 1. However, for Avatime speakers, van Putten (2009) noted that if a verb meaning ‘stop’ is the only way to express component 2, then none of them expressed this component but perhaps the two Avatime speakers
who used nā ‘arrive’ and tɔ ‘stop’ as component 2. All the narrators specified the four components. Three of the description of the narrative segments, the shortest, elaborate, and a more elaborate one are given below in (28), (29) and (30) respectively.

Éyá tá fe Ḟe - Ḟeḓá - dzo Ḟe - ké - á kó - e

So year- one – horn – one – DIM - DEF take - 3SG
hé - le du dzí - e, le du dzí
ITIVE – be.at-PRES race POSTP FOC be.at-PRES race POSTP
hé - le yi - yí - m. É - fě avu - a yá
ITIVE – PROG RED go PROG 3SG – POSS dog – DEF LOG
kpó - e bu, bé fe - fé - m wò - le kplé
see - 3SG think COMP RED - play – PROG 3PL - PROG with
fe - Ḟeḓá dzo - Ḟe - ké - á tā éyá há dze ŋgo
year - one horn one - DIM DEF so LOG too take forward
ná wó wò - le du - a dzí, le du - a
DAT 3PL 3SG - be.at.PRES race – DEF POSTP PROG race - DEF
fů - m le yi - yí - m. Fe - Ḟeḓá - dzo Ḟe - ké -
run - PROG PROG RED- go - PROG year one - horn one- DIM-one
á - fů - du vuu kékéké vá - de ebe - xo
So the unicorn carried him and started running and running. The dog saw them and thought they were playing and so it took the lead, running in front of them. The deer ran for a long time and came and climbed a certain thatch hut. There Dzidzo fell and the dog also fell. The two of them fell and landed in a (certain) pond which was full of water.' [AK]

Njutsú-ví - á dze anyí dë ñëká dzo - dë kë - á
Man-DIM DEF fall down on year one horn one DIM-DEF fé dzo wó dome tútútú. Ké lá siá dé afó POSS horn PL middle exactly around animal this put foot/leg du me dë vó - vó tá. Ëyí avu- á há race inside because RED fear because when dog DEF too kpló-é bé náné dzó-dzó - m tá avu há see 3SG COMP something RED-happen – PROG so dog too
The boy fell exactly in between the horns of the deer. This animal sped off because it got frightened. And the dog also realized that something was happening so it took the lead, running without stopping. Then the deer came to a hill; then it realized that the big gutter under the hill was frightful and should it fall into it, it will die. So it stopped abruptly causing the boy to fall down and the dog also fell after the boy had fallen. The two of them fell and landed on each other in the water. [ST]

'The stag was on the run, the boy trapped between its horns. The dog too followed them running for a long time. It came and climbed a hill. It was running for a long time until it got to the end of the hill. Suddenly it became conscious of a very big gutter under the hill. It could not continue running, it could not run forward again so it stopped abruptly. When it stopped abruptly, it shook the child off its horns into the gutter/valley full of water.' [ED]

So altogether, the Ewe adult tortoise story narrators behaved like other serialising languages in expressing path in much detail. This seems to be caused by the possibility to express multiple path elements in a tight macro-event construction as Slobin hypothesized.

In the multi-verb constructions that occur in the adult narratives, the presence of the directional particles *va* ‘Ventive’ and occasionally *hé* Itive – all particles derived from verbs made it possible to convey a great deal more information about a motion event. The main function of *va* ‘come’ as a deictic verb is to indicate a certain deictic relation between a moving entity and the reference point (viz the entity moves toward or away from the reference point). Once a deictic verb follows another motion verb, the very abstract meaning of the preceding motion verb becomes just subsidiary to the substantial meaning of the preceding motion verb. Therefore the two verbs become semantically tied up
and inseparable in form. With the use of \(\text{va} \) ‘VENTIVE’, the constructions are able to accommodate multiple goals and multiple direction vectors. \(\text{va} \) was used as a main verb in all the 365 motion constructions only 24 times while it was used a directional particle 182 times hence bringing ‘coherence’ or ‘compactness’ packaging into the motion event expressions.

A major observation from the narratives was that in the description of motion events, the kinds of constructions that occur frequently, are constructions in which manner and path are combined. Ewe can thus be said to combine both manner and path verbs and when combining manner and path it usually uses a serial verb construction. This means it has a serializing lexicalisation pattern which is a subtype of equipollently framing. Examples in (31 to 34) illustrate this.

31. \(\text{ŋútsúvíá yá dzó gài} \text{ɖé ngægbé} \).
\(\text{ŋútsú- ví - á yá dzó ga- yì} \)
\(\text{Man -DIM DEF LOG leave REP go} \)
\(\text{ɖé ngægbé} \)
\(\text{ALL forward} \)
‘The boy left and moved ahead.’ [EA]

32. \(\text{Avuá le du dzí vá tó éŋú} \).
\(\text{Avu - á le du dzí vá} \)
\(\text{Dog DEF be at PRES race POSTP VENT} \)
\(\text{tó é - ŋú} \)
\(\text{pass 3SG- skin} \)

\(\text{va}^{27} \) For a full discussion of the differences between the auxiliary and the main verb forms of \(\text{va} ‘\text{come}’ \) see Bohnemeyer et al (2007).
‘The dog ran and overtook it (the antelope). [BI]

33. DeVíá fú du do go dê xixe ve koé.
Deví - á fú du do go dê xixe
Child- DEF run exit outside ALL outside
vá yí(ve) ko - é
come go take - 3SG
‘The child ran outside and went and carried it’ [AK]

As the examples show, manner always precedes path in these constructions from the tortoise stories. Path can be expressed by a path verb only as in (31) or by a path verb and ground phrase (example 34).

34. Ìjútsuvíá fú du vá be dê ekpéá xá.
Ìjútsu – ví - á fú du vá be dê ekpé - á xá.
Man - DIM- DEF run VENT hide ALL rock - DEF side
‘The boy ran and hid by the rock.’ [YT]

One final comment on manner + path combination is the difference in narrative style between V-framed and S-framed languages. One of these is that in V-languages, manner-path constructions are not used much as these are often complex and difficult to process. In S-languages they are used more frequently, as manner and path can be combined in more simple structures. But what about an equipollently framed language like Ewe? Slobin (2004:227) claims that manner-path constructions in equipollently-framed languages (like Mandarin) are “highly frequent and are probably easy to process.” In the adult Ewe narratives, 82 out of the 365 motion expressions that occur in the adult tortoise stories are manner-path SVCs. Therefore I will hesitate to call these constructions highly
frequent. However, for various reasons it is difficult to compare my Ewe data to the data on other languages found in the literature. Reasoning like Slobin, I would think that in Ewe, manner-path constructions are used less frequently than in S-languages because like in V-languages, path only constructions are already complete and an extra verb needs to be added to express manner. But whether serial verb constructions are easier or less easy to process than manner-path constructions in V-languages is difficult to predict and needs to be investigated independently from language use.

In the Manner + Path + Deictic or Manner + Path constructions, neutral verbs are also used in the Manner position. In these contexts, the neutral verbs acquire some manner of motion meaning with or without the aid of a following ideophonic adverb or a path verb. Therefore these neutral verbs are considered as manner verbs. Below are examples for each situation.

35. Éwɔ dzáá dzáá do le xɔá me.

É - wɔ dzáá dzáá do le xɔ - á me.
3SG do IDEO-quietly exit be.LOC room- DEF inside
`S/He moved out of the room quietly.` [AR]

36. Elâa dé afo du me sésìê.

Elâ - a dé afo du me sésìê.
Animal DEF put foot/leg race inside very fast
`The animal started running very fast.` [MA]

Table 7 above gives an overview of the frequencies of the different constructions in my corpus of motion expressions that occur in the adult Ewe tortoise narratives.
4.4.2 Descriptions of Ground Elements per Individual Clauses

A lot of studies on motion event descriptions in frog stories produced by speakers of different languages reveal differences in the specification of the ground of movement (i.e., source, goal, or landmarks along a path). Speakers of verb-framed languages tend to use minus-ground clauses including bare verbs indicating direction of movement while speakers of satellite-framed languages tend to use plus-ground clauses to attach one or more pieces of information about ground of movement.

Two measures of ground information in this thesis were made in this section. First, the proportion of plus-ground versus minus-ground motion expressions were calculated. In Table 12 below, the percentage of plus-ground motion expressions in Ewe is identical with Spanish (a V-language) and quite different from that in English (an S-language). Slobin (1997b) found a rate of 0.82 ground element per verb for English and 0.63 for Spanish, while Zlatev and Yangklang (2004) found 0.47 ground elements per clause for Thai. They noticed an infrequent use of ground elements in Thai (a serializing language). They do not mention how often multiple ground elements are combined in one clause, but they did count the total number of ground elements as a proportion of the total number of ground elements in the frog stories they collected. They compared this to the percentage of ground elements per verb in frog stories as calculated by Slobin (1997b) for English and Spanish and surprisingly found that it was much lower than both. The explanation for the low number of ground elements per clause in Thai offered by Zlatev and Yangklang (2004:184) is the following:
Since the Motion event is often so richly specified verbally, nominal Ground specification is often omitted since the information is worked out from context.

Similar results are found for Mandarin (Chen and Guo 2010). The tortoise stories suggest that Ewe constructions with multiple path elements do occur, but constructions with multiple ground hardly occur. From the narratives of the 10 consultants, only two clauses containing two ground elements were found. (See section 4.2 for examples).

Table 12: Proportion of Plus and Minus Ground Motion Expressions in Adult Spoken Narratives in Ewe, Mandarin, Spanish and English

<table>
<thead>
<tr>
<th>Language</th>
<th>Plus-Ground</th>
<th>Minus-Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewe</td>
<td>66%</td>
<td>34%</td>
</tr>
<tr>
<td>Mandarin</td>
<td>63%</td>
<td>37%</td>
</tr>
<tr>
<td>Spanish</td>
<td>63%</td>
<td>37%</td>
</tr>
<tr>
<td>English</td>
<td>82%</td>
<td>18%</td>
</tr>
</tbody>
</table>

Thus, Ewe fits in with the findings of other serializing languages. S-languages use ground arguments much more frequently. Ewe speakers’ production of tortoise stories thus pattern with speakers of verb-framed languages in their description of ground elements in individual clauses. Most of the verbs used by the consultants “conflate motion and path”, to use Talmy’s (2000) term. These verbs very often do hardly occur with ground arguments. Each verb can only take one kind of ground argument, either goal, source, landmark or medium (see Chapter two, 2.2 for explanation of the terms). This ground argument is either a noun phrase which functions as the direct object of the verb or a locative phrase. Locative phrases as we saw in Chapter 3 in Section
3.5 consist of a preposition and a noun phrase, and a postposition or a search domain indicating noun.

In sum, the observation is that when path is segmented, the narrator has the choice of mentioning the ground associated with each segment. For example, the Ewe narrator in (37) mentioned both source and goal whereas the Turkish narrator in Slobin (1997a) mentioned two source elements but no goal (“at the edge of the cliff…. down from his head.”)

37. Đevíá gé tsó agadoa tó [source] vá dze etáá me. [goal]

Đeví - á gé tsó agado - á tó vá dze etá - á me.
Child – DEF fall from valley DEF edge VENT land
pond – DEF inside
‘The child (boy) fell from the edge of the valley and landed in the water.’
[AR]

It seems the availability of prepositions and postpositions might predispose Ewe speakers just like V-language speakers like Basque and Turkish to explicitly mention source and goal. In English (S-language) narrators have the option of packaging many path segments into clauses with a single verb. In such instances each path expression satellite, preposition, tends to carry a ground element with it. The Ewe adult narrators never used a motion verb with more than one ground. It is also worth noting that narrators can also mention grounds in several successive clauses.
4.4.3 Dynamic Movement versus Setting

Slobin’s last proposal deals with the rhetorical style that speakers from these languages (satellite-framed and verb-framed equipollently-framed) employ in the narration of these events. He points out that despite possible differences in the higher or lower degree of elaboration and description of the ground, English, Basque and Spanish narrators, “tell the same story.” Slobin argues that this can be explained on the basis of how much narrative attention speakers devote to movement and setting. He proposes that S-languages allocate more attention to the description of movement rather than to that of the physical setting in which the action takes place. This is due to the rich means that this type of language has to describe path – “the availability of verbs of motion (often conflated with manner) that can readily be associated with satellites and locative prepositional phrases to trace out detailed paths in relation to ground elements” (Slobin 1996), cited in Chen 2005:72). On the other hand, V-languages, constrained by their typological characteristics take the opposite choice: they leave the path to be inferred and focus on the description of the setting. The following examples from English and Spanish illustrate this.

38. a. The deer stops abruptly which causes the boy to lose his balance and fall with the dog down into the stream

b. caen en la laguna […] que estaba debajo de ese precipice

fall in the pond that was below of that cliff

‘They fall into the pond, which was below that cliff’ (Slobin 1996a:205)
In the English example (38a), as predicted by Slobin, the location of the river under the place where the deer stops, i.e., the cliff is inferred by the trajectory described in fall ... down into the stream. This becomes very evident if we compare (38a) with the Spanish descriptions of the same event in (38b). Here, the speaker explicitly describes the position of the pond with respect to the cliff *estaba debajo de ese precipicio* ‘under that cliff’. This Spanish speaker tends to focus more on the static description of physical settings abundant in Spanish frog stories, but rare in English frog stories. In the descriptions of the *deer scene*, none of the English narrators provide a locative elaboration for this scene, while 25% of Spanish adult speakers did so. But what happens in adult Ewe tortoise narratives?

Both Ewe narrators and Spanish narrators make sparse references to ground elements (which are integral components of the path). We would expect that Ewe narrators should focus on the physical description of the setting rather than on the dynamics of movement to compensate for their minimal use of plus-ground clauses. But if we take into account the fact that the description of path is more similar to S-languages, then we would expect it to behave like English. In fact, this is what pertains in the data. An average of 8 Ewe speakers follow the S-language strategy, that is the setting information (the location of the river below the cliff) is inferred in the description of the trajectory, adjoined to the verb of motion from the cliff fall down into the river as illustrated in (39).

39. Yíko ñɛɖɛ ñɛɖɛ tɔ kɔnù yé Kɔffi kplé
Avua, Lɔtɔ, wóɡé tsó aɡadoa tɔ vá nyrɔ dɛ tɔ gɔɡló yì kɛ le aɡa tɛ me.
Yíko fe - dëká – dzo dë - ké - á tó kànu
And then year– one - horn one DIM DEF stop abruptly
Yé Kofi kplé avu - a wó - gé tsó aga - do - á
and Kofi and dog DEF 3PL fall from valley – hole - DEF
tó vá nyrɔ dé to gogló ádɛ me.
edge VENT dive/submerge ALL river deep INDEF inside

‘And then the deer stoped abruptly and Kofi and the dog fell from the edge of the valley into a very deep river.’ [AH]

However, we also find examples with a combination of both static information about the physical setting and dynamic information about the trajectory as in (40).

40. Ėyé nùtsuvíá kple avua wógé tsó etó-á táme vá dze etá zɔzrɛ̀ ádɛ́ si le etóá té. Yé wóame eve lá fɔ le toá me kplé tsi trololo hɛ do vá gota. Máwú fɛ amenuvévé ta nánéké mɛwɔ wó o.

Éyé nùtsuví - á kple avu - a wó - gé tsó etó-
And boy DEF and dog – DEF 3PL fall from hill/mountain
á táme vá dze etá zɔzrɛ̀ - é ádɛ́ si
DEF POSTP VENT land pond clear – FOC INDEF REL
le etó - á té me. Yé wó - ame
be.LOC hill/mountain DEF under inside And 3PL - person
eve lá fɔ le tɔ - á me kplé tsi
two DEF get up be LOC river – DEF inside with water
trololo hɛ - do vá gota. Máwú fɛ
dripping heavily ITIVE exit come outside/bank God POSS
amenuvévé ta nánéké mé - wɔ wó o. grace because nothing NEG- do 3PL NEG

‘And the boy and the dog fell from the hill/mountain top and landed in a certain clear pond which is under the hill. And the two of them got up
from the river (with water dripping heavily from their bodies). Fortunately/By God’s grace nothing happened to them’. [ST]

Although both techniques are combined in this example, it is important to point out that the static description does not occur on its own as it was in the Spanish case (40). It comes after the complete path description *ge tso eto tame* ‘fall from the hill/mountain top’ which already presupposes where the river is located.

The discussion on dynamic movement versus static setting shows that Ewe speakers and Spanish and Turkish (V-languages) speakers are more likely to attend to descriptions of physical settings than English speakers. The rich means for path descriptions in English allow its speakers to leave setting to be inferred whereas the sparse path possibilities in Spanish are compensated for by the elaborate descriptions of settings. The individual verbs in Ewe cannot accumulate path expressions as freely as those in English but several path verbs can occur in a sequence in a single clause. Ewe speakers will then sometimes resort to descriptions of physical settings, and leave some path information to be inferred from discourse. Similar patterns as found in the Ewe data have been reported for Chinese (Chen 2005:72-76).

To summarize, it could be said that the language-specific patterns are quite pervasive in Ewe as it is in other languages like Spanish, Turkish and English. Manner-verb-of motion + satellite(s) are typical of satellite-framed constructions in English, verbs of inherent directionality are typical of verb-framed constructions in Spanish and the serial verb constructions are typical of
equipollently-framed constructions in Ewe and for that matter serializing languages. These differences in addition to other language specific properties and constraints, engender differences in the description of motion events in connected discourse.

4.5 Summary of Chapter Four

This chapter examined motion event descriptions in spoken narrative data elicited from Ewe adult speakers using the wordless picture book Klo afí ka nèle? Results suggest that Ewe speakers (i) use a great variety of motion verbs, particularly path and manner-of-motion verbs and other alternative means like adverbials and ideophones, etc., (ii) provide limited description of ground elements (iii) break a scene into several segments and mention what takes place in the scene and, (iv) provide some description of the physical setting in which movement takes place. A comparative summary is given in Table 13 by juxtaposing the structural and discourse patterns of motion event descriptions in the satellite-framed languages English and Spanish representing the end of the two poles and placing Ewe and Chinese in between them.
Structural and Discourse Patterns of Motion Event

Table 13: Description in English, Spanish, Chinese and Ewe

<table>
<thead>
<tr>
<th></th>
<th>English Satellite-framed</th>
<th>Ewe Equipollently-framed</th>
<th>Chinese Equipollently-framed</th>
<th>Spanish Verb-framed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion verb lexicon use</td>
<td>LARGE</td>
<td>LARGE</td>
<td>LARGE</td>
<td></td>
</tr>
<tr>
<td>Manner of motion verb use</td>
<td>FREQUENT</td>
<td>FREQUENT</td>
<td>FREQUENT</td>
<td></td>
</tr>
<tr>
<td>Description of a complex event via multiple action clauses</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Elaborated ground descriptions</td>
<td>LIMITED</td>
<td>LIMITED</td>
<td>LIMITED</td>
<td>LIMITED</td>
</tr>
<tr>
<td>Description of physical setting</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Adapted from Chen (2005:75) with modifications.

Comparing Ewe with the three languages mentioned above – Spanish, English and Chinese, the results from the present study reveal that Ewe is similar to Chinese, and as such it is an equipollently-framed language rather than a satellite or verb-framed language. However, Ewe speakers talk about motion events in ways that have patterns of both verb-framed language and a satellite-frames language. The structural and discourse patterns typical of motion event descriptions in Ewe were also observed in Siyase (Avatime) – a Ghana Togo Mountain language, (van Putten 2009), Thai (Zlater and Yangklang, 2004; Lao, Endfield, 2007, Chinese Chen 2005, Chen and Guo 2010, Guo and Chen, 2009 and many others. These languages including Ewe encode both the manner and
the path components of a motion event within two separate verbs occurring in an uninterrupted sequence. Ewe speakers exhibited hybrid patterns in their descriptions of motion events in tortoise stories. They behaved like speakers of satellite-framed languages in their frequent use of alternative manner-of-motion verbs and in their tendency to describe a complex event via multiple individual action clauses that analyse the event into its components. In contrast, Ewe speakers behave like speakers of verb-framed languages in their tendency to provide descriptions of the ground to one piece of information (either the goal, the source, or the medium of the movement). This mixed patterns of motion event descriptions in Ewe supports Ameka and Essegbey’s (2001) suggestion that Ewe and other serial verb languages are equipollently-framed languages.

The findings from the analysis of the adult Ewe tortoise narratives set the stage for the analysis of motion event descriptions by Ewe-speaking children in the next chapter. The major goal of Chapter five is to find out whether the patterns of motion event descriptions as found in elicited narratives of adult Ewe speakers will also be found in the narratives of Ewe children.
CHAPTER FIVE

DEVELOPMENT OF MOTION EXPRESSIONS IN EWE-SPEAKING CHILDREN

5.0 Introduction

The discussion is informed by insights about motion event typologies as proposed by Talmy (1985, 1991, 2000) together with insights from some acquisition theories.

The study of the development of typologically distinct languages reveals not only uniformities, but also the influence of language-specific properties on the course of development in children learning verb-, satellite- and equipollently-framed languages. Based on these studies, the questions one would like to ask are:

1) Will Slobin’s (1996a) proposals:

 (i) verbs (number, expressiveness and frequency of mention of lexical items of manner or path description.

 (ii) the elaboration of ground description

 (iii) the description of dynamic motion versus scene setting etc. as found in the typologically different types of language mentioned above be applicable to Ewe-speaking children’s expression of motion events?

The language specific hypothesis would predict language-specific forms from the early stages of development while the universal hypothesis would
predict initial uniformities of development across children learning the three different types of languages. How do these relate to Ewe-children’s acquisition of motion event expression?

To address these issues, this chapter examines the development of motion event description in Ewe-speaking children at the age of 3, 4, 5, 7 and 9, along with adult native speakers using the wordless picture storybook, ‘Klo afi ka nle?’ Children’s data was analysed and compared with adult data as well as comparable data from English (S-language), Spanish (V-language) and Chinese (E-language). The focus would be on path, manner of movement, and ground which constitute the three major dimensions of typological variation. The guiding questions are:

(i) Do Ewe-speaking children engage in the activity of thinking-for-speaking?

(ii) How are language-specific characteristics reflected in motion event descriptions by learning Ewe at different ages?

(iii) What language specific factors affect their discourse development as they select and organize information in discourse?

5.1 Research Participants, Data and Method of Collection

The children’s corpus contained sixty Ewe-speaking children. However, only fifty native Ewe-speaking children (between the ages of 3-,4-,5-,7- and 9-) were recruited from Akrofu and Sokode villages on the fringes of Ho in the Volta Region of Ghana. These villages were chosen because they are not too urbanised. Six and eight-year old children were excluded from the study because
growth and for that matter change is fastest at the early stages of life and slows down with age. I therefore believe there would be no significant difference in their performance between age eight and nine, hence my exclusion of age six and eight. Another reason for the exclusion is to keep the volume of data within manageable range. Data were collected from each child individually following exactly the same procedure as described in Chapters One and Four except that the children were audio-taped in their homes. Some necessary adaptation (such as time allowed and, sometimes, prompts to activate the elicitation process) were made to accommodate the specific needs of young children. Each child’s oral narrative was audio-taped, transcribed, and coded for analysis. Since children’s speech often consists of unclear sections, apart from my own transcriptions, two Ewe-speakers who are graduate students of Linguistics transcribed the narratives independently, and the transcripts were then merged into one set. The three of us discussed any discrepancies in the transcripts and reached a consensus after revisiting the tape recordings. Adult data reported in Chapter Four were used as indicator of the target of learning for the children.

5.1.1 Coding

The three of us coded the data independently first and then collaboratively to reconcile the coding categories, and criteria for motion expressions were the same as described in the adult spoken narratives (see section 4.2).

The motion event descriptions were marked and coded for each story. Each motion event coded, expressed a single event and took the form of a clause
containing one single verb; for example, *dz*ó ‘jump’ or several verbs in a serial verb construction – *fù dù dó dz*ó ‘run exit go’.

First, all verbs in the motion event description were identified together with the associated ground elements (i.e., source, medium or goal). Percentages of different types of motion verb use and different types of serial verb constructions (same as those in Section 4.2) were included in the analysis.

The narrative segments as well as descriptions of physical setting in which movement takes place, the emergence of the owl, and the antelope scene were also identified for each tortoise story. The examination of these categories may enable us to see how Ewe-speaking children learn to express motion events.

5.2 Results and Discussion

5.2.1 Learning to Use Motion Verbs

To evaluate the development of motion verbs across ages, the texts were examined in terms of the development of motion verb lexicon (i.e., manner of motion versus path verbs) along with different verb combinations (in SVCs) particularly Manner + Path, Path + Path etc. Tables 14, 15 and 16 below summarise the results concerning the development as reflected in the children’s tortoise stories. Adult data in Chapter Four were added for ease of comparison.

In the tables below (14, 15, 16) all the verb types of different motion verb categories were pooled together to access the lexical diversity of verbs as a whole as used by each age group. Adult data were drawn from Chapter Four. The data showed that both the number of path verb and manner verb types increased gradually from age 3 through adulthood except that the manner and
path verb types for the 4-year-olds and 5-year-olds were very close. The data also suggests the Ewe-speaking child’s preference to describe a motion event with path verbs.
Table 14: Manner of Motion Verbs in Tortoise Stories: Frequency and Distribution

<table>
<thead>
<tr>
<th>S/N</th>
<th>Manner Verbs</th>
<th>English Translation</th>
<th>Age 3 n= 10</th>
<th>Age 4 n= 10</th>
<th>Age 5 n= 10</th>
<th>Age 7 n= 10</th>
<th>Age 9 n= 10</th>
<th>Adults n= 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fú /sí//bé du</td>
<td>run</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>36</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>sí/shí</td>
<td>run away, escape</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>dzo/tí/tsí/kpó</td>
<td>jump</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>dzo</td>
<td>fly</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>zɔ</td>
<td>walk, move</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>fű tsí</td>
<td>swim</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>kuku adɔ (ḍé ṣú)</td>
<td>to hang (on something)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>tá</td>
<td>crawl</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>tutu</td>
<td>push</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>he</td>
<td>pull</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>míli</td>
<td>roll</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>ḥṇjḥ</td>
<td>to slip</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>sa agba</td>
<td>to float (in water) to glide in the air</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>minya</td>
<td>to move gently, walk stealthily</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>tró</td>
<td>to spin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>gọ</td>
<td>walk very fast</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>vlí</td>
<td>to struggle (and free oneself)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Types</td>
<td>Tokens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>22</td>
<td>34</td>
<td>45</td>
<td>96</td>
<td>203</td>
</tr>
</tbody>
</table>
Table 15: Path of Motion Verbs in Tortoise Stories: Frequency and Distribution

<table>
<thead>
<tr>
<th>S/N</th>
<th>Path Verbs</th>
<th>English Translation</th>
<th>Age 3</th>
<th>Age 4</th>
<th>Age 5</th>
<th>Age 7</th>
<th>Age 9</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N= 10</td>
<td>n= 10</td>
<td>N= 10</td>
<td>n= 10</td>
<td>n= 10</td>
<td>n= 10</td>
</tr>
<tr>
<td>1</td>
<td>vá</td>
<td>come (main verb)</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>vá</td>
<td>come (ventive)</td>
<td>2</td>
<td>16</td>
<td>12</td>
<td>33</td>
<td>88</td>
<td>182</td>
</tr>
<tr>
<td>3</td>
<td>yi</td>
<td>go</td>
<td>4</td>
<td>9</td>
<td>18</td>
<td>23</td>
<td>38</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>liá/de/xé dzi(mé)</td>
<td>climb up</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>gé/dé</td>
<td>enter</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>gé/dzó</td>
<td>fall</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>33</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>do</td>
<td>exit, appear</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>20</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>kplɔ dqọ nya/dqọ nú</td>
<td>chase, follow</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>16</td>
<td>16</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>dú/dzí</td>
<td>to search (for someone, something)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>tsa/tsatsaà/tsatsam</td>
<td>roam, roaming, wander</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>dọ/de</td>
<td>arrive</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>te dqọ nú</td>
<td>move closer (to someone, something)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>tso/f5 tọ</td>
<td>cross a river</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>dze mọ</td>
<td>to set off</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>kọ/tso do dqọ dzi</td>
<td>to lift up</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>dʒi tsa</td>
<td>to stroll</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td>dʒi</td>
<td>come, climb down, descend</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>tọ</td>
<td>to pass (route)</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>da/dāgbɛ</td>
<td>throw, to throw away</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>mu/gé dze anyí</td>
<td>fall, to fall down</td>
<td>4</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>S/N</td>
<td>Path Verbs</td>
<td>English Translation</td>
<td>Age 3 n= 10</td>
<td>Age 4 n= 10</td>
<td>Age 5 n= 10</td>
<td>Age 7 n= 10</td>
<td>Age 9 n= 10</td>
<td>Adults n= 60</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>21</td>
<td>dró</td>
<td>to lift (and carry on the head)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>blá/nye ɖó ɖú/foxlá</td>
<td>to surround, attack from all angles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>kplə</td>
<td>Accompany</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>ka ɖi/ka kaka</td>
<td>to scatter</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>ɖó / tu tə</td>
<td>to head for a place</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>ho ɖó dzə</td>
<td>to pop up, float</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>27</td>
<td>tra gbo</td>
<td>Return</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>dze ɖé le ɖú</td>
<td>overtake, bypass</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>tsọ me</td>
<td>run off, pass by</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>ɖọ/ɖó tə</td>
<td>submerge (in river)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>ɳé ɖọ</td>
<td>to pass by, take a short cut</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>ɖọ ɳọ</td>
<td>take the lead</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>tí/tí ɖọ/me</td>
<td>to go after, go looking for someone</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>nye ʋusí</td>
<td>to shake off (eg. from the head)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>ɖọ du afọ nu na ame</td>
<td>to go searching, on an errand</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>fo ɖu anyí</td>
<td>to knock down</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Types</td>
<td>9</td>
<td>14</td>
<td>17</td>
<td>23</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tokens</td>
<td>33</td>
<td>76</td>
<td>92</td>
<td>190</td>
<td>322</td>
<td>664</td>
</tr>
</tbody>
</table>
Table 16: Neutral Motion Verbs in Tortoise Stories: Frequency and Distribution

<table>
<thead>
<tr>
<th>S/N</th>
<th>Neutral Verbs</th>
<th>English Translations</th>
<th>Age 3</th>
<th>Age 4</th>
<th>Age 5</th>
<th>Age 7</th>
<th>Age 9</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n=10</td>
<td>n=10</td>
<td>n=10</td>
<td>n=10</td>
<td>n=10</td>
<td>n=10</td>
</tr>
<tr>
<td>1</td>
<td>tsɔ/kɔ/kɔ(e)</td>
<td>to take, carry</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>wɔ/wa</td>
<td>do, make</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>lɛ</td>
<td>catch, hold, gra</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>dɛ</td>
<td>put</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tokens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To make the picture clearer, Figure 6 and 7 graphically depict the total type and token frequencies of different motion verb categories for each age group. It shows quite a similar pattern as the individuals’ data, except for the fact that the diversity of both manner verb and path verb still shows a big contrast – roughly 1 (for manner) to 4 (for path) for each age group. It is interesting to note that as a group, the lexical diversity starting from the 3 year olds increased gradually with a noticeable increase at age 9 (Figure 6).

Figure 6: Total Type of Frequencies of Different Motion Verb Categories for All Speakers of Each Age Group
Token frequencies of different motion verb categories for each age group are presented in Figure 7 above. The token frequencies of all categories increased gradually across all ages, and increases drastically from 9 years to adulthood. The general tendency in language use regarding manner and path verbs is quite consistent with comparable data from Chapter Four.

One other observation from the children’s data which relates to motion types is the prevalent of serial verb construction types in their motion verb categories. This is presented in Table 17 and differences in the various categories may be easier to detect in Figure 8 which sums up SVC clause types that we have in the narratives.
Table 17: Distribution of Different Motion Verb Combinations in SVCs

<table>
<thead>
<tr>
<th></th>
<th>3YRS.</th>
<th>4YRS.</th>
<th>5YRS.</th>
<th>7YRS.</th>
<th>9YRS.</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TY</td>
<td>TO</td>
<td>TY</td>
<td>TO</td>
<td>TY</td>
<td>TO</td>
</tr>
<tr>
<td>Manner + Path (D)</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Path + Path (D)</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>Neutral + Path</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Manner + Adverbials (Ideophones)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

TY = Types
TO = Tokens

Figure 8: Total Token Frequencies of Different Verb Combination Types (in SVCs) for Each Age Group

Components expressed in verb roots are shown in Table 17 and Figure 8. Figures in both Table 17 and Figure 8 suggest the general tendency of Ewe-speaking children even at age 3 of producing motion event description containing SVCs, an indication that they are developing an equipollently-framed structural pattern. This shows that children as young as 3 years of age have already started acquiring this characteristic
language use. Example 1 to 3 are clauses involving only Path, Manner and Neutral verbs respectively while example 4 to 8 illustrate the various SVC types in the children’s data.

1. Avu - ṣ gē.
dog – DEF fall
‘The dog fell.’ [RE 03; 03]

2. Ezi – é le du fú – ú
antelope-DEF PROG run – PROG
‘The antelope is running.’ [EK. 05; 02]

3. Ezi - é ló du djé (e) me.
antelope-DEF collect race ALL inside
‘The antelope took to its heels.’ [SV 09; 08]

 Manner + Path

4. Eklo sí dzó
tortoise escape leave
‘The tortoise escaped.’ [AS 03; 10]

 Path + Path

5. Wó – gbọ vá aféme.
3PL – return come home
‘They came back home.’ [DF 07; 6]

 Path + Path (D)

6. É - gẹ vá dzé anyigbá.
3SG-fall VENT land ground
‘It fell and landed on the ground.’ [SK 05; 10]

 Neutral + Path

7. É – wọ ṣẹ́rẹ́rẹ́ liá eze - č.
3SG do/make quietly-slowly climb pot - DEF
‘It climbed the pot slowly/quietly’. [KG 09; 06]
Manner + Adverbials

8. Ezi - é kó - é dó qé dzime dzé antelope – DEF take/carry - 3SG raise ALL POSTP/up start du dzí kpl(e) – é sososo race POSTP/top with – 3SG IDEO-staggering

‘The antelope lifted him up and started running (staggering as it moved along).’

[SD 09; 09]

5.2.2 The Development of Ground Descriptions

Table 18 presents data on the development of ground elements and the percentages of motion event descriptions which include one or more ground phrases in the tortoise narrations across all ages.

Table 18: Development of Ground Elements

<table>
<thead>
<tr>
<th></th>
<th>Total No. of Motion Expression</th>
<th>+ Ground Clauses</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3YRS.</td>
<td>70</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>4YRS</td>
<td>95</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>5YRS</td>
<td>121</td>
<td>63</td>
<td>53</td>
</tr>
<tr>
<td>7YRS</td>
<td>160</td>
<td>90</td>
<td>56</td>
</tr>
<tr>
<td>9YRS</td>
<td>250</td>
<td>146</td>
<td>58</td>
</tr>
<tr>
<td>Adults</td>
<td>365</td>
<td>265</td>
<td>68</td>
</tr>
</tbody>
</table>
Figures in Table 18 and the gradient of Figure 9 suggest that as Ewe-speaking children grew older, they tended to make more frequent references to ground elements in individual clauses (but note the slight regression at age 4). There was a 14% increase from age 5 to 7, and a further development from age 9 to adulthood. The overall tendency across all age groups is, source and goal of motion are both typically expressed using a verb and a locative construction where there is at least one ground per verb. This is a language specific pattern noted in Chapter Three, Section 3.6.4. The following examples of plus ground clauses are drawn from the children’s data.

 insects – PL PROG RED-exit – PROG LOC
 atí - é me.
 tree - DEF inside
 ‘Insects are coming out of the tree.’ [BE 05; 01]

10. Đeví – é gé dze tɔ - ɔ me.
 child - DEF fall land river-DEF inside
 ‘The child fell into the water.’ [AS 7; 7]

beast(owl) exit LOC tree - DEF inside

‘A beast (an owl) came out of the tree.’

[YL 03; 02]

rat - DEF exit ABL hole - DEF inside

‘The rat came out of the hole.’

[KH 07; 03]

man - DIM - DEF fall ABL tree - DEF
dzi vá dze etò - ó me.

POSTP/top VENT land river - DEF inside

‘The boy fell from the tree and landed in the river.’

[GT 09; 07]

In the sentences (13 and 14), the more iconic order of source followed by
goal in the SVC construction, where the goal argument is always introduced by one
of the directional end-point anchored verbs as the last verb in the series (see Ameka
and Essegbey 2006: 395) was prevalent in their narrations.

14. Ðeví – é dzó tsó atí - é dzí

Child – DEF fall ABL tree – DEF top

vé dze anyígá.

VENT land ground

‘The child fell from the tree and landed on the ground.’ [LA 9; 5]

The use of prepositional phrases headed by the LOCATIVE le and the
ABLATIVE preposition tsó aided the children to produce examples 9 and 11-14.

These results suggest that Ewe-speaking children started to follow the language-
specific structural pattern of expressing source and goal in one clause as a distinct
pattern of Ewe motion expressions.
5.2.3 Developing the Narrative Habit of Describing Complex Events

The percentage of Ewe-speaking tortoise story narrators who mentioned 3 or more segments out of the 6 event segments of the antelope scene for each age group is presented in Table 19 and graphically represented in Figure 10.

Table 19: Number of Event Segments Mentioned by Each Ewe Tortoise Narrator in the Antelope Scene

<table>
<thead>
<tr>
<th>Narrators</th>
<th>3YRS</th>
<th>4YRS</th>
<th>5YRS</th>
<th>7YRS</th>
<th>9YRS</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>1.4</td>
<td>1.7</td>
<td>2.3</td>
<td>2.4</td>
<td>2.7</td>
<td>4.0</td>
</tr>
</tbody>
</table>
As can be inferred from the data in Table 19 and Figure 10 above, the ability to break up a complex event into several segments and describe segment by segment, what takes place in the event through a series of separate action clauses take quite a long time to develop. Ewe-speaking children at age 3 are just starting to do that, and development continues.

5.2.4 The Development of Static Description of Setting versus Dynamic Movement

Figure 11 summarises the results about Ewe-speaking children’s development in providing descriptions of the physical setting in which the movement takes place.
The data in Figure 11 suggests that the ability to provide descriptions of the settings of motion events may take a long time to develop, and may be beyond the capacity of Ewe children between the ages of 3 to 9. The data also suggests some continued development from age 7 to adulthood in the children’s ability to provide static descriptions. The following are examples drawn from the children’s motion expressions, in which descriptions of physical setting in which movement takes place was provided.

15. É - ɖíɖí dze anyí ɖé náké ʃú - ʃú ɖé dzi.
3SG – slip fall down ALL firewood RED-dry INDF POSTP/top
‘He fell (down) on some dry firewood.’

[MD 07; 09]

16. Wó - zɔ ɡé ɖé ave – tsú ɖé me.
3PL move/walk enter forest – male/virgin INDF inside
‘They walked into a very thick/virgin forest.’

[SA 07; 10]
17. Wó - kpó atíkpó dë xé é - tôme vó yá
3PL – see log INDF which 3SG - inside/pith rot and
edô le éme ya wó – de dzi no
hole LOC inside and 3PL climb POSTP/top PROG
nú kpó - 5.
theg see - PROG
‘They saw a rotten log with a hole in it and they
climbed it and were watching/looking around?’ [SD 09; 10]

5.3 General Discussion of Findings

5.3.1 Introduction

The discussion of the results presented in Section 5.2 were analysed in
relation to Slobin’s theory of Thinking-For-Speaking which suggests that when we
are planning the conceptual structure of what we are going to say, we are taking into
consideration the constraints imposed on information encoding by the particular
language we are going to speak. Since the languages of the world differ in terms of
grammatical constraints (for example, the accessibility of lexemes tailored to talk
about a given concept or conceptual domain) thinking-for-speaking varies across the
languages of the world.

As Ibarretze-Antuñano (2004:90) notes:

The concept of motion seems to be present in all the language of the
world. However, neither the way in which motion is expressed in these
languages – the lexicalization patterns – nor the aspects of motion
(motion components) that each of these languages focuses on
(thinking-for-speaking) are exactly the same.

Using the conceptual framework suggested by Slobin, I now discuss the
results presented in Section 5.2 to find out whether these results highlight the impact
of language-specific constraints on the cognitive processes that underlie Ewe
children’s discourse organization as they narrate the tortoise story. The resulting claims has been that children engage in the activity of thinking-for-speaking as they learn to communicate in the mould provided by their particular language which partially determines how information is filtered and channeled in discourse. Emphasis was placed on the development of motion expressions involving Path, Manner, and Deictic verbs, and the combination of Manner, Path and Neutral verbs. Others include the development of ground elements, the description of complex journeys etc; the universal hypothesis versus the language specific hypothesis as well as the developmental hypothesis. These were employed where applicable.

5.3.2 Lexical Diversity of Motion Verbs

As shown in Table 14 – 16, children of different age groups have quite comparable mean numbers of motion expression ranging from 7 to 36. This average is also comparable to that found in the adult speakers’ data (see Chapter 4 section 4.3.1). The percentage of motion expressions against the total number of utterances for each child seem to be lower than that for adults (see Table 14). However, the 7 to 9 year olds are closer to adults and are particularly focused on the motion events in the picture. It shows that the children’s attention to motion events and their interests in expressing them is somehow adequate from age 3.

Several salient results were found in the comparison of proportion of path verbs and manner verbs. The establishment of serial verb constructions with a manner of motion verb occupying the first slot (e.g., sídu do vá ‘run exit come is’) is another notable structural pattern. This pattern occurs with great frequency in the data and represents a typical lexicalization pattern for children across all ages. Let us examine these structural patterns and describe them one by one.
The data for the children demonstrate that while path verbs and manner verbs both enter Ewe-speaking children’s early vocabulary, motion verbs that conflate path alone account for a significant portion of it (33%). The children started using prepositions of direction as early as 3 years. These prepositions of direction are always used with path verbs. The preposition *le* ‘LOCATIVE’ and *tsó* ‘ABLATIVE’ as used in sentence (9) to (14) above, mark direction and goal of motion. Hence, Ewe children produced more path verbs than manner verbs but not to the level of the adults. This finding is in agreement with results reported in Cho (2002) and Özçaliskan and Slobin (1999), and supports the claim of developmental hypothesis in which older children tend to use a greater diversity of manner and path verbs. This developmental pattern was also found in Cantonese and is consistent with studies such as English and Turkish (Özçaliskan and Slobin 1999). It implies that the development of motion verbs could be a universal pattern and it could not be culturally different thus supporting the universal hypothesis.

Furthermore, from a developmental point of view, the proportion of tokens accounted for by the first few verbs for both manner and path is greater for children between 3 and 4 years in particular (see Table 14 – 16); they seem to rely more on the most frequent verbs. As an illustration, let us consider the children’s use of the deictic verbs *vá* ‘come’, *va* (ventive), and *yi* ‘go’. Their use in the motion expressions demonstrates another language specific structural pattern that is characteristic of Ewe as an equipollently-framed language. These deictic verbs are pervasively utilized in the linguistic encoding of path in the language. Table 15 suggests that Ewe-speaking children, starting from age 4 made frequent use of these deictic verbs. But what is distinct about the use of these deictic verbs in Ewe? Just like how the frequency of
tokens were higher for deictic verbs in the adults data, the same pattern is typical of the children’s data. This is because *va* ‘Ventive’ for example, is used to introduce goal complements that entails an endpoint, which probably accounts for the use of more path verbs across all ages.

From a semantic point of view also, *go* and *come* belong to the crosslinguistically attested set of nuclear verbs of motion (Viberg 1993), cited in Ragnarsdóttir & Strömqvist 2004: 126), and they are highly polysemous. For example, the motion verb *do* ‘exit’ and the boundary crossing verb *ge* dẹ ‘enter’ in Ewe can stand in place of the deictic verb *yi* ‘go’ and *va* ‘come’. As we move down Table 14 and 15, in descending order of frequency, we find verbs with more specific meaning, and importantly, verbs encoding more fine-grained distinctions of manner of motion and path of motion. From a developmental point of view, the figures in Table 14, 15 and 16 show that the top eight path verbs and the top five manner verbs are found across all age groups whereas the diversity of the verbs encountered increases with age, especially in later phases of development (beyond 9 years).

The second structural pattern observed in the children’s motion expressions is Manner plus Path (Manner + Path), Path plus Path (Path + Path) and Neutral plus Path (Neutral + Path). As regards the overall use of a combination of verbs in an SVC, Ewe children behave like their adult counterparts whose narrative patterns are similar to other serializing languages in expressing the SVC patterns listed above. Manner + Path token pattern for 3-year-old shows a ratio of 2:1; for the 4-year-olds it is 1:1; the 5- and 7-year olds have a ratio of 1:1.5 each while that of the 9-year-olds is 1:2.2. The tokens for the Path + Path motion clauses are higher than that for Manner + Path for the 9-year-olds and adults but if we combine the Manner + Path tokens with the Manner + Adverbials, then the 7-9 year olds will have more manner
tokens. These Manner + Path or Path + Path or Neutral +Path tokens do not however come close to what we have for Path-only or Manner-only verbs (refer to Table 14, 15 and 16). This finding is in agreement with the developmental hypothesis and could be explained by the following reasons. First, Slobin (2000) hypothesized that processing load might affect the preference of certain types of motion verbs and motion verb combinations. For instance, in sentence (18) and (19) drawn from the children’s data, both manner and path information were encoded in the sentences simultaneously.

18. Wó - zɔ tó mɔ - ɔ dzi yi – e.
 3PL – walk pass path – DEF top go – PROG
 ‘They were walking along the path.’ [SK 05; 10]

19. ṝútsu ví - é vá gé dze é – dzí
 man – DIM – DEF VENT fall land 3SG - top
 ‘The boy fell on it.’ [CT 07; 08]

Thus the processing load increased as compared with encoding path or manner only information. As speculated by Oh (2003), at an early age children might be too limited cognitively to attend to various components of a motion event at the same time, though another possibility might be that they have not yet mastered the skill to pack both manner and path information into a single description. Hickman (2003, 2006) also made similar observations for English and French children who used more complex descriptions of both Path and Manner together with increasing age. Hickman et al (2009:221) for example examined how children talk about motion events in English and French, predicting that typological properties (satellite-and verb-framing) should influence the semantic density of their utterance. One of their
findings shows different developmental patterns in the encoding of manner and of path in children’s discourse across languages. In particular, although manner is more frequent in English than French, it increases with age in both languages, whereas path does not show such an increase in either language. Thus their data show that manner information is infrequent in young children’s discourse and strongly increases with age. Since manner in French is mainly expressed by peripheral devices, unless the main verb jointly expresses both manner and path (but this is not the prototypical pattern), such lexical items and constructions are harder to learn and therefore acquired late. In English, although the encoding of manner is more systematic than in French at all ages and with all event types, it nonetheless increases with age. Some of the utterances produced by the youngest English learners encode only path, while path+ manner utterances increase with age. It was however noted that spontaneous productions during early acquisition phases show no increase in semantic density across developmental periods in either language, as well as weaker language differences with respect to the expression of manner in comparison to experimentally induced productions from 3 years of age on.

Regardless of age then, children encode path equally frequently in the two languages, expressing this component earlier and more systematically than manner. Therefore, in both languages, the increasing semantic density of children’s utterances actually reflect their increasing encoding of manner. These findings suggest that path is more basic than manner as a result of more general and presumably universal factors. The general nature of location changes and their role in the construction of discourse representations may explain why this should be the case. With location changes, path provides the information that is necessary to locate entities at any point during unfolding discourse. In contrast, once introduced in discourse, general
locations provide spatial anchors that can be entirely presupposed in subsequent utterances until a location change occurs in further discourse. Ewe-speaking children especially between the age of 3 and 4 might find it more difficult to produce Manner + Path, Path + Path, Neutral + Path or Manner + Ideophonic adverbs and therefore resort to Path verb descriptions in relatively higher proportions.

Second, the children had a small lexicon inventory of manner verbs than path verbs. Recall that in Ewe (cf. Chapter 3 Section 3.7) the first verb in an SVC motion expression must obligatorily be a Manner verb. Due to the low manner saliency of motion verbs, it was reasonable for the children particularly 3 to 4 year olds to use more path verbs only in most of their descriptions. This supports Slobin’s (2006) suggestion that the size and the diversity of motion verb inventory might have an effect on the occurrence of the type of motion events.

Third, in agreement with suggestions raised by Hickman (2006) and Talmy (2000), some types of information pertaining to motion events might be more basic and salient than others. The particular path that was followed by a displacement of space might constitute more prominent and important information in comparison with the manner in which it was carried out.

In addition to these suggestions, I will also attribute this pervasiveness of Path only conflation in the children’s motion event expressions to a language-specific principle in Ewe that focuses on the result rather than the process of an event (Slobin 1991) lending support to the claim that linguistic principles can promote conceptual development (Bowerman, 1996a, b; Choi 1997).

Looking at the totality of the development of SVCs in motion event expressions among the children, only the 9 year olds are closer to the adults in the Manner + Path constructions but not in the Manner + Adverbials (Ideophones
inclusive) constructions resulting in a much richer manner vocabulary (see Table 2) than what the 3 to 9 year olds have. Adults used a very large set of SVCs containing different combinations of motion verbs. Of course adults told much longer and more elaborate stories than the children – more than twice as long on average, resulting in many more motion clauses than among the children. Unlike the children, the adults’ data in Chapter 4 (Section 4.3.1, also Adjei forthcoming) contained other alternative means of expressing manner-of-motion – adverbial phrases/clauses, adjectival clauses, motion interpretation from non-motion expressions as noted in Chapter 3 (Section 3.7) also. To confirm the late development of the use of manner verbs and ideophonic adverbs, I used a second tool, Slobin’s (2002) Manner Clips which depicts different types of manner of walking. The 7-9 year-olds provided a few descriptions that contain Manner + Ideophonic forms in these clips. (see Appendix D1 and D2 for sample sentences.

In the tortoise stories, even though there were a few occurrences of adverbs of manner from age 5 (2 tokens) it was around ages 7 and 9 that a few ideophones appeared in the children’s repertoire. It is the use and diversity of ideophonic adverbs which swelled the type and token frequency of Manner expressions in the adults’ data. Thus the dramatic increase in the use of ideophonic adverbs in the adult Ewe-speaker’s motion event expressions indicate a greater awareness that comes with age.

Again, ideophones abound in Ewe (Ameka 2001, Konrad 1994, Westerman 1930: 187) and are highly salient in adult speech but its acquisition will depend on how readily accessible they are to the children learning Ewe. Berman and Slobin (1994: 624) suggest that “(1) a linguistic form is highly accessible, its functional development may be accelerated.” In the same vein, after reviewing some empirical studies on the emergence of grammar, Tomasello (2000) concluded that in the very
early stages, children mostly use language the way they have heard adults use it and they develop an inventory of item-based utterance schemas. In the child’s experience, the frequent exposure together with practice of the same pattern(s) (in our case Manner + Path, Manner + Ideophonic adverbs etc.) as found in SVC motion expressions will help the child to feel more comfortable and fluent with such constructions. In other words the use of ideophonic adverbs and such verb sequences are entrenched through token frequency and exposure. This means that the diversity and variety of verb combinations that the child will hear from the adults will enable him or her create a “slot in the item-based construction schemas.” The type and token frequencies of SVCs as part of the equipollently-framed construction to which Ewe-speaking children are exposed, along with general learning mechanisms developed gradually across age 3 to 9 thus enabling them think-for-speaking in Ewe gradually.

5.3.3 Describing Ground Elements in Motion Events

With regards to ground expressions, an examination of the children’s data shows that typically, they expressed one ground element per verb (as in V-languages). This not withstanding, three SVC constructions, one from a 7-year old and two from the 9 year group were identified as having two arguments. These are sentence (20) to (22) below. The underlined phrases are the ground elements.

20. Eklo – ó tá le eze – é nú ðððð
tortoise – DEF crawl LOC pot - DEF skin slowly/stealthily
ði ðé anyígbá sí dzó
descend ALL ground run leave

‘The tortoise crawled slowly/stealthily against the pot, descended on the ground and ran away.’

[SD 09; 09]
21. Wó - zo tó gbedóxɔ dé nú vá do ɖé
3PL – walk pass chapel INDF skin VENT appear ALL
ave - é me
forest - DEF insided
‘They walked and passed by a certain chapel and
appeared in the forest.’ [EA 09; 04]

22. Afi ɖé jú du do tsó edo - ɔ
mouse INDF run exit ABL hole - DEF
me vá le edo - ɔ nú
inside come LOC hole - DEF mouth
‘A certain mouse ran out of the hole and stood at the
entrance (of the hole).’ [HK 07; 03]

These three sentences suggest an equipollently-framed as well as a language
specific pattern.

Turning to the children’s data again, starting from age 3, Ewe children tended
to provide mostly one ground phrase per verb. Chen28 (2005:108) in his analysis of
Chinese children’s use of one piece of information about ground clauses across
different age groups in English, Spanish and Chinese, came to the conclusion that the
tendency of Chinese children providing limited information about ground in
individual clauses may not be a language-specific phenomenon as it may follow from
a universal constraint on the number of ground elements that these young children
can handle at a time. He notes that the finding is reminiscent of Peirce’s (1897)
theory of adinity (i.e., the number of arguments associated with a given predicate)
and consistent with the increasing complexity of structures of higher adinity (Oller

28 Chen (2005) and Chen and Guo 2010 seem to be frequently cited because these are works that
analysed the acquisition and use of motion event in Chinese, an equipollently-framed language.
Relating Chen’s analysis to Ewe children’s use of one ground per verb phrase there could be an overlap of the universal constraint and the language specific one.

In explaining this issue of plus ground elements in children’s motion expression, Berman and Slobin (1994:163) resort to a cognitive constraint explanation by suggesting that the young children encounter a genuine difficulty in relating to the source and to the goal and to the endpoint of movement even within the same conceptual frame. However, in Tzeltal (Brown, 2004), we find trajectories from source or towards a goal, but not both in the same clause; they are not coded as the same event (taking the clause as representing an event). Consider the following examples from Brown (2004:51).

23. jipot koel ta witz
 ‘He was thrown down from the mountain [source]

24. spetoj koel t alum
 ‘He carried it [dog] downward to the ground
 (carried it while descending) [goal]

 This is a property of thinking-for-speaking which Tzeltal children have to learn. In this case the constraints are not a cognitive constraint but a language-specific constraint.

 The Ewe children in specifying ground elements specified more goals of movement than source or medium. Table 16 shows that Ewe children share a predominance of goal-marking clauses. An example is (25).

25. Elã á fú du kpl(é) - é yi dê etɔ - ɔ tó.
 around – DEF run with 3SG go ALL river -DEF bank
 ‘The animal ran with him to the river bank.’
Motion event descriptions of even 3-year-olds contained the goal (or destination of movement). The same tendency is reported for Spanish and English 3-year-olds in Berman and Slobin (1994) – another piece of evidence for the universal hypothesis. Across the ages to adulthood, there is no balance between the different clauses – Source, Medium and Goal. Goal clauses are higher in token frequencies and percentages. There is abundant evidence that the linguistic representation of source and goal paths show an asymmetry. One kind of evidence comes from formal studies in linguistics of the syntactic and semantic structure of paths. Goals and their paths tend to be unmarked in languages, whereas sources and their paths tend to be marked (Fillmore 1997, Ihara and Ibara Fujita, 2000; Jackendoff, 1983, Lakusta & Landau 2012). For example, in many languages, goal paths are encoded using the same elements that encode static places, but it is much rarer to find languages that encode source paths and static places with the same elements. Fillmore (1997) noted that the

Table 20: Goal Source and Medium Clauses in Ewe Tortoise Stories

<table>
<thead>
<tr>
<th>Clauses</th>
<th>3yr</th>
<th>%</th>
<th>4yr</th>
<th>%</th>
<th>5yr</th>
<th>%</th>
<th>7yr</th>
<th>%</th>
<th>9yr</th>
<th>%</th>
<th>Adults</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal Marking</td>
<td>25</td>
<td>58</td>
<td>29</td>
<td>69</td>
<td>47</td>
<td>74</td>
<td>68</td>
<td>80</td>
<td>119</td>
<td>71</td>
<td>122</td>
<td>66</td>
</tr>
<tr>
<td>Clauses</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>12</td>
<td>28</td>
<td>8</td>
<td>19</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>31</td>
<td>18</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>Marking</td>
<td></td>
</tr>
<tr>
<td>Clauses</td>
<td>6</td>
<td>14</td>
<td>5</td>
<td>12</td>
<td>7</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>18</td>
<td>11</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>100</td>
<td>42</td>
<td>100</td>
<td>63</td>
<td>100</td>
<td>85</td>
<td>100</td>
<td>165</td>
<td>100</td>
<td>185</td>
<td>100</td>
</tr>
</tbody>
</table>
complement “behind the sofa” can be used either as a non-directional locative complement or as a goal path complement resulting in an ambiguous reading for sentences such as

26. The cat ran behind the kitchen cabinet.

meaning, the cat ran to and behind the kitchen cabinet. However, “behind the kitchen cabinet” cannot be used as a source complement; the sentence can never mean “the cat ran from behind the kitchen cabinet.” This meaning requires explicit marking with the source marker “from”. Nikitina (2009) proposes that evidence such as this places goals and sources at opposite ends of the semantic space (following Haspelmath 2003).

Also, goals contribute to telic readings of events (they are result states; eg. Kofi walked to the farm in an hour, where “in an hour” modifies telic predicates), whereas sources contribute to atelic readings of events (they modify processes, e.g. Kofi ran from the store for an hour where “an hour” is an atelic predicate) (Filip, 2003; Markovskaya 2006; Nam, 2004).

Given the very different linguistic profiles of source and goals paths, it is perhaps not surprising that Ewe children and adults also show an asymmetry between source and goal paths, in their motion expressions. Bowerman et al (1995) reported that young children learning English, Korean, Dutch and Tzotzil Mayan tend to apply source path terms (e.g, uit ‘in’, in Dutch and out in English), broadly across a wide variety of instances of separation whereas children are more specific in their application of goals path terms (Bowerman, de Leon & Choi 1995), indicating that spatial terms marking goals are more finely differentiated than those marking source (see also Papafraguo, 2010; Regier & Zhend 2007).
In addition, Freeman, Sinha, and Stedmon (1980) reported that 3- and 4-year-old children found it easier to answer questions about the path of an object that moved “to” a landmark suggesting that there might be a general “allative” bias, that is, young children (including Ewe-speaking children) might find it easier to encode motion toward a goal, rather than away from a source. Thus, a goal bias characterizes both production and comprehension in early language acquisition.

Lakusta and Laudau (2005) found extensive evidence for a goal bias in the way people describe motion events. In their study, children and adults were shown events including a source and a goal (e.g., “The bird flew from the bucket into the pitcher.”) and were asked to tell the experimenter “what happened?” Participants (especially children) systematically and accurately included goal paths in the prepositional phrase more often than source paths.

The findings reviewed above suggest that goal and source paths are subject to different grammatical constraints and that speakers chose to express them to different degrees. The goal bias is reflected in several syntactic and semantic phenomena in the way that Ewe children and adults describe both motion and non-motion events. Not only do distinct conceptual domains encode source and goal paths with similar syntactic and semantic structure but the preference for goal over sources also appears to extend broadly throughout the linguistic system including Ewe (children and adults expression of motion events).

To round up the discussion on the development of ground clauses it could be said that various writers explained the use of limited ground clauses using cognitive as well as linguistic constraints. The linguistic constraint can account for this phenomenon as the sentences produced by the young children tend to be short and cannot accommodate all of the elements in a motion event.
Figure 12 provides a comparison between English, Spanish, Chinese and Ewe. The figures for the languages (Ewe excluded) were drawn from Chen and Guo (2010: 56). Data for 7-year-olds Ewe children was excluded as 7-year-olds were not studied in the other languages. The data in Figure 12 suggests that English and Spanish children from the start – Age 3, all are at the same developmental level but there is a slight regression at age 4. English shoots up to 62% and finally to 81% for adults. The final percentage for Spanish is 62% which falls far below the percentage for English.

Ewe and Chinese (Equipollently-framed languages) children progress gradually. Ewe children used fewer ground arguments per motion clause than V-languages and S-languages.

Figure 12: Development of Plus Ground Clauses in English, Spanish, Chinese and Ewe

5.3.4 Description of Complex Events

Looking at the event granularity (number of sub-events encoded), Ewe adults segment path descriptions finely like other equipollently-framed and satellite-framed languages but the Ewe children have not established the narrative habit of breaking a complex event into several segments and describing them one by one through a sequence of separate action clauses until they are 9 years old.

An analysis of the data in Table 4 above and Figure 12 above shows that the adult speaker of Ewe differs from Ewe-speaking children with respect to the degree of narrative attention they devote to the dynamics of motion events. The adults averaged 4.2 path segments in their descriptions of the journey of the antelope from the mountain/hilltop to the cliff. The 3-year olds, for example, have a mean of 1.4. These differences may be easier to detect when we take a look at Figure 13 which summarises how many segments are encoded by individual narrators. While the children in the 3 to 4 year groups show a range of 1:4 segment, adults show a range of 2 to 5 segments. Ninety per cent of the adults build paths of 3 to 5 segments. The developmental pattern demonstrated is a steady increase in the mean number of event segments in the Ewe narrations of the antelope scene. This last observation concurs with the results from Chen (2005: 105-106), Chen and Guo (2010, Guo and Chen 2009) that there is a steady increase in the mean number of events segments in the deer scene of the frog stories in Chinese.
From all indications, the late development of describing complex events may not be a language-specific phenomenon but rather it appears the children start with some universal default, and only after additional exposure are they able to establish the language specific pattern. One can say that Ewe-speaking children at age 3 to 5 are not usually able to fully perceive and conceptualize the events depicted in the wordless picture book and as a result do not provide many details in their stories.

5.3.5 Description of Dynamic Movement versus Setting

Another piece of evidence that helps in the classification of language in motion event description is the attention a language devotes to the description of Path and this comes from the analysis of dynamic movement versus physical setting, where the movement takes place.

According to Slobin (1996b) the amount of narrative attention devoted to the description of the physical setting in satellite-framed languages such as English seem to leave the setting to be inferred, focusing more on movement and, thus, elaborating the Path description more. Verb-framed languages such as Spanish seem to follow
the opposite strategy; they leave the Path to be inferred and allocate more narrative attention to the description of the physical setting.

In the Ewe adults tortoise narratives in Chapter Four, it was noted that individual verbs in Ewe cannot accumulate path expressions as freely as those in English but several path verbs can occur in a single clause. Adult Ewe speakers will then sometimes resort to descriptions of physical settings and leave some path information to be inferred from discourse. Ewe children were not capable of providing static descriptions of scenes to help trace out the trajectories of movement until they were nine years old.

5.4 Summary of the Chapter

Chapter Five was devoted to the analysis of oral narratives from Ewe-speaking children (ages 3, 4, 5, 7 and 9) and adults. Children’s developmental data on motion event descriptions show a gradual trajectory with the basic characteristics of motion event descriptions emerging early. At age 4 onwards, Ewe children used more path verbs than manner verbs in the expression of motion events. However, serial verb constructions with Manner + Path are also acquired early in accordance with the Ewe input, following language-specific patterns.

Complex properties such as describing the physical settings in which movement takes place and using a series of individual action clauses that analyse a complex motion event into its components take time to develop in connected discourse. This is sometimes still occurring in 9-year-old children and even in adults. In addition, even 3 year old Ewe children are able to specify the goal of movement like their English, Spanish and Chinese counterparts, supporting the universal hypothesis (Slobin 1985).
These results suggest that while Ewe-children follow equipollently-framed structural patterns when talking about motion events at a tender age, equipollently-framed discourse patterns do not achieve maturity until adulthood showing that the properties of thinking-for-speaking are learned gradually.
CHAPTER SIX
CONCLUSION

6.0 Summary Of Main Points

The work presented in this dissertation has been primarily concerned with the development of motion events in Ewe-speaking children, bearing in mind Talmy’s theory of lexicalization patterns for the domain of motion, Slobin’s (1987, 1966a) hypothesis of thinking for speaking and the “cognitive hypothesis” and the language specific hypothesis (Brown 1958, Bowerman, 1985; Gentner, 1982; Bowerman, 1976; Cronmer, 1976; Clark 1977). Talmy was one of the pioneers of the cognitive linguistic enterprise, which was born as a reaction against formal approaches to language, and on whether the effects have an influence on non-linguistic cognition (Chapter 2).

Despite the attempt to find out where Ewe fits in the typology of motion events and how motion events are encoded formally in Ewe (Chapter 3) no research has been done to find out how children express motion events. The narrative of adult Ewe speakers were assessed using Talmy’s typology of motion events (Chapter 4) and this was the yardstick against which Ewe-speaking children’s motion event expressions were measured.

Chapter 5 set out to find out whether the discourse patterns of Ewe-speaking children will resemble those of verb-framed, satellite-framed or equipollently framed languages, and whether the Ewe-speaking child thinks-for-speaking in Ewe. Developmental data from 3-4, 5-7, and 9-year-old children’s elicited spoken narratives show a remarkable similar characteristic patterns of language use regarding motion expressions. I will now summarise the main findings.
6.1 Main Findings

The main findings are:

- Ewe speaking children’s attention to motion events and their interest in expressing them is somehow adequate from age 3.

- The children had a small lexicon inventory of manner verbs than path verbs.

- Motion verbs that conflate path alone account for a significant portion of all motion verbs. The children started using prepositions of directions with path verbs to mark direction and goal of motion as early as 3 years.

- The token frequencies of all verb categories increased with age gradually across all ages and increased drastically from age 9 to adulthood.

- Alternative and dramatic use of adverbials and ideophones in the adult data was absent in the children’s motion expressions indicating a greater awareness that comes with age in the use of ideophones.

- As Ewe speaking children grew older, they tended to make more frequent reference to ground elements in individual clauses.

- SVC’s with a manner of motion verb occupying the first slot is not a notable lexicalisation pattern for children across all ages (from 3 and a half years to 9 years). Ewe speaking children behave like their adult counterparts whose narrative patterns are similar to other serializing languages. Only 9 year olds are closer to adults in the use of this structural pattern.
The children expressed Source and Goal of motion using a verb and a locative construction where there is at least one ground per verb-language-specific pattern of Ewe motion expressions.

The ability to break up a complex event into several segments and describe segment by segment what takes place in the event through a series of separate action clauses takes quite a long time to decipher. Development is obvious from age 7.

The ability to provide description of the setting of motion events may take a long time to develop and is beyond the capacity of Ewe speaking children between the ages of 3 to 5.

Ewe children were not capable of providing static description of scenes to help trace out the trajectories of movement until they were 9 years old.

Ewe-speaking children’s developmental data on motion event description show a gradual trajectory with the basic characteristic lexicalisation pattern of motion event descriptions emerging early.

Developmental pattern of Ewe –speaking children cannot be accounted for solely by either the cognitive hypothesis or the language-specific hypothesis. It is a hybrid of these two as well as universal and linguistics constraints.

The findings also provide support for the maturational view of acquisition - that grammar matures in a predetermined sequence that may not be entirely conditioned by linguistic or cognitive complexity of structure or by linguistic properties of the language.
Overall, while Ewe-speaking children follow equipollently-framed structural pattern when talking about motion on events at a tender age, equipollently-framed discourse pattern do not achieve maturity until adulthood showing that the properties of thinking –for-speaking are learnt.

The results of this exploratory study are broadly compatible with Berman and Slobin’s (1994) findings on narrative development. Ewe-speaking children of 3 to 9 years do seem to be already attuned to features of narrative in their language pointing to the fact that they do think-for speaking in Ewe.

6.2 Possible Directions for Future Research

Due to time and space limits, I have had to leave several interesting issues for further research. I will mention some of them here.

One potential methodological drawback in this thesis is that the ability to use motion event expressions of Ewe-speaking was solely measured by oral narrative productions. Though this method was used cross-linguistically to explore the use of motion event descriptions, other methods using experimental designs or spontaneous production could provide other aspects of information on the development of motion event description in Ewe.

Also, the use of inferential statistics may be needed to shed more light on Ewe-speaking children’s expression of motion events. In this thesis, only descriptive statistics was employed for the analysis. Using inferential statistics might be more convincing in showing the developmental trends.

In addition, this thesis contributes to the field of narrative study by extending the study of narrative development and language typology to children from a
language background in which little narrative research has been done. It essentially looked at Ewe children’s mastery of linguistic means for expressing motion events. However, effective narration also depends on the discourse-pragmatic ability to represent events, actions, actors etc. from an evaluative-interpretative perspective as it plays a central role in organizing a cohesive and coherent narrative structure. Future research will examine this in the narratives of older Ewe-speaking children.

As society has evolved throughout the many generations, the power of language has moved from primary, oral to written forms. While the nature of human communication and learning once rested in the spoken word, it has moved to the book, the text. With the advent of technologies, which foster mass communication and new ways of learning, it has moved even further. Language and communication have become digital and as our society has become increasingly technologically driven, researchers have began to search for ways to make children’s experiences with technology more personal and individualized.

Recently, storytelling technologies like KidPad, Eddie Edit, Family Blocks, Kids Cam, KidsRoom, PETS, Pogo World, Rosebud, SAGE, TellTale etc. (all cited in Boltman, 2001) have been designed to enhance children’s storytelling, taking into consideration, the needs of learners, with different abilities in advanced countries. With the digital world in mind, future research will explore some of these Children’s Story Technologies to support the various stages of the language development of Ewe-speaking children and possibly, children from other backgrounds of the Kwa language group.

Apart from these, the analysis presented in this thesis has drawn upon elicited oral narratives. Therefore, it could only be taken as a possible indication of how the
typological frame in Ewe imposes a subjective tendency upon the schematisation of experience in motion events. Motion events in other types of narratives (novels, translations etc.) will tell whether the ideas put forward in this thesis are a true reflection of thinking-for-speaking.

Finally, it would be good to complement this thesis with a psycholinguistic investigation into motion expression in Ewe. Slobin (2004) assumes that manner-path constructions are easy to process in serialising languages but this needs to be tested. It would also be interesting to find out how much attention Ewe speakers pay to manner and path of motion, compared to speakers of other serializing languages in the Kwa language group, and to speakers of V-framed and S-framed languages. Cognitive consequences of motion typology have not been studied in much detail and studying these in an equipollently-framed language would provide more insight into the status of this type of language typology.

6.3 Application

This dissertation may have two main distinct applications among others: (1) for research in teaching and learning, and the Language Arts and (2) linguistic typology.

First, research on Motion expression in narratives is fundamentally related to teaching and learning at all grade levels and even beyond the classroom. Stories will be a major vehicle for students’ language development. Since story forms provide an essential means of organizing material about human behaviour and events in the world, teachers can explore narratives with their students/pupils. Starting from the study of reading comprehension, teachers can guide their students/pupils gradually to story-making which provides a natural transition into more formal writing tasks. The
underlying ‘moral’ or point that stories attempt to uncover is what eventually gets transformed into the thesis statement in expository or persuasive essays.

Secondly, the tortoise story provides a rich data base for the exploration of particular questions of language use and acquisition, making it possible to focus on the role of linguistic typology in narrative construction. The current thesis provided more information from the Ewe perspective by providing important insights into the overall set of structures that define how individual languages differ in rhetorical style and the ways in which events in the story are narrativised across ages, languages and cultures. The approach presented in this dissertation could be extended to the study of how children learn to express motion events in other verb-framed, satellite-framed and equipollently-framed languages as well as to the study of other linguistic units/elements such as sound symbolism and gestures which can also express path and/or manner information.

Many psycholinguistic studies on motion, including those related to linguistic relativity, start from linguistic data that have not always been validated. Studies like the present one provide some foundation for further psycholinguistic research.

The narratives, the transcripts of which are presented as appendices will likely serve as data for further studies into the linguistics of Ewe.
BIBLIOGRAPHY

APPENDIX A

LIST OF ADULT PARTICIPANTS

<table>
<thead>
<tr>
<th>SN</th>
<th>Code</th>
<th>Sex</th>
<th>Age</th>
<th>Hometown</th>
<th>Dialect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KP</td>
<td>M</td>
<td>39</td>
<td>Kliokor</td>
<td>Some</td>
</tr>
<tr>
<td>2</td>
<td>YT</td>
<td>M</td>
<td>33</td>
<td>Afiadenyigba</td>
<td>ɖŋlo</td>
</tr>
<tr>
<td>3</td>
<td>DE</td>
<td>M</td>
<td>35</td>
<td>Akatsi</td>
<td>Avenor</td>
</tr>
<tr>
<td>4</td>
<td>AR</td>
<td>M</td>
<td>29</td>
<td>Akatsi</td>
<td>Avenor</td>
</tr>
<tr>
<td>5</td>
<td>MV</td>
<td>M</td>
<td>50</td>
<td>Have</td>
<td>Uedome</td>
</tr>
<tr>
<td>6</td>
<td>TA</td>
<td>F</td>
<td>48</td>
<td>Liati</td>
<td>Uedome</td>
</tr>
<tr>
<td>7</td>
<td>EA</td>
<td>F</td>
<td>33</td>
<td>Ho</td>
<td>Uedome</td>
</tr>
<tr>
<td>8</td>
<td>TE</td>
<td>F</td>
<td>34</td>
<td>Peki</td>
<td>Uedome</td>
</tr>
<tr>
<td>9</td>
<td>HA</td>
<td>F</td>
<td>33</td>
<td>Agorhome</td>
<td>Tɔŋu</td>
</tr>
<tr>
<td>10</td>
<td>KA</td>
<td>F</td>
<td>48</td>
<td>Penyi</td>
<td>Ave</td>
</tr>
<tr>
<td>11</td>
<td>ST</td>
<td>M</td>
<td>36</td>
<td>Dzodze</td>
<td>Ave</td>
</tr>
<tr>
<td>12</td>
<td>DM</td>
<td>M</td>
<td>29</td>
<td>Adaklu</td>
<td>Uedome</td>
</tr>
<tr>
<td>13</td>
<td>AM</td>
<td>F</td>
<td>33</td>
<td>Toh Kpalime</td>
<td>Uedome</td>
</tr>
<tr>
<td>14</td>
<td>BI</td>
<td>M</td>
<td>35</td>
<td>Anfoeta Tsebi</td>
<td>Uedome</td>
</tr>
<tr>
<td>Code for Village</td>
<td>Child’s Name</td>
<td>Sex</td>
<td>Age</td>
<td>Date of Birth</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>1. SK</td>
<td>James (JA)</td>
<td>M</td>
<td>3;1</td>
<td>Jan. 18 2009</td>
<td></td>
</tr>
<tr>
<td>2. AK</td>
<td>Victoria (VI)</td>
<td>F</td>
<td>3;2</td>
<td>Feb. 6 2009</td>
<td></td>
</tr>
<tr>
<td>3. AK</td>
<td>Edem (ED)</td>
<td>M</td>
<td>3;3</td>
<td>March 10 2009</td>
<td></td>
</tr>
<tr>
<td>4. SK</td>
<td>Dzidzor (DDR)</td>
<td>F</td>
<td>3;4</td>
<td>April 11 2009</td>
<td></td>
</tr>
<tr>
<td>5. AK</td>
<td>Joe (JO)</td>
<td>M</td>
<td>3;4</td>
<td>April 18 2009</td>
<td></td>
</tr>
<tr>
<td>6. AK</td>
<td>Peter (PE)</td>
<td>M</td>
<td>3;5</td>
<td>May 1 2009</td>
<td></td>
</tr>
<tr>
<td>7. SK</td>
<td>Enyonam (EN)</td>
<td>F</td>
<td>3;6</td>
<td>June 8 2009</td>
<td></td>
</tr>
<tr>
<td>8. SK</td>
<td>Mawuena (MAE)</td>
<td>F</td>
<td>3;7</td>
<td>July 20 2009</td>
<td></td>
</tr>
<tr>
<td>9. SK</td>
<td>Dodzi (DOZ)</td>
<td>M</td>
<td>3;8</td>
<td>August 8 2009</td>
<td></td>
</tr>
<tr>
<td>10. AK</td>
<td>Mary (MA)</td>
<td>F</td>
<td>3;10</td>
<td>October 20 2009</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code for Village</th>
<th>Child’s Name</th>
<th>Sex</th>
<th>Age</th>
<th>Date of Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SK</td>
<td>Ernest (ER)</td>
<td>M</td>
<td>4;2</td>
<td>Feb 14 2008</td>
</tr>
<tr>
<td>2. SK</td>
<td>Ama (AM)</td>
<td>F</td>
<td>4;5</td>
<td>May 27 2008</td>
</tr>
<tr>
<td>3. SK</td>
<td>Emefa (EMF)</td>
<td>F</td>
<td>4;6</td>
<td>June 4 2008</td>
</tr>
<tr>
<td>4. AK</td>
<td>Mawuli (MAL)</td>
<td>M</td>
<td>4;6</td>
<td>June 11 2008</td>
</tr>
<tr>
<td>5. SK</td>
<td>Philip (PH)</td>
<td>M</td>
<td>4;7</td>
<td>July 9 2008</td>
</tr>
<tr>
<td>6. AK</td>
<td>Seyram (SEY)</td>
<td>M</td>
<td>4;7</td>
<td>July 29 2008</td>
</tr>
<tr>
<td>7. AK</td>
<td>Sefakor (SEF)</td>
<td>F</td>
<td>4;8</td>
<td>August 25 2008</td>
</tr>
<tr>
<td>8. AK</td>
<td>Mawunyo (MNY)</td>
<td>F</td>
<td>4;9</td>
<td>Sept. 4 2008</td>
</tr>
<tr>
<td>9. SK</td>
<td>Setor (SET)</td>
<td>F</td>
<td>4;9</td>
<td>Sept. 26 2008</td>
</tr>
<tr>
<td>10. AK</td>
<td>Daniel (DNL)</td>
<td>M</td>
<td>4;10</td>
<td>October 20 2008</td>
</tr>
</tbody>
</table>
5YR-OLDS

<table>
<thead>
<tr>
<th>Code for Village</th>
<th>Child’s Name</th>
<th>Sex</th>
<th>Age</th>
<th>Date of Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AK</td>
<td>Chris (CRS)</td>
<td>M</td>
<td>5;0</td>
<td>Jan 8</td>
</tr>
<tr>
<td>2. AK</td>
<td>Mawuko (MAK)</td>
<td>M</td>
<td>5;3</td>
<td>March 14</td>
</tr>
<tr>
<td>3. SK</td>
<td>Kafui (KAF)</td>
<td>F</td>
<td>5;4</td>
<td>April 16</td>
</tr>
<tr>
<td>4. SK</td>
<td>Selali (SEL)</td>
<td>F</td>
<td>5;4</td>
<td>April 19</td>
</tr>
<tr>
<td>5. AK</td>
<td>Elorm (EL)</td>
<td>M</td>
<td>5;5</td>
<td>May 22</td>
</tr>
<tr>
<td>6. SK</td>
<td>Akpene (AK)</td>
<td>F</td>
<td>5;7</td>
<td>July 2</td>
</tr>
<tr>
<td>7. AK</td>
<td>Kodzo (KD)</td>
<td>M</td>
<td>5;9</td>
<td>Sept 1</td>
</tr>
<tr>
<td>8. SK</td>
<td>Ewoe (EW)</td>
<td>F</td>
<td>5;10</td>
<td>October 18</td>
</tr>
<tr>
<td>9. SK</td>
<td>Anam (AN)</td>
<td>F</td>
<td>5;10</td>
<td>October 24</td>
</tr>
<tr>
<td>10. AK</td>
<td>Maurice (MAU)</td>
<td>M</td>
<td>5;20</td>
<td>October 30</td>
</tr>
</tbody>
</table>

7YR-OLDS

<table>
<thead>
<tr>
<th>Code for Village</th>
<th>Child’s Name</th>
<th>Sex</th>
<th>Age</th>
<th>Date of Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AK</td>
<td>George (GE)</td>
<td>M</td>
<td>7;0</td>
<td>Jan 25</td>
</tr>
<tr>
<td>2. AK</td>
<td>Sewu (SE)</td>
<td>F</td>
<td>7;3</td>
<td>March 6</td>
</tr>
<tr>
<td>3. SK</td>
<td>Doe (DO)</td>
<td>F</td>
<td>7;4</td>
<td>April 2</td>
</tr>
<tr>
<td>4. AK</td>
<td>Eyome (EY)</td>
<td>M</td>
<td>7;5</td>
<td>May 9</td>
</tr>
<tr>
<td>5. AK</td>
<td>Francis (FR)</td>
<td>M</td>
<td>7;6</td>
<td>June 8</td>
</tr>
<tr>
<td>6. SK</td>
<td>Harry (HA)</td>
<td>M</td>
<td>7;7</td>
<td>July 22</td>
</tr>
<tr>
<td>7. AK</td>
<td>Dzifa (DZ)</td>
<td>F</td>
<td>7;9</td>
<td>Sept 8</td>
</tr>
<tr>
<td>8. SK</td>
<td>Kofi (KO)</td>
<td>M</td>
<td>7;10</td>
<td>October 5</td>
</tr>
<tr>
<td>9. SK</td>
<td>Sedi (SED)</td>
<td>F</td>
<td>7;4</td>
<td>April 5</td>
</tr>
<tr>
<td>10. SK</td>
<td>Elikplim (EL)</td>
<td>M</td>
<td>7;10</td>
<td>October 29</td>
</tr>
</tbody>
</table>

9YR-OLDS

<table>
<thead>
<tr>
<th>Code for Village</th>
<th>Child’s Name</th>
<th>Sex</th>
<th>Age</th>
<th>Date of Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SK</td>
<td>Dzidefo (DDE)</td>
<td>M</td>
<td>9;1</td>
<td>Jan 5</td>
</tr>
<tr>
<td>2. SK</td>
<td>Lizzy (LZ)</td>
<td>F</td>
<td>9;2</td>
<td>Feb. 14</td>
</tr>
<tr>
<td>3. SK</td>
<td>Sitsofe (ST)</td>
<td>M</td>
<td>9;2</td>
<td>March 17</td>
</tr>
<tr>
<td>4. AK</td>
<td>Akofa (AK)</td>
<td>F</td>
<td>9;3</td>
<td>March 28</td>
</tr>
<tr>
<td>5. SK</td>
<td>Clemence (CL)</td>
<td>M</td>
<td>9;4</td>
<td>April 11</td>
</tr>
<tr>
<td>6. AK</td>
<td>Lauda (LA)</td>
<td>F</td>
<td>9;5</td>
<td>May 25</td>
</tr>
<tr>
<td>7. AK</td>
<td>Ksku (KK)</td>
<td>M</td>
<td>9;6</td>
<td>June 17</td>
</tr>
<tr>
<td>8. AK</td>
<td>Sewoe (SE)</td>
<td>F</td>
<td>9;8</td>
<td>August 9</td>
</tr>
<tr>
<td>9. SK</td>
<td>Dziedorm (DZM)</td>
<td>F</td>
<td>9;9</td>
<td>Sept 2</td>
</tr>
<tr>
<td>10. AK</td>
<td>Conrad (KR)</td>
<td>M</td>
<td>9;10</td>
<td>October 18</td>
</tr>
</tbody>
</table>
APPENDIX B

SAMPLES FROM CHILDREN’S TORTOISE NARRATIVES

Children’s Data

03;1 [JA]

inside child - DEF run leave thing INDF carry- DEF

‘The tortoise came out. The dog licked it. The dog fell through the window. They stood up. It held unto the tree. The pot broke. A beast flew in the tree. The child ran away. Something carried him.’

03;4 [DDR]

‘The tortoise is running away. The dog is walking very fast. The child is climbing the tree. The dog ran away. The boy fell. He fell from the tree. The child fell into the river. The dog also fell into the water. They are in the water.’
It jumped through the window and went out. The dog is running. The owl is flying in the sky. They climbed the log and saw the small tortoise. They carried the tortoise home.

‘The tortoise came out of the pot. It ran away. Houseflies (bees) are flying in their room. Oh, it has fallen down. The dog pulled the balloon (beehive) and it fell down. The dog ran away. It has entered the water but it’s climbing the tree (the log). They swarm and came out.’

‘The tortoise ran away and went and hid. The dog fell. The bees chased the dog to go and ‘eat’ (stung) it. The dog was running away. The child climbed the antelope. The antelope ran with him and dropped him by the side of the mountain. He and the dog went to hide. They are climbing the tree (log). They carried/took the small tortoise and ran away.

4 Years

They slept. The tortoise came out of the pot quietly. The dog fell. The pot broke.
They walked. The dog caused the house of the bees to fall down. The child climbed a certain tree. The owl pushed the child down. The bees too followed it. The boy fell on a certain animal, and got positioned on its head. And the antelope carried the boy, running with him. The dog chased it. It (antelope) pushed the two of them over the mountain/hill. They went and landed in the water.

And bee – DEF – PL chase dog – DEF also/FOC after
And man – DIM – DEF also/FOC run bend down ALL bee - DEF -
And bee – DEF – PL chase dog – DEF also/FOC after
And man – DIM – DEF also/FOC run bend down ALL bee - DEF -

‘It jumped through the window. The dog left. The boy held/grappled it quickly. A certain rat came out of the hole. And the bees also chased the dog. The boy too ran and bent down under the bees. They carried the boy away to its house.’
The tortoise was running away and the dog saw it. The dog jumped through the window. The bees chased it. The boy fell down. And the antelope came. And he fell on it. And they searched the bush. And he fell on the antelope at once. The antelope started running. And they fell into the water. They swarm for a long time and arrived by the tree (log). They climbed the tree (log) and came up. They saw their small tortoise. And they took it home.
‘It crawled and climbed the pot and went outside. It left. The dog jumped and landed on the ground. He went and embraced it. Now the bees were going round. They were moving. The beehive fell on the ground. The bees chased the dog. They chased it. The boy ran away and then came and landed on the antelope’s head. The antelope carried him and overtook the dog. It went and threw him into the river. It sounded too. He was walking in the water, going/moving. Now he climbed unto the top of the tree (log). He got down again. He went and carried the small tortoise and left for home.’
The child sat on a stool. It ran away. A lot of bees were coming out. They climbed a certain tree. The bees chased him. The child climbed the log and fell. The child fell backwards (fell on his back). And the dog fell and landed on him. They climbed the log and saw a lot of tortoise over there.

5 years

'The tortoise left. The tortoise went out. The pot broke. The bees were coming out from the beehive. They knocked him down. The animal carried him and threw him into the water. They saw a lot of tortoise.'

05:04 [SEL]

Eklo do dzó yi afi bubu. Yá ko avu - o fú du

Tortoise exist leave go place different. And then dog - DEF run
do tó fésré to. Êjutsu - vi - é do vá kọ - e yi

exit pass window eddge man - DIM - DEF exit come carry - DEF go

xome. Avu - o - ga - le tsa - tsa - á le

room. Dog - DEF REP - PROG - RED - roam - PROG be.LOC

enu - wé me vé - vě kpọ. Avu ọ anyí - we ya

thing - PL inside RED - smell see. Dog - see bee - PL and

wò - le tsa - tsa - a le di - í - í.

3SG - PROG RED - roam - PROG PROG look - 3SG - PROG

Fike xe avọ - o nya yi ko anyí - we kplọ - e ọ.

Where ever dog - DEF MOD go INT bee - PL chase - 3SG after

Ya ko adze - xe đế do vá. Avu - o fú du

And then witchcraft-bird INDF exit come. Dog - DEF run
dzo elabe anyí - e - we kplọ - e ọ, kplọ - e ọ

leave because bee - DEF - PL chase - 3SG after chase - 3SG after

me - bɔbọ o. E - le du - fú - ú le

3SG:NEG - easy NEG 3SG - PROG race - run - PROG be.LOC
tefe jetee. Ya adze - xé tsé ga - do

Place completely/everywhere. And witchcraft –bird also REP - exit

vá xixe. Êjutsu - vi - e - vű ya wò - lịa ekpe
come outside. Man – DIM – DEF frightened and 3SG – climb stone
gả đế. Elã va tɔ có yi tɔ - ɔ to da

big INDF Animal come take 3SG take go river – DEF edge/side throw

ŋutsu - vi - e đế etsi - e me. Avu - o tse

‘Tortoise came out and went to a different place. And then the dog ran out through the window. The boy came out and carried him into the room. The dog was roaming about scenting everything. The dog saw the bees and it was roaming about searching for them. Wherever the dog went the bees chased it. And then a certain owl came out. The dog ran away because the bees were chasing it. They chased and chased it, it wasn’t easy. It was running all over the place. And the owl also came out again. The boy was afraid/frightened so he climbed a certain big stone. The animal carried him to the riverside and threw him into the river. The dog also ran for a long time and landed on him in the river. They landed on the small tortoise and then they got up. They grabbed one and they left for home.’

05:05 [EL]

3PL – lie down 3SG – escape leave 3PL come look – 3SG
Avu – ʒ gé tso fésré tó. E – yi vá lé atí
Dog – DEF fall ABL window edge 3SG – go come hold tree
RED – shake rat – DIM INDF exit come man – DIM - DEF
climb tree – DEF and man – DIM – DEF 3SG fall. Dog – DEF run
due to the bees – DEF – PL COMP LOG – PL catch – 3SG thing INDF
koe he dəví – e yi dzime Ya wò-fu du, le du dzi.
only pull child – DEF go sky/up. And 3SG – run on race top.
Avu - ṣ kplọ – e dó ko wọ - gé dze etsi – e me.
Dog – DEF chase – 3SG after then 3SG – fall land water - DEF inside.
Ya wọ – lliá atí kemí yá wọ – mlọ – é dzí.
And 3SG – climb tree DIST and 3SG – lie 3SG POSTP/top
Wọ - yi aféme.
3PL – go home/house.

‘They slept. It ran away. They came to look for it. The dog fell from the window.
It went and shook the tree. A certain small rat came out. The boy climbed the tree
and the boy fell. The dog ran because the bees wanted to catch him. Something just
pulled the boy up (into the sky). And it ran, and was on the run. The dog
chased/followed it. Then it fell and landed in the water. And it climbed that tree (log)
and lay on it. They went home.’

05;09 [KD]
Eklo – le do - do le eze – é me. Avu – ṣ
Tortoise be.at.PRES RED – exit be.LOC pot – DEF inside dog - DEF
gé tó fésré tó. Êjutsu – ví – é gé. Avu – ṣ le
fall pass window edge man – DIM – DIM fall. Dog – DEF be.at.PRES
atí é lliá. Kadzídọ – é dě fú du do le edo – ṣ
tree climb climb squirrel – DEF INDF run from hole - DEF
me. Anyí – é wé fě atọ gé dze anyígbá gboo.
inside bee – DEF – PL POSS nest fall land ground IDEO completely
Ya avu – ṣ le du fū – u. Yá xeví – é wé – fọ
And dog – DEF PROG race run – PROG and bird – DEF – PL beat
ŋjutsu – ví - é fū anyí. Yá ko ŋjutsu – ví - é le
man – DIM – DEF hit down and then man – DIM – DEF be.at.PRES
ekpé – é dzí dě. Ya ezi gā dẹ lé
rock/stone – DEF POSTP/top climb and antelope big INDF catch/grabbed
The tortoise is coming out of the pot. The dog fell from the window. The boy fell. The dog is climbing the tree. A squirrel ran out of the hole. The beehive fell on the ground completely and the dog was running. And the bird knocked the boy down. And then the boy was climbing the rock. And a very big antelope caught him and threw him into the valley and he landed in the water. The child carried the dog on his neck. They went and grabbed the tortoise and left. They took him home.'
agbatsutsu – wé – nene. Ṉuitsu – ví – é le atí – e
housefly – PL - like man – DIM – DEF be.at.PRES tree - DEF
me kpɔ. Ya adzexé ñ do le é me va
inside look and owl INDF exit be.LOC 3SG inside VENT
fo – e fill anyígba Ya avu – ñ ya le si –
beat – 3SG throw ground and dog – DEF 3SG PROG RED –
sí – í le anyí – é wé gbó Yá Ṉuitsu – ví – é
run – PROG from bee – DEF – PL side and man – DIM - DEF
tsó adzexe be ya lé yá wò – sí
get up owl COMP 3SG catch and 3SG – run away
vá lúa ekpé ñ dzi ya adzexé – é
VENT climb rock/stone INDF POSTP/top and owl - DEF
dzo yi atí ñ me. Yá ko elâ ñ vá lé –
fly go tree INDF inside and then animal INDF VENT catch/take
e kplé éfè dzo kó – é yi aga – tó.
3SG with POSS horn carry/take 3SG valley/cliff – edge
Yá avu – ñ no du fú – ú. Yá wò – mli tso
and dog – DEF PROG race run PROG and 3PL – roll ABL
aga – a – vá dze etsi – e me. Yá wò –
valley/cliff – DEF VENT land water – DEF inside and 3PL
do le etsi – e me. Yá wò – di atíkpó gã
exit be.LOC water – DEF inside and 3PL – look log big
dé yá wò – dzo tó – é – dzi Yá wò – vá
INDF and 3PL – jump pass 3SG – POSTP/top and 3PL VENT
‘The child and the dog lay on the mat. The tortoise escaped. Tortoise left. The dog fell. And then the boy left. They were walking on the path going. Then they saw a beehive. The dog was looking at the beehive. And the beehive fell down. The dog was frightened/panicked. The bees were attacking, surrounding it like houseflies. The boy was looking into the tree. And a certain owl came out and knocked him down. As for the dog it was running away from the bees. And the boy got up. The owl wanted to catch him and he ran away and climbed a certain rock. And the owl flew into a certain tree. And then a certain animal came and grabbed him with its horns and carried him away to the cliff. And the dog was running. And they rolled from the top of the cliff and landed in the water. And they came out of the water. And they looked for a log and jumped onto it. And they came and landed on the tortoise. They grabbed one and they left.’

07;0 [GE]
Xé wó – vá mlé anyí ko eklo do dzaa le eze – e
When 3PL VENT lie down then tortoise exit quietly ALTRI pot - DEF
me ya wó – sí dzó Avu - ọ ge dze anyigba.
inside and 3SG – escape/run leave dog – DEF ***** around.
Ya wó – dzó yi eklo di fę. Avu - ọ le
and 3PL – leave go tortured look place dog – DEF be.at.PRES
anyí – wé kpọ ya wó – uwu ati – e Avu - ọ ga kpló
bee – PL see and 3SG – shake tree – DEF dog – DEF REP chase
anyí – xọ – dọ. Wó – vá be dję ekpẹ dję gbọ. Eläh
bee – house after 3PL come hide ALL rock INDF side animal
dę nye é - fę dzo – wé yá wó – he ṣeví - é
INDEF shake 3SG – POSS horn PL and 3PL – pull child DEF
dę é - fé tă – me. Ya ko wọ - kọ - le du
ALL 3SG – POSS head – inside and then 3SG – take - on race
dzí ko yi ekọ dję dzí lé aga tọ. Yá ko etsi
top take go anthill INDF top be.LOC cliff edge and then water
When they went and slept, the tortoise came out of the pot quietly and escaped/ran away. The dog fell down. And they left to go and look for the tortoise. The dog was looking at the bees and it shook the tree. The dog followed the beehive again. They went and hid by a certain rock. A certain animal shook its horns. And it pulled the child onto its horn and started running and took him to the top of an anthill near the cliff and there was water flowing by over there. And the animal pushed the two of them into the water (river). And they walked/moved slowly in the water and went and climbed a certain log. After they have climbed the log they looked down and saw the small tortoise. Their friend also came and they took it and went home.

Eklo – 5 dzó, Avu – 5 gé. Yá ko avu – 5 gé
Tortoise – DEF leave dog – DEF fall. And then dog – DEF fall
ko eze – é gba. Wó yi ave – me vá le
and pot – DEF break. 3PL go forest – inside come be.at.PRES
eklo di – i. Avu - ọ vá vá atí – é kó
tortoise search – PROG dog – DEF shake tree – DEF then
anyí – é – wé kaka Yá ko anyí – tó ńjutş vá
bee – DEF – PL scattered and then bee – nest itself VENT
gé dze anyígbá gboo. Anyí – é - wé fú du kplɔ
fall land ground IDEO bee – DEF – PL run follow/chase
avu - ọ dó Adze - xé dè tsé do ko
dog DEF after witchcraft – bird INDF also/FOC exit then
deví gé vá dze anyígbá. Deví – é mé – nyá o
child fall VENT land ground. Child – DEF NEG – know NEG
wò – vá de ezi jé dzo - dome. É – kó -
3SG – VENT climb antelope POSS horn – middle 3SG - take/carry
e yi dži fú du džó kplé – é. Avu - ọ tsé kplɔ
3SG go up run leave with – 3SG dog – DEF also chase
ezi – é kplé deví – é dó sésiè dé. Yá ko
antelope – DEF and child – DEF after fast PART and then
wò – vá mli gé dze tó - ọ me. Deví – é fɔ
3PL – VENT roll fall land river – DEF inside child – DEF got up
yá wó kplé avu – ọ wó - lía atí – é dzí
and 3PL and dog – DEF 3PL - climb tree – DEF POSTP/top
no ńkú tsa - á ko yá wò– kpš wò nówí – é.
PROG eye roam/look PROG then and 3SG – see 3PL sibling - DEF

‘The tortoise left. The dog fell. And the dog fell and the pot broke. They went to
the forest and were looking for the tortoise. The dog shook the tree. Then the bees
scattered. And the beehive fell on its own and landed on the floor. The bees chased
the dog. A certain owl also came out and the child fell down. The child didn’t know and it climbed and stood on the head of the antelope. It lifted him up and ran away with him. The dog also followed the antelope and the child very fast. And then they rolled and landed in the river. The child got up and the two of them climbed to the top of the tree (log) and were looking around and then they saw their friend, carried and left for home.’

07;5 [EY]

Wó - yí vá ml5 anyí Eklo tá sí do le exó - ɔ
3PL - go VENT lie down tortoise crawl run exit ALTRI room - DEF
me Xé wó - fó wó - yí vá le di - í. Yá
inside when 3PL - get up 3PL - go come PROG search – PROG and
avu - ɔ gé tó fésré tó vá dze anyí ḃeví - é
dog – DEF fall pass window edge VENT land down child - DEF
yí xíxé va di - i Avu - ɔ kpó nú
go outside VENT look/search – 3SG dog - DEF see thing
dé le aya – me É - te dé nú
INDF ALTRI air – inside/sky 3SG – come close ALL skin/side
Ịjútsu – ví - é tsé liká atí dé le
Man – DIM – DEF too/also/FOC climb tree INDF PROG
edo - ɔ me kpó - ɔ duu Adze – xé
hole inside see - PROG IDEO/fixed attention witchcraft- bird
dé ko - e do le edo - ɔ me Avu - ɔ we
INDF only – FOC exit be.LOC hole – DEF inside dog – DEF do
- e ko anyí – tó gé. Anyí - é – wé kpól5 avu
- DEF then bee - nest fall bee – DEF - PL chase/follow dog
- ɔ dé Adze – xé dé tsé do tsó atí -
- DEF after witchcraft- bird INDF too/also/FOC exit ABL tree
é - me yá wò – fo dëvî - é - fú anyí
DEF – inside and 3SG – knock/beat child – DEF – land down
kplaa. É – fô yá wò – lé du - 5 dé
at once. 3SG – get up and 3SG - catch/hold race - DEF ALL
me káká vá líá ekó dé dzí zio dé
inside for a long VENT climb anthill INDEF POSTP/top
lean ALL
atí - é ñú nó gbó – gbó - 5 dé é – me sisí
tree – DEF skin PROG RED – breath – DEF ALL 3SG – inside not knowing
be ezî fe dzo – we ye me – nyé atî - wé
COMP antelope POSS horn – PL FOC NEG – be.at.PRES tree - PL
ye o yá ezi – é dé afô du me kákáká
FOC NEG and antelope – DEF put leg/foot race inside for a long time
dô tâ tô – 5 nû Avu – 5 tsé ŋu du kplô
place head river – DEF mouth dog – DEF also/FOC run follow/chase
dô. Yá ko ezi – é nye tâ ko wò – gé vá
3SG after and then antelope –DEF shake head then 3SG – fall VENT
dze anyí. Avu - 5 tsé gé vá dze dëvî – é fe tâ
land down. Dog - DEF too fall VENT land child – DEF POSS head
dzí Wô – yí atî – é xá yá wô – kpô eklo - 5 yá
POSTP/top 3PL – go tree – DEF side and 3PL – see tortoise – DEF and
3PL - take/carry – 3SG leave go home/house.

‘They went and slept. The tortoise crawled out and escaped from the room. When
they woke up they went and were looking for it. And the dog fell from the window
and landed on the ground. The child (boy) went out and looked for it. The dog saw
something in the sky. It got closer to it. The boy too climbed a certain tree and was
looking into the hole with fixed attention. An owl just came out of the hole. The dog
made the beehive to fall. The bees chased the dog. A certain owl also came out of
the tree and knocked the child (boy) down at once. He got up and took to his heels and went and climbed a certain anthill, leaned against the tree and was resting, not knowing they were the horns of an antelope and not a tree. And the antelope took to its heels for a long time heading towards the river bank. The dog too ran after it. And then the antelope shook its head. Then it fell. The dog also fell and landed on the child (boy’s) head. They went to the side of the tree (log) and saw the tortoise and they carried it home.’

07:9 [SED]

Wó – fó eklo dé yá wó - vá aféme
3PL - pick/came across tortoise INDF and 3PL – come home/house
kplé – é tsó – é dé eze – é me. Eklo – ó tá
with – 3SG take/carry – 3SG put pot – DEF inside. Tortoise – DEF crawl
dʒ República – dí le wó gbó. Xe ŋu ke
slowly/quietly, run/escape leave be.FOC 3PL side. When day open
wó – dze dí – í veve dę. Avu yá vá liá
3PL – start look – 3SG serious, PART dog as for VENT climb
fésré ko eze – é gba. É – yi vá le kísí dó me
window then pot – DEF broke 3SG – go come PROG rat – hole inside
see – PROG bee – nest fell. Witchcraft – bird INDF exit come hit
đeví – é wò – gé vá dze anyí kpu.
child – DEF 3SG – fall VENT land down IDEO/sound of a heave fall
Adze – xé ga – dzo vá yí ko đeví - é ŋu du vá
Witchcraft - bird REP – fly, VENT go then child - DEF run VENT
liá ekpé dę dzí Yá ko wò – dze anyí dę
climb stone/rock INDF POSTP/top. And then 3SG – fall down ALL
nake jú - jú dę dzí lé – é dę asi ko
firewood RED – dry INDF POSTP/top hold – 3SG ALL hand then
They came across a certain tortoise and picked it home and put it in the pot. The tortoise crawled slowly/quietly and escaped. When day broke, they started looking for it seriously. As for the dog it climbed the window. Then the pot broke. He went and was looking into the rat hole. The beehive fell. An owl came out and knocked him down and he fell down heavily. The owl flew back again and the child went and climbed to the top of a certain rock. And he fell on top of some dry firewood and held unto it. Then the horns of the antelope gripped him. The antelope carried him
on the head and started running with him very fast. The dog was running, following
them. They came to a cliff then the antelope stopped at once and the child fell off
into the river which was in the valley. The dog ran again and went and landed on
him in the river. Whilst in the river they heard something. And they walked slowly
in the water, and climbed the log. And their tortoise crawled to the log and they
carried it home.’

07;10 [EL]
ユーザ – ヴィ – เว่ หมา มอ 任何ิ。 เอกโท woff ดูดดีดี
ผู้ชาย – ผู้หญิง – تعليم ลง ตัวเต่า คือ อยู่ ดี/เงียบ
สิ้น ดูว่า。 คิดๆ คือ ดู ดี เหนื่อง นุ่น。 แบ่ง – พอ
วิ่ง/หนี ออกจาก รatten ให้ หน้าผนึก คือ ตรง ถูก น้ำ ดี เล่น คือ
และ ดู – ผู้ชาย – ผู้ชาย – เสีย บ้าน ตก บ้าน ลง ดี
และ แรก ผู้ชาย – ผู้หญิง – ได้ ติ้ง ได้ ดู ดี
And then ผู้ชาย – ผู้ชาย – ผู้ชาย – ยี่/ยี่ ดู ต้นไม้ ให้
ใช้ เหมือน ช่าง – บัง ดี ดี เล่น ผู้ชาย ใกล้
VENT ตา ก็ มอง คือ ใส่ บ้าน ดี เล่น ผู้ชาย
ที่ หน้าผนึก คือ อยู่ บาง น้ำ ดี เล่น คือ
PROG เรียกร้อง ผู้ชาย – ผู้ชาย – ผู้ชาย – เสีย บ้าน อยู่
และ ดู – ผู้ชาย – ผู้ชาย – เสีย บ้าน ตก บ้าน ลง ดี
PROG เรียกร้อง ผู้ชาย – ผู้ชาย – ผู้ชาย – เสีย บ้าน อยู่
และ ดู – ผู้ชาย – ผู้ชาย – เสีย บ้าน ตก บ้าน ลง ดี
The boy went and slept. The tortoise escaped quietly. A rat came to the entrance of the hole. The dog was worrying the bees and they came out of the beehive. And then the beehive fell down. And the boy also climbed a certain tree and was peeping into it. Then an owl came out from it. The boy panicked and fell. And the bees also chased the dog. An owl was flying, chasing the boy. And he ran away and went and embraced a certain rock/stone and climbed it quickly. Then a certain antelope came out suddenly from the bush and came and carried/lifted him up and then started running. It ran very fast on the hill/mountain and ran to the end/edge of the mountain (cliff). The antelope knocked its foot against a stone and the child fell down at once and landed in the river. They saw a certain log, climbed it and called their friend. It came out and they carried it home.'
Dútsu – ví – é kple exò wó – yi vá mlô anyí yá eklo tâ
Man – DIM – DEF and friend, 3PL – go VENT, lie down and tortoise crawl
le eze – e nù òòòò òò òò anyígbá, wò – sì
be.LOC pot - DEF skin, slowly climb down ALL ground; 3SG - escape
dzó ave – me. Wò – le di le tsa – tsa – a leave forest – inside 3PL – be.at.PRES
look/search PROG RED-roam -PROG
Avu - ọ yì vá dé tâ eze - é me. Avu - ọ ko – é
Dog – DEF go, VENT put head pot - DEF inside. Dog – DEF INT- FOC
gé tó fésré tó vá dze anyígbá nútú – ví – é fú du tsó
fall pass window edge VENT land ground man – DIM – DEF run ABL
exò - ọ me vá kó - é kábá Wó – dze mó yì
room – DEF inside VENT take/carry – 3SG quickly 3PL – set off path/road go
eklo dí fé Avu - ọ – vá le atí - é - le uuuu - ú.
tortoise search place dog – DEF come hold tree – DEF – PROG shake – PROG
Nútú – ví – é tsé kpó edo dé yá botoe qe do vá
Man – DIM – DEF too/also/FOC see hole INDF and rat INDF exit come
É – vá de atí dé dzi. Adze – xé qe dzó vá
3SG – VENT climb tree INDF POST/top witchcraft – bird INDF fly VENT
fo nãkumé ni wò – gé vá dze anyí. Anyí - é wé
beat/slap face DAT:3SG 3SG – fall VENT land, down bee - DEF – PL
tsé fú du kpló avu - ọ dó bii. Dútsu
also/too/FOC run follow/chase dog – DEF after IDEO in large number. man
- ví – é le si – sì – í le adze – xé gbó
-DIM – DEF PROG RED – run – PROG ALTRI witchcraft – bird side
káká vá de babakó qe tâme le gbó - gbó - ọ
for a long time VENT climb anthill INDF head PROG RED-breath - PROG
fufufu Elá dé kó - é do dé dzime
IDEO/sound of heavy breathing animal INDF lift/carry – 3SG raise up/sky
zi òòòò ko dé afo du me kplé - é. Avu - ọ tsé
time one then put leg/foot race inside with – 3SG dog – DEF also/too/FOC
fú du kpló we òò. Elá dé – e dó dé etò - ọ me. Avu
run follow PL after animal throw – 3SG to ALL river- DEF inside dog
- ọ tse le du - ọ dzí. Avu - ọ gé vá
- DEF also/too/FOC be.at.PRES race – DEF POSTP/top dog – DEF fall VENT
land child – DEF POST/top 3PL carry – 3SG and 3PL – leave
'The boy and his friend went and slept. And the tortoise crawled against the pot slowly, got down and ran away/escaped into the forest. They were roaming and searching for him. The dog went and put its head into the pot. They just fell off the window and landed on the ground. The boy ran from the room and went and carried it quickly. They set off to go and look for the tortoise. The dog was shaking the tree. The boy also saw a hole and a rat came out (of it). He went and climbed a certain tree. A certain owl came out and slapped him in the face; he fell and landed on the ground. The bees also chased the dog in their numbers. The boy was running away from the owl and finally went and climbed an anthill and was virtually gasping. An animal lifted him up at once and started running with him. The dog also ran after them. The animal threw him into the river. The dog was also on the run. The dog fell and landed on the child. They carried the tortoise away.

09;2 [ST]

‘The child and his dog went to the farm. When they were weeding they found a small tortoise, carried it home and put it in an old pot. In the night when they slept, the tortoise came out of the pot, passed under the door and escaped. They were roaming around searching for it. And the dog fell from the window. He came out at once and went and carried the dog. They went to look for it. The dog was moving about. And he found a hole. And he bent down and was looking into it. A small mouse came out of it and bit his nose. He jumped back. The dog was so inquisitive and made the beehive to fall. And the bees came out with anger and were scattered all over the place, surrounding the dog. It ran off at once. The bees chased it (in their numbers) with the humming sound. The boy took a certain path and was searching for the
tortoise. And he came and climbed a certain tree. A certain owl came out, flapping
its wing and knocked him down. He got up quickly and took to his heels, running for
a long time and went and hid in between some trees. The antelope carried him and
was running very fast. The dog too followed them. It was also running until it fell
into the river. The boy and the dog fell into the river. They dived and floated on the
river and came and climbed a certain log. The tortoise came out and they went and
put it into a sack and they left.

09;4 [CL]

Kɔsti bofo ya wò – fɔ eklo dè vá aʃeme. Wò – yi vá
Kɔsi go farm and 3SG – pick tortoise INDF come home/house 3PL – go VENT
mlɔ anyí. Yá eklo wò dɔdɔɔ tá le eze – e nyi dí
lie down and tortoise do quietly/slowly crawl be.LOC pot-DEF skin got down
dé anyigba tó ehɔ - ɔ dɔme sí dzó kpaaʃkaŋaŋu. Avu – ɔ
ALL ground pass door – DEF under escape/run leave disappear dog - DEF
fall man – DIM – DEF run come outside VENT carry – 3SG 3PL person - two
– é wò – yi vá le klo dí – í le ave gá
- DEF 3PL go VENT PROG tortoise search PROG be. LOC forest big
dé me. Wò – tó tsɔtsixɔ tse nyu afẹ dò ave - é.
INDF inside. 3PL – pass chapel also/too/FOC skin before arrive forest – DEF
ŋûtsu – ví - é kplɔ - dɔd dè yá wò - bɔbɔ le é - me
Man – DIM – DEF see hole INDF and 3SG bend down be.at.PRES 3SG- inside
kplɔ - ɔ. Avu – ɔ tsé kplɔ nú tɔdɔɔ dé abe anyí – tɔ
see - PROG dog – DEF too see thing dangling/swinging INDF like bee - nest
nené ya wò – lé uùuú - u bé né gé. Anyí - tɔ gé vá
like and 3SG hold shake – PROG COMP SUBJ fall. Bee - nest fall VENT
tṣé do tsó do – ɔ me le atí - é me fo
also/too/FOC exit ABL hole – DEF inside be.LOC tree – DEF inside beat/hit
deví – é yá wò – gé tsó atí – e vá dze anyígbá
child DEF and 3SG - fall ABL tree – DEF VENT land ground
kpla! Dûtsu – ví – é fɔ kaba fù du vá

‘Kasi went to farm and he found a certain tortoise and brought it home. They went and slept. And the tortoise crawled slowly against the pot, got down, passed under the door and disappeared completely. The dog fell. The boy ran outside and picked it up. The two of them went and were looking for the tortoise in a certain forest. They even passed by a chapel before entering the forest. The boy saw a hole and bent down and was peeping into it. The dog also saw something dangling like a beehive and he was shaking it for it to fall. The beehive fell down. The bees chased the dog. A certain owl also came out of the hole inside the tree and knocked down the child (boy) and he fell and landed on the ground heavily. The boy got up quickly and went and climbed a certain hill (anthill) and hanged on a certain tree. Then the antelope carried him on its head and ran with him. The dog has also seen that the antelope was running so it took the lead, came and by-passed/overtook it and came and landed in the valley. The antelope threw him into the river. The dog also ran for a long time and landed in the river. The boy sat down and the dog climbed onto his neck and he swarm with it and came and climbed a log. The child (boy) carried/took one of the tortoise and they walked home’.
Dutsu – ví dé kple é - fé ávú wó – yi bofo yá wó – fó
Man – DIM INDF and 3SG – POSS dog 3PL – go farm and 3PL – pick up
eklo dé tsó vá afe gbe Ḟẹká. Wó – kó – é gbọ vá
tortoise INDF take come home day one 3PL – carry 3SG arrive come
aféme vá de ezé ḿbó – é dé me le wó – fe
home/house VENT put pot oval – DIM INDF inside be.LOC 3PL - POSS
room. 3PL - give palmfruit 3SG 3SG – go VENT lie down
Eklo tá do le eze – é me yá wó – sì dzó.
Tortoise crawl exit be.LOC pot – DEF inside and 3SG – escape/run leave
Xé ŋutsu – ví – é kple avu – ọ fó xé Ḟu ke wó –
When man – DIM – DEF and dog – DEF get up when day open 3PL
mé – kpó eklo le eze – é me o. Wó tsà le xɔ - ọ
NEG – see tortoise LOC pot – DEF inside NEG 3PL – roam LOC room
me gaké wó – me – kpọ – é o. Dutsu – ví – é vá de
inside but 3PL – NEG – see – 3SG NEG. man – DIM – DEF VENT climb
fésré to nɔ é - yó - ọ Ga – míé – me tútútú
window edge/opening PROG 3SG – call – PROG time-DIST inside, exactly
ko avu - ọ tsé le dí - í ko vá kó tã
then dog – DEF also/too be.at.PRES look – PROG:3SG then VENT take head
dé eze – é me. Etá xíxá. É - fù du yi ŋutsu – ví - é gbọ
put pot – DEF inside head trap 3SG run go man – DIM – DEF side
le fésré to bẹ nẹ – dé eze – é le
be.LOC window edge/opening COMP JUSS – remove pot – DEF be.LOC
yí – wó tá xe wó - Ḟọ fésré to ko Ḟọko wó –
3SG – POSS head when 3SG - arrive window edge/opening then only 3SG -
gé zi Ḟẹká eze – é vá tó anyí yá wó – gba ŋutsu – ví -
fall time one pot – DEF VENT hit ground/down and 3SG – break man - DIM -
é vọ bẹ avu - ọ á – kú É fù du do vá xíxé kábá.
DEF panic COMP dog – DEF POT – die 3SG run exit come outside quickly
Fífí wó bẹ yewó - á – vá dí eklo. Xe wó – zɔ
Now 3PL COMP LOG – POT – VENT look/search tortoise when 3PL - walk/move
dọ ave - é - me Ḟẹ avu – ọ yá kpọ anyí dẹwé le atí gá
arrive forest – DEF – inside UFP dog – DEF LOG see bee INDEF LOC tree big
One day, a boy and his dog went to farm and found a tortoise which they brought home. They put it in a certain oval pot in their room. They gave it palm fruits to eat and they went to bed. Tortoise crawled out of the pot and escaped. When the boy and the dog woke up when day broke, they did not see the tortoise in the pot. They combed the room but did not see it. They went to the window and called it. During that time, the dog was also looking for it and went and put its head into the pot. Its head got trapped. It ran to the boy at the window for him to remove the pot from its head. On arrival at the window, he just fell at once. The boy feared that it would die. He ran outside quickly (to the dog). Now they decided to go and look for the tortoise. When they walked into the forest, as for the dog it saw some bees flying in a big tree and it shook it because it could not climb the tree. The bees just scattered in the forest. The boy too saw a certain hole in the tree and he climbed it to find out whether the tortoise was hiding inside. The moment he climbed up and peeped into the hole a fat owl came out from the hole and knocked him down. He got leave go home.
frightened and fell down. He ran quickly and went and climbed a certain anthill and hid on it. Unknown to him, it was the head of an antelope he lay on. The animal carried him, took to its heels, and threw him into the river. The dog also followed the antelope, running, not knowing that the animal would brake/stop all of a sudden. And it also fell off and landed on the child’s (boy’s) head in the water. They moved slowly and climbed a certain big log and he stretched his hand and held the small tortoise carefully so that it would not press its shell on its finger to cut it off. The boy carried the tortoise in the hand and walked home.'
tree INDF inside and 3SG – go come stand ALL 3SG – skin PROG 3SG

ụ bụ Anyí - è - wé xe le etọ – ọ me

Shake – PROG bee – DEF – PL COMP be.LOC river – DEF inside
kaka dẹ fimie. Dutsu – ví – é tsé kpọ edọ dẹ spread ALL there man – DIM – DEF also/too/FOC see hole INDF
le anyígbá yá la le é – nụ ke ṣku dẹ
be.LOC ground and come be.LOC 3SG – mouth open eye ALL
é - me ko gbé - fí dẹ ko é do vá ṣu ọtítí
3SG – inside then bush – mouse INDF then FOC exit come bit nose
ní – í Avu – ọ ga – le anídzedze wa – á
DAT – 3SG dog – DEF REP – be.at.PRES/PROG giddiness do – PROG
ko anyí – tọ gé vá dze anyígbá Anyí – wé kpọ dzikú kpọ – e
then bee – nest fall/drop VENT land ground bee – PL see anger chase 3SG
dó le – tẹ – e wọ – le du ụ – u le du
after PROG – sting – PROG 3SG – PROG race run – PROG be.at.PRES race
dzí Le ga mie me tútútú njutsu – ví - é tsé
POSTP/top during time DIST inside exactly man – DIM – DEF too/also/FOC
kpọ dzmé dà yá wọ – kpọ bé edọ dẹ le atí é - look sky in a distance and 3SG – see COMP hole INDF be.LOC tree DEF -
me. Eklo - ọ á - nyá be dẹ fimie. É – líá
inside. Tortoise – DEF JUSS – MODAL hide ALL there 3SG -climb
atí - é kriği kriği vá dọ edọ - ọ nụ É – vá vu ụkú
tree- DEF slowly VENT arrive hole – DEF mouth 3SG – come open eye
dé edọ – ọ me ko adze – xé ko -é do zi đéká ọ
ALL hole – DEF inside then witchcraft – bird then FOC exit time one beat/slap
ụkú – ọ me kpła kppla - è - fè awala gá eve - é - see – DEF – inside at once/suddenly with 3SG – POSS wings big two – DEF
wé njutsu - ví - é vọ yá wọ – vé le atí – è dzí
PL man - DIM – DEF frighten/panic and 3SG – fall be.LOC tree-DEF POSTP/top
vá dze anyígbá lé du dẹ me vá be dẹ ekpé dẹ
VENT land ground hold race ALL inside VENT hide ALL rock/stone INDF
dzí. Anyí – é wé tsé le avu – ọ yôme ko
POSTP/top. Bee – DEF PL also/too/FOC be.FOC dog – DEF back still
Wó – do vuii vá do tó njutsu – ví - é gbọ
3PL – exit suddenly (in their numbers) VENT exit pass man – DIM- DEF side
lofo. Adze – xé – tsé dzó papapa
direction witchcraft- bird – DEF also/too/FOC fly sound of the flapping of wings
vá tó é – gbó le ekpé – é xá vá dze dé ati dé VENT pass 3SG –side be.LOC rock – DEF side VENT land ALL tree INDF
dzí le é - gbó. Æe nɔvɔ tā ɲutsu – ví – é dzó POSTP/top be.LOC 3SG-side because of fear head man – DIM-DEF leave
le efime vá de ekó dé ta - me nɔ gbó – gbó - be.LOC there VENT climb anthill INDF head – inside PROG RED-breath-
š dé me. Sisi be ezí klayaa
PROG ALL inside not knowing COMP antelope dry/disorderly/awkward/clumsy
dé fé tā - me kemí. Ezi - é jú tā ḥů le
INDF POSS head – inside DIST antelope – DEF hit head skin be.at.PRES
du - ɔ dzí uu vá da dé etɔ – ọ xé.
Race – DEF POSTP/top for a long time VENT throw ALL river – DEF REL
le eto - ọ fé agame Avu -ọ dzeagbagba kplọ ezi - be.LOC mountain – DEF POSS valley dog – DEF tried hard f’ollow antelope-
é Ṝó kplé du mé – nyá bé yi Ṝó
DEF after with race/running 3SG:NEG know COMP LOG arrive/reach
etó fé nuwúfọ o yá wò – gé vá dze etɔ – ọ mountain/hill POSS end NEG and 3SG – fall –VENT land river-DEF
deví - e fé kọ dzí yá wó – wa ṫọdọzo ọ vá child – DEF POSS neck POSTP/top and 3PL – do slowly/carefully walk come
aítkpọ gā dé xé le etsi – é me Yá wó – lié - é.
log big INDF REL be.LOC water/river – DEF inside and 3PL-climb - DEF
Man – DIM – DEF see tortoise-DIM-DEF be.LOC 3PL – POSS different - PL
gbó yá wò – kọ – e blewu né mé – nyó o né side and 3SG – carry/take – 3SG slowly/carefully if 3SG:NEG – good NEG if
eklo – ọ míá gbí dé é - fé así - kúí - wé a -té
tortoise – DEF squeeze anus ALL 3SG – POSS hand – DIM – PL POT-PRES
ŋú álά dá tēe.
body cut off clean cut
‘The child (boy) and his dog slept on a mat. Before day broke, the tortoise climbed the pot slowly/quietly and left. They searched for it for a long time and finally went to the window at the side. The dog also searched for it for a long time and in the process put its long head into the pot and it got trapped inside. The dog moved round and round with the pot over its head and covering its face for quite some time until it went to the window. And it fell hitting the bottom of the pot on the ground and it broke. The child (boy) ran quickly behind the building, went and carried it and cleaned its body/fur. They went to the bush to look for the tortoise. When they arrived in the forest, the dog, found a certain tree and went and stood against it shaking it. The bees, which were in a beehive, scattered all over the place. The boy also found a hole on the ground and stood at the entrance, peeping into it. Then a bush-mouse suddenly came out and bit his nose. The dog was still shaking the tree. Then the beehive fell and landed on the ground. The bees got angry, chased it and stung it all over and it took to its heels. At that time the boy also looked up and saw a hole in the tree. Thinking maybe the tortoise would be hiding (inside) there, he climbed the tree slowly (virtually crawling) to the entrance of the hole. He opened his eyes widely, looking into the hole; then an owl came out at once and slapped his face with its (two) big wings. The boy became frightened and fell from the tree and hid by a rock. The bees were still chasing the dog. They came out suddenly in their numbers and passed by the boy. The owl also flew by him near the stone and landed on a tree by him. Because of fear, the boy left there and went and climbed a certain anthill and was resting against it, not knowing it was the head of an antelope with disorderly horns. The antelope carried him and took to its heels for a long time (over quite a distance) and threw him into a river which was flowing in the valley. The dog chased the antelope. It did not realize that it has reached the edge of the cliff and landed in the river. The two of them walked/moved slowly (in the water). The dog climbed onto the neck of the boy and he walked slowly to a big log which was in the water and climbed it. The boy saw the tortoise (they were looking for) among a group of tortoise and carried it slowly/carefully since, otherwise the tortoise might squeeze its anus on his fingers and they could cut off neatly.’
APPENDIX B2

SAMPLES OF ADULT TORTOISE NARRATIVES

PK: Some Dialect

Mi -se gli se gli lóó Eglí tsó uu dze ɖekadzevi ádè

2PL-listen story listen story UFP story ABL land youngman INDEF

Dzí ḏeví yfá nɔ a fe –fe –m kple lá –wo

POSTP/top child PROX PROG HAB RED-play-PROG COM animal -PL

alegbegbe –De esia ta é -dzilá –wó ɓe avu –ví ádè

very much –because PROX this 3SG-parent –PL buy dog –DIM INDEF

ne. Wó kplé avu–a ko –e fé –ná tso ηdí uu

DAT:3SG 3SG and dog -INDEF only-FOC play-HAB ABL morning right down

zǎ dó –ná. Ne é -dzilá –wó me –le afe –a me

night fall –HAB. If 3SG:POSS-parents-PL NEG –be.LOC house-DEF inside

NEG too TP LOG and dog-DEF PROG –HAB play RED-play POSTP/top

uuu é -dzilá –wó gbɔ -na.

for a long time 3SG-parent-PL return-HAB.

Ké gbe ɖeká le wó –fe fefe fe –fe me –a wó –nɔ

PART day one during 3PL-POSS play, RED-play inside-TP 3PL-PROG

tsa –tsa –m nɔ tsadj –m uu ko –a wó –vá

RED-roam-PROG PROG stroll-PROG for a long time then-TP 3PL -VENT

fɔ eklo -vi ađè. Eklo yfá wó –fɔ a é -dó dzidɔ

come across tortoise-DIM INDEF tortoise PROX 3PL-pick TP 3SG –make happy

ná wó alegbegbe tα ɖeví -ya tsɔ eklo –á tsɔ ve. Gbe

for 3PL very much so child –PROX take/carry tortoise-DEF carry come. day
-TP tortoise-DEF skin only, 3PL-sit for a long time night fall evening

má kúrá hā ḍeví -yia mé -du nú o, eklo ṣutsi
DIST even too child-PROX NEG-eat thing NEG tortoise skin

ko -e wò -nọ Ò -nọ ṣutsi uuu sé
only-FOC 3SG-be by 3SG be.LOC skin for a long time COMPL

dé ga yí me ezá tsi wò -hiá bé wó -á -dọ alọ
until time REL inside night grow 3SG-necessary COMP 3PL-SUBJV sleep

Ye wó -fẹ anyí mlọ yi dó -a, wó -yi vá dzí ze -ví
When 3PL -POSS down lie time reach-TP 3PL-go VENT look pot-DIM INDEF

àdọ hé -tsọ eklo -á kó -e dé éme háffí mlọ
INDEF ITIV-take tortoise-DEF carry-3SG, put inside before lie

anyí. Ko -a avu-á hā mlọ aba azí ye avu -a
down. Then-TP dog-DEF too lie mat POSTP and dog -DEF

hā mlọ é -gbọ yé eklo -á hā le eze-á
too lie 3SG-side and tortoise-DEF too be.LOC pot-DEF

me le exọ -á fẹ títína. ḃeví -ǎ dọ alọ
inside be.LOC room-DEF POSS middle child-DEF sleep

ụụ eṣu ke. Yẹ ṣu -ke wó -nyọ dó
for a long time eye open. When eye-open 3PL -wake-up push

mo dé eze-a gbọ -a, wó -á -kpọ ọ̀
face ALL pot-DEF side-TP 3PL-SUBJV -see ALTRI

ko -a eklo -á mé -le eze-a me o,
then TP tortoise -DEF NEG-be.LOC pot -a inside NEG

sigbede yewó -ame -ve á, ḍeví -a kple avu
not knowing LOG person-two -TP child -DEF and dog
– a wó dɔŋ-ɔlɔ– eklo – a fɔ dzɔa
-DEF 3PL-sleep –TP tortoise –DEF get up IDEO-quietly
edo go le eze-á tá dzó le exɔ -á
exit outside be.LOC pot-DEF crawl leave be.LOC room-DEF
me.
inside.
Wó –tsa le totoefɛ dodofɛ, ekɔ nù ðɛʃiàɛ dzì; avu-ya
3PL -roam be.LOC nook and cranny lift thing every up dog-PROX
ya wò –dó háfí (e)va –e fɔ eklo -á wó –ko -é
REL 3SG-wear before VENT-go pick tortoise-DEF 3PL-lift -DEF
yi dzì kpɔ dɔ Avu-be “oo afi ka eklo – ya yi –yi ge?”
go up see UFP dog-COMP oh where tortoise PROX RED-go PROG”
Tá avu vá kɔ emo kɔ fo ðe eza–a me. Kashia,
So dog VENT carry face take put/push pot-DEF, inside as soon as
katsii ē –fɛ tɑ tsì eza –ame. Wò –kɔ mo dzì –a
suddenly 3SG-POSS head be stuck pot-DEF inside. 3SG lift face up TP
me –ga – le nánéke kpɔ –m o. ðɛvi–a dzì eklo
NEG-REP-PROG nothing see –PROG NEG child- DEF search tortoise
-á le xɔme, fi –shia –fi dɔkpoɛ; wò –vá kɔ fesre
-DEF be.LOC room place-every-place in vain; 3SG-VENT take window
- a vu. Fesre –a wò –vu a yea –kpɔ dɔ Avu –a tɑ nene
-DEF open. Window-DEF 3SG-open UFP LOG-see UFC dog-DEF head something
má to –tro –m, to –tro –m mé – nyá afi si wò –le
DIST RED-spin-PROG RED-spin-PROG 3SG:NEG know where 3SG-be.LOC
o uuu kɛ -kɛ kɛ wò –a -kpɔ–a yɛ wò -ge tsò
NEG for a long time TRIP-for a long time 3SG-SUBJV-see TP and 3SG-fall ABL
window-DEF mouth 3SG-fall land building behind sound of breaking pot, pot break
Ye ezá gbà nenema tâ, ḍeví -a v5. É -xose
When pot break that way because, child-DEF get frightened/panic 3SG-believe
be nú –véví ádje wo avu há ye wò -vu du do ḍe xexe ve
COMP thing painful INDEF do dog too and 3SG –run exit ALL outside VENT:go
kó –e Avu -a wò –kɔ –a avu-a há kpɔ-dzidzɔ be é -carry-3SG dog -DEF 3SG-carry –UFP dog-DEF too see -happiness COMP 3SG-
va kó ye ye wò –kó -é dẹ ashí ko –a wó kple avu-
VENT carry LOG and 3SG-carry-3SG ALL hand/arm then UFP 3PL and dog-
va wò –kpla wò nọ́ewò uúú ko -a, wò –va béná fifiá
DEF 3PL-cling 3PL each other for a long time then-TP 3SG-come COMP now
ėdzé bé ye –wọ-á -yi eklo -a dzí -dzí dzí. Yé
appropriate COMP LOG-PL-POT -go tortoise-DEF RED-search continue and
wó -do ḍe xexe.
3P -exit ALL out.
Wó -dzí klo –á le afá -me katá wó – mé -kpó –e
3PL-search tortoise-DEF be.LOC house-inside all 3PL NEG see –3SG o.
Wó -vá do go tsá vuu gé dẹ egbe- a me
NEG. 3PL-VENT appear outside roam for a long time enter bush-DEF inside
Egbe- a me wó -gẹ a ḍeví -á yílo do -m le eklo yọ -Bush-DEF inside 3PL-enter UFP child-DEF cry shout-PROG PROG tortoise call-
m. Wó -tsa le afi sia afi tefe ḍe sia ḍe, wó –mé -kpó -PROG 3PL roam be.LOC place PROX place place everywhere 3PL-NEG -see
e o. Uúú wó -vá keďę atsí ádje Ṽútsí. Atsi ya,
3SG NEG. for a long time 3PL-come came across tree INDEF skin. Tree PROX
edo-a de le atsi-a te ta devi-a xo-se be
hole-DEF INDEF be.LOC tree-DEF under so child-DEF believe COMP
ke ne eklo do go -a, edo-a me ko wó -a
so if tortoise exit outside TP hole-DEF inside only 3SG SUBJV
-vá be dô. Ta devi-a vá ko emo ko fo dë
-VENT hide ALL. So child-DEF VENT take face take push/bury
edo-a me. É -fó mó dë edo-a me, é -le
hole-DEF inside 3SG-bury face ALL hole-DEF inside 3SG-PROG
eklo -á yó -m. Náné hâ kuad ç de atsi-a ñútsí.
tortoise-DEF call –PROG. something too hang ALL tree-DEF skin
Tâ avu -á hâ kpó tsí-m bé yea -kpó-é dâ bé
So dog –DEF too jump -PROG COMP LOG-see-3SG ALTRI COMP
nú ká -é kuad ç de atsi-a dží hâ Dewomáhi eklo -á
thing QP-FOC hang ALL tree-DEF POST/top QP maybe tortoise-DEF
á -nyá be dë nú yá kuad ç de atsi-a ñútsí me
POT-MODAL hide ALL thing PROX rudder ALL tree-DEF skin inside
Deví -á dó mo dë edo -a me, eyli dó -m eklo
Child-DEF show face ALL hole-DEF inside cry shout-PROG tortoise
yó - m ká sìa he ádë tsí kpó
call-PROG suddenly a cry calling attention INDEF jump
tsa tsó edo -a me do go fo
an expression of surprise ABL hole-DEF inside exit outside beat
mo ná devi-a Devi-a hâ etsí kpó e -le é -fë
face DAT child-DEF child-DEF too jump 3SG-hold 3SG-POSS
ñútsí dë ashí. Aff be mé –kpó mò wó -a vá nó mo
nose ALL hand. mouse COMP NEG see permission 3SG-SUBJV-come PROG face
fo -m qe edo -á me ná ye ŋdi kányá-kányá yá o.

beat/ push-PROG ALL hole -DEF inside DAT LOG morning RED-early PROX NEG

Đeví -á dzó le edo -a gbó. Avu-a hà le

Child-DEF leave be.LOC hole-DEF side dog -DEF too be.at.PRES

ekpotsitsi-a dzí bé yé -a -lé nú yá kuaɖɖy/ qe

jumping -DEF on COMP LOG-IRR catch/hold thing what hang ALL

atsi dzí -á yea -lí lá vuu keke É -dó -afɔ atsi -a

tree POSTP/top-DEF LOG-IRR-hold UFP for a long 3SG step leg tree-DEF

Kásíáa, nú yá kuaɖɖy qe atsi -á dzí -a enú -á

Suddenly thing PROX hang ALL tree-DEF POSTP/top -DEF thing-DEF

gé gboyii edze anyigba Sigbedé anyi-e qó

fall explosive sound fall ground IDEO not knowing bee -DEF arrange/place/build

hó qe atsí me. Anyí hó ge dze anyígba toyii alekeo

nest ALL tree inside. Bee nest fall land ground explosive sound/IDEO this way

ko -a -é ka -ka blá avu-a. Avu shí anyí -á -wó

then-DEF 3SG-RED-scatter surround dog-DEF. dog run away bee -DEF-PL

kpó avu-a qe yeíyí má tsú -tsú -tsú -a đeví -á hà

chase dog-DED after time DIST TRIP-TRIP-exactly TP child -DEF also/top

kpó atsí gá ádqé -é lié bé ya-kpó-e qe bé eklo -á

see tree big INDEF 3SG-climb COMP LOG-see-3SG UFP COMP tortoise -DEF

dé wò -le atsí -á dzí hà. Yé wò -kpɔ ko -a é -kpó

FOC 3SG-be.LOC tree-DEF POSTP/top QP when 3SG-see then -DEF 3SG-see

edó ádqé le atsí -á me. Wò -kó mo kó fo qe afí -hole INDEF be.LOC tree-DEF inside. 3SG-lift/put face take put ALL tree-
to -á me. Wò fo mo qe alekea, kásíáa, kpokú yé -nyé

hollow-DEF inside. 3SG-push face ALL like this suddenly owl 3SG-COP
yi le atsí -tó -á me. Kpokú -a do go zi đéká
PROX be.LOC tree-hollow-DEF inside. Owl -DEF exit outside time one
vlaya đeví -á v5 egé dze anyígbá. Kpokú-á
IDEO/all of a sudden child-DEF panic/frightened fall land ground. Owl -DEF
kplo -e dó.
chase-3SG after.
Kpokú-á kplo đeví -á dó đeví -á hà shí kpokú -á
Owl -DEF chase child-DEF after child-DEF too run away owl -DEF
nye đé nū đeví -á shí Anyí-á wó hà nya avu -a đé
sack ALL mouth child-DEF run away bee -DEF PL too chase dog-DEF ALL
nū. Wó le du -a dzi uu ke-ke-ke
mouth. 3PL be.at.PRES race-DEF POSTP/top for a long time for a long time
bíblí háffí wó -vá shí dzó le ee neném nu – má -wó gbó. Ye wó –
hardly before 3PL-VENT run leave from ee such thing DIST-PL side. When 3PL
dzó ko –a , đéđjí vá té -wó ñū. Đeví -á vá kpó ekpe -ađe
leave then TP tiredness VENT press-PL skin. child-DEF VENT see stone -INDF
ko -a ye wò –de é -dzí bé yi -á -kpó eklo hà
then UFP and 3SG-climb 3SG-POSTP/top COMP LOG-POT-see tortoise PART
Ekpá dzí wò –de –a, ekpá fẹ axadží -a , é -kpó
Stone/rock POSTP/top 3SG-climb TP stone/rock POSS side –DEF 3SG-see
ats -lọ kliya – kliya ađé. Atí -lọ kliyakliya má
tree-branch IDEO/disorderly INDEF. tree-branch IDEO/disorderly DIST
wò - kpó, me -nyé atsí fú -fú -e o. Sigbede fe -qéké -dzo –
3SG-see NEG –COP tree RED dry-FOC NEG. Not knowing year–one horn-
déké fẹ dzo -wo-é má le ekpá nụtsí wò –kpó.
one POSS horn-PL-FOC DIST be.LOC rock/stone skin 3SG-see.
Yé wò – de édzí nenémá ko – a, fe -déké-dzo -déké-á

When 3SG-climb POSTP/top that way then –TP year-one -horn-one -DEF

too jump. 3SG jump that way then TP child too shout cry

Fe - déké-dzo déké-á hā vò tā fe –déké-dzo -déké-á

Year-one-horn one -DEF too panic so year-one-horn-one -DEF

le du dzí, dëví-á xáxá dë edzo-á -wó dome

be.at.PRES race POSTP/top child-DEF trap ALL horn-DEF-PL middle

nē wò -kō le du dzí Avu-a

DAT:3SG 3SG-take be.at.PRES race POSTP/top/on dog –DEF

hā kplō -wó dō, wó - le du -a dzí, le

too chase-PL after 3PL-be.at.PRES race-DEF POSTP/top/on be.at.PRES

du –a dzí wuu wuu kékéké vá dō

race-DEF POSTP/top/on for a long time for a long time VENT arrive

etó -á fé nuwúwú Kasia, wò – kpō agado ádë ye –má

mountain-DEF POSS end suddenly 3SG-see valley INDEF LOG DIST

le etó -á fé nuwúwú Mé -ga -të nù edu

be.LOC mountain-DEF POSS 3SG:NEG-RED-press skin race

jú gë -á -yí ngögbë -á o tā ye wò –tō zi déká

run REP POT-go forward-DEF NEG so and 3SG-stop time one

kañ. Wò -tō kañ alea zi déká ko –a

all of a sudden 3SG-stop all of a sudden this way time one then -TP

yi -ko dëví -á gé le edzo-a dzí nē. Wò

and-then child –DEF fall be.LOC horn -DEF POSTP/top DAT:3SG. 3SG
gë le edzo-a dzí nē nenémá ko -a

fall/drop be.LOC horn-DEF POSTP/top DAT:3SG-fall that way then-TP
wò - gé dze agado -a me. Avu -a hâ le du dzí
3SG-fall land valley-DEF inside. Dog -DEF too be.at.PRES race POSTP/top/on
nenéma. Ye ë – dëká-dzo -dëkë á t ū; avu -a me -të ë tó o
that way. When year-one -horn-one DEF stop dog-DEF NEG-press skin stop NEG
tâ yí hâ gé dze agado -a me toyii
so LOG too fall land valley-DEF inside. IDEO /splashing sound of water
Dzəgbenyên-d-a –né wò–ame –eve –a etœu
Fortunately, -TP DAT 3PL-person-two –DEF stream/brook water-course
ádë tó agado–a mé vá yi. Tá yé wò–gé ko –a, wò–ame –
INDEF pass valley-DEF inside VENT go. So when 3PL-fall then TP 3PL-person-
eve –a kâta wò–vá gé dze etsi –a me Fifïâ ë -dze bé
two-DEF all 3PL-VENT fall land water-DEF inside now 3SG-right COMP
wò -á fù tsi. Ye wò – fù tsi –á vu u këkëkë –a
3PL-IRR swim when 3PL-swim-DEF for a long time for a long time-TP
dëdë vá té avu–a ëntsî tá dëvî–á vá kò – e dë eko
weariness VENT press dog-DEF skin so child-DEF VENT carry 3SG ALL neck
dzi ko fú tsi e vu u háfi wó–vá do go
POSTP take/carry swim TP for a long time before 3PL-VENT exit outside
Le wò -fë do –do le etô –a mé a ko dëvî–á se
Be.LOC 3PL-POSS RED-exit be.LOC river-DEF inside TP then child-DEF hear
nâné ëkô. Yé wò–se nu –a –wo ëkô ko –a yé ko ee,
something name. when 3SG-hear thing-DEF-PL name then-TP and then ee
e –wô ashí avu–a bé né zi dëqûë ye –a -kpó–ë
3SG-do hand dog-DEF COMP SUBJv keep quite LOG-IRR-see-3SG
dá bé eklo -a ëkô se –m ye le -a. Ko –a
UFP COMP tortoise-DEF name hear-PROG LOG PROG-UFP. Then-TP
atsí-tó -áđé le etọ -ọ tó wó -vá liá atsí-tó
tree-hollow-INDEF be.LOC river-DEF edge 3PL-VENT climb tree-hollow
-á ye -a kpó éxá dá kásíá eklo wó -ame -
- LOG-IRR see side towards/direction suddenly tortoise 3PL-person -
ev-e le atsí-tó -á xá wó -bé oo eklo ya
two-FOC be.LOC tree-hollow-DEF side 3PL-say Oh, tortoise which
dzí -m ye -wo-a le -a eklo wó -ame -eve nyé
search-PROG LOG-PL-IRR be-PART tortoise 3PL-person-two COP
eyá. Yé wó -bia gbe wó be, e ye -wo fé eklo -á
PROX. And 3PL-ask voice 3PL COMP e LOG-PL POSS tortoise-DEF
dé bú ye -wó dzi -dzí -m yé ye -wó-fu kpe -m ñdí
INDEF loss LOG-PL RED-search-PROG and LOG-PL suffer-PROG morning
yá aléká Eklo -á vá zu eklo wó -ame eve-eklo
PROX this way tortoise-DEF VENT be tortoise 3PL-person two-tortoise
dádá kplé eklo fofó. Yé wó -gbọ na wó be ye wo ví -
mother and tortoise father and 3PL-say to 3PL COMP LOG-3PL child-
wó le atsí-tó -á me tă dę a -yş ye -wó-do
PL PROG tree-hollow-DEF inside so pFOC IRR-call LOG PL-exit
go -e né wó -á -kpọ dá be ye -wó ví wó dometo
text outside-FOC SUBJVG 3PL-IRR-see UFP COMP LOG-PL child 3PL one among
déká yé vá yi dę wó -gbọ hé -dzó wó -le dzi -dzí -m
one LOG VENT go ALL 3PL-side ITIVE-leave 3PL PROG RED-search-PROG
há. Yé wó -yş ðéví-á -wo do go -e. Ye ðéví-a tsa
PART and 3PL-call child-DEF-PL exit outside-FOC. And child-DEF roam
le wó dome uu konkéké bé ao ye -mé -
be.LOC 3PL middle for a long time for a long time COMP no, LOG-NEG-
kpó-e o. Gake eklo dádá kple eklo fofo wó –kpó ḍéivité -á
see-3SG NEG but tortoise mother and tortoise father 3SG-see child-DEF
vuu kékéké éfē nú wó núblánúí ná wó ta
for a long time for a long time POSS thing do compassion DAT 3PL so
ye -wó wó –á kó -ye -wó ví ḍeká ná wó ne wó –á -
LOG-PL 3PL-IRR-take LOG-PL child one give PL SUBJV 3PL-IRR
kó yi aféme né wó -á - vá ná wó gbó -á ná
take go home SUBJV 3SG-IRR-VENT stay 3PL side 3SG-PROG
modzáke ḍe -m ná wó. Wó -kpó dzidzó
home sickness/nostalgia remove-PROG DAT 3PL. 3PL-see happiness
alegbegbe. Eklo dádá kple eklo fofo wó -tsó wó -mé ví
so much tortoise mother and tortoise father 3PL-give 3PL-POSS child
ḍeke –á tsó ná ḍéivité -á yé wó xo e ekó dzó yi aféme-e.
one DEF take give child-DEF and 3PL-receive-3SG take-leave go home-DEF.

Story Story

‘Story Story’. Listen to the story, listen to the story. The story went and landed on a boy
(involves a young boy). This child (young boy) had been playing a lot. Because of this, his
parents bought a small dog for him. He only played with the dog from morning till night fall.
Even when his parents were out of the house, he continued to play with the dog until they
returned.

But one day, when they were playing roaming about for a long time, they found a
small tortoise and picked it up. The tortoise they found made them very happy so this boy
carried it home. That day, all their attention was on the tortoise till night. Even during the
evening, this boy did not eat, all his attention was on the tortoise. When it was time to go to
bed, they looked for a small pot and put the tortoise into it before going to bed. Then the boy
grew and slept on his bed and the dog went and laid by it. The tortoise was also in the pot in
the middle of the room. When day broke, they went and peeped into the pot. They found that
the tortoise was not in the pot. Unknown to the two of them, (the boy and the dog), as they
slept, the tortoise got up quietly, came out of the pot and crawled out of the room.
They combed every nook and cranny, lifted everything, including the cloth the boy wore when they found the tortoise. The boy asked where it had gone to. In looking for the tortoise, the dog put its face into the pot. Suddenly, its head got stuck in the pot. It raised its head but it couldn’t see anything. The boy searched every where in the room but couldn’t find it. He went and opened the window. After opening the window, he turned and saw something spinning on the dog’s head the long while he didn’t know where it had gone and he was looking for it. Then the dog fell through the window and landed behind the house. The pot broke. The way the pot broke, the boy feared the dog would be hurt and he ran outside and went and carried it in his hands. Then he and the dog embraced each other for a long time and they decided that they had to continue the search for the tortoise and they came out.

They searched for the tortoise in the whole house in vain. They came outside, roamed the whole area, and went into the bush. In the bush, the boy shouted calling the tortoise. They roamed everywhere and searched every place for a long time until they came across a certain tree. This tree had a hole under so the boy believed that if the tortoise came out, it could only hide in that hole. So the boy went and buried his face in the hole calling the tortoise. Something was also hanging up on the tree. So the dog also jumped to see what was hanging on the tree, maybe the tortoise was hiding there. The boy peeped into the hole and started calling the tortoise. Suddenly, a mouse jumped out from the hole and slapped the boy. The boy jumped and held his nose. The mouse felt he had no business to be looking into its hole so early in the morning the way he did.

The boy left the hole. The dog also kept jumping to get hold of what was hanging on the tree, so that it could hold and shake it. It placed its legs against the tree. Suddenly, the thing hanging on the tree fell on the ground and exploded. Unknown to it, the thing hanging was a beehive. When the beehive exploded, the bees scattered and surrounded and attacked the dog all over its body. It ran away, but the bees chased it.

Coincidentally, the boy also saw a big tree around that same time and climbed it to find out whether the tortoise was on the tree. Then he found a certain hole in the tree. He looked into it and buried his face in the hole. As he did that, he suddenly saw an owl inside the hole. The owl came out at once. The child (boy) got frightened and fell down on the ground. The owl chased him and he too ran away. The bees too chased the dog. It ran for a long time and could hardly breath before it managed to escape from them. When it ran, it became tired.

The child (boy) also came across a rock and he climbed it to see if he could find tortoise on it. He climbed the rock and just by it, he saw what appeared to be a disorderedly tree branches. That disorderly tree branches he saw, weren’t dry wood. Not knowing they were an antelope’s horns leaning by the rock. He climbed them and as he did, the antelope
jumped. When it jumped, the boy got frightened and shouted. The antelope also became frightened and took to its heels, with the child (boy) trapped between its horns and it ran with the boy over quite a distance.

The dog also ran after them. The antelope ran and ran for a long time until they arrived at the edge of a cliff. Suddenly, the antelope saw a valley down the hill at the end of the cliff. It could not continue the forward run so it stopped. The sudden stop catapulted the child from its horns to land in the valley. As the dog too was running in that direction, when the antelope stopped, the dog couldn’t stop so it fell into the valley. Fortunately for the two of them, there was a stream down the valley so both of them fell into the water. They then had to swim. When they swam for a long time, the dog became tired so the child (boy) carried it on his neck and swam with it for a long time before he came out of the river.

After they came out of the river, the boy heard a sound. He then put his finger on his lips and told the dog to be quiet to find out whether it was the tortoise he was hearing of. There was a log with a hole in it in the river and they went and climbed it to look at its side. Suddenly, they saw two tortoises and he (the boy) told them that their tortoise got lost since morning and they have been searching for it since then. The two were parent tortoises – mother and father. They (tortoises) told them that their children were inside the log so they would call them to come out so that they could find out if it was one of them that came to them before running back and which they were searching for. They called all of them outside and the boy searched through them for a long time without finding it. The parents of the colony of tortoise pitied the boy from the way he looked so they decided to give out one of their children to them to send home to entertain them. They were very happy and accepted it and carried it home.
Story 2
ED: Avenor Dialect

Eklo, avu kplé ŋútsú–ví sûé âdê wó–nyé xɔlɔ

Tortoise, dog and man – DIM small INDEF 3PL COP friend

véví –wó. Wó–nɔ xo sûé âdê me. Aba sûé âdê

Important – PL. 3PL-live room small INDEF, inside mat small INDEF

hâ le wó shí le xo–a me. Wó–wɔ–a
too be.at.PRES 3PL hand be.LOC room-DEF inside. 3PL–do -HAB

nú stá nú dɛka-e. Avu–a kplé-ŋútsí-ví á mlɔ–á apa
thing every thing one -DEF dog –DEF and man-DIM DEF lie –HAB mat
dzí le anyígba ké eklo ya lá, wó–nyé etsi
POSTP/top/on be.LOC ground but tortoise LOG TP, 3SG–COP water
me wó–nɔ–na é–gbɛ bé ye–a nɔ eze–a me eye
inside 3SG-IVE-HAB 3SG-say COMP LOG-IRR-stay pot-DEF inside and
wó–kɔ etsi dɛ eze–a me kɔ–e da dɛ éme.

3PL-pour eater ALL pot-DEF inside carry-DEF put ALL inside.

Gbe dɛká le ezátsífe ési yletsí nɔ dí–dí–m

One day at midnight when mood PROG RED-shine-PROG

kleŋkleŋkleŋ la, eklo tá do le xo–á me. Ga
IDEO very bright TP tortoise crawl exit be.LOC room-DEF inside. Time

má me – tútútú dɛví–á wó–nɔ fà no –m grrrrr

PROX inside exactly child-DEF 3PL-PROG snore drink-PROG sound of snore
le aba dzí. Xé wó–fɔ lá wó–yi vá – ke ṣkú
be.LOC mat POSTP/top/on when 3PL-get up TP 3PL-go VENT open eye

eze–a me bé ye–wó á–kpɔ bé eklo le alɔ
pot-DEF inside COMP LOG-PL SUBJV-see COMP tortoise be.LOC sleep
dó - m ḥá. Eklo me dọ alọ o. É – gbọ ná ṣútsú-ví -á
sleep- PROG UFP. Tortoise NEG sleep NEG 3SG tell DAT man -DIM-DEF
kplé avu -a bé wó -ne xeyí wó -á -vá mlọ anyí. Óyí
and dog-DEF COMP 3PL SUBJV go 3PL IRR –VENT lie down. When
wó -yi vá mlọ anyí –á le zātsīfė – á eklo wọ
3PL –go VENT lie down TP in midnight-DEF tortoise do
dzáá edo go le eze -a me. Nọví -á-
quietly/stealthily/slowly exit outside be.LOC pot-DEF inside. Sibling-DEF
wó me – nyá bé eklo do go le exọ –á me o.
PL NEG-know COMP tortoise exit outside be.LOC room-DEF inside NEG
Wó –dzí –i le glí –trotro now totoefe dodoefé
3PL-look/search-3SG be.LOC wall-entangled inside nook and cranny
dẹ síá dẹ, wó –kaka nā síá nú kọ zikpui –wó dzí. Esi wó –
every 3PL-scatter thing every thing, lift stool -PL up. When 3PL-
nọ eklo dzí –m lá, avu há dzí be ya kpọ bé
PROG tortoise search –PROG TP dog too want COMP LOG see COMP
eklo dẹ wọ –be dẹ eze-á té ḥá. Óyá -a wọ –kọ efe
tortoise pFOC 3PL-hide ALL pot-DEF under UFP So 3SG –take POSS
tā fọdẹ eze-a me bę ye -á -kpọ bę klo dẹ
head push into pot-DEF inside COMP LOG-IRR-see COMP tortoise pFOC
wọ –be dẹ eze-a fé kọna ádẹ́ me ḥá. Ke éyi avu kọ
3SG-hide ALL pot-DEF POSS corner INDEF inside too. So when dog take
etā fọdẹ eze-á me -a eze-a tsí ekọ ne
head push into pot-DEF inside -UFP pot -DEF remain neck DAT:3SG
ɖɛvɪ–á hᴀ mᴇ–nyá bᴇnᴀ eᴢᵉ–á dψ
child-DEF too 3SG-know COMP pot –DEF to remain hanging/suspended
ɖɛ kɔ ná avu–a o. ᴿᵉ ga mᴀ me tutu–a ,
ALL neck for dog-DEF NEG during time DIST inside TP
ɖɛvɪ–á vá vu fᴇsře hᴇ –nɔ eᴋʟᴏ ý–m yᴇ
child-DEF VENT open window ITIVE –PROG tortoise call PROG time
mᴀ yɪ tʊ́tʊ́tɪ–a kɔ avu–a tsɪ kpó kplé núýɪ eᴢᵉ–á bɛ
DIST time exactly-TP then dog-DEF jump with what pot-DEF COMP
yɛ –a – ᴍʙɔlɔ ná ɖɛvɪ–á bᴇnᴀ dɛ nɛ–dɛ eᴢe–a le
LOG-IRR-tell DAT child-DEF COMP UFP 3SG-remove pot-DEF be.LOC
kɔ ná ye. ᴊɛv wó – tsɪ kpó vá dó fᴇsře –á nʊ. Kɔ -a
neck 3SG and 3SG jump VENT arrive window-DEF mouth then -TP
ɛ -fɛ ɛfɪ mᴀ dó -dó kplɛ mᴀ - dó - mᴀ dó kɔ wó–
3SG-POSS there DIST RED-arrive with NEG-arrive-NEG arrive then 3SG-
ɡέ ɡɛ̀ fᴇsře –á nʊ hrrr kplɛ eᴢe–a kátá vά dze
fall ABL window-DEF mouth slip down with pot-DEF all VENT land
Down IDEO/sound of landing pot-DEF explode ITIVE-break scatter
Đɛvɪ–á vɔ́ wó bɛ aʟɛkɛ avu–á wɔ́ hǎfí
Child –DEF panic/frightened 3SG say how dog-INDEF do before
vá ɡέ dze aɴyɪgbá aʟɛkɛá ᴴᵃ. Yɛ wó sɪ dʊ vά kó -e
VENT fall land ground this sway QP and 3SG run VENT carry-3SG
Ịjútsú–ví –á kó -e tʊ́tʊ́ Ịjútsí ne. É -kpş bɛ nu
Man -DIM-DEF carry-3SG clean body DAT:3SG 3SG-see COMP thing
vɛ́v ɛdɛkɛ mɛ – wɔ̀ -e o. ᴺᴀ wó aᴍɛ -eɛ–a wó–
serious none NEG – do -3SG NEG. So 3PL person-two -DEF 3PL-
dze mó.

set of path/road.

É - ga – dé así eklo dzí - dzí me. Wó – mé - se
3SG REP start hand tortoise RED-search inside. 3PL-NEG - hear
ŋkó le afi aďeke. Wó - tô gbedóxɔ nů hé - zɔ atsi
name be.LOC place none. 3PL-pass chapel skin/side ITIVE-walk tree
gá – wó té gaké wó – mé - kpó - è o.
big – PL under but 3PL – NEG – see -3SG NEG
Éyi – wó – mɔ mɔ zɔ – m – a wó - kpó bé anyí
When 3PL - PROG road/path walk PROG TP 3PL – see COMP bee
aďe - wó nɔ séfôfô tsí aďé me nɔ séfôfô – tsí - ā
INDEF-PL be.LOC flower tree INDEF inside PROG flower – water-DEF
no - m yé wó – m wó – biá - m bé wó – kpɔ
drink – PROG and 3PL – PROG 3PL – ask – PROG COMP 3PL - see
eklo hà. Anyí - à - wó mé - ke – nũ di - i o. Avu- a
tortoise QP. Bee - DEF-PL NEG-open mouth put - 3SG, NEG, dog-DEF
kpɔ dzikú bé nů ka tã ye - wó nya biá - m wó - mé - ke
see anger COMP why LOG-PL word ask – PROG 3PL NEG-open
enú dé éme ná ye o mahũ. Le ga má me
mouth put inside DAT LOG NEG QP. Be.LOC time DIST inside
tútú – a ḍeví há kpó do aďé yé wò – dzí – bé ye - a -
exactly – DEF child too see hole INDEF and 3SG-want COMP LOG-IRR-
vá kpɔ be náďe dě wò - le afi ma aló klo dě
VENT see COMP something pFOC 3SG - be.LOC there or tortoise pFOC
wò - gé dë do -a me hâ. Ga má me tûtûtú -a, avu
3SG-enter hole-DEF inside QP. Time DIST inside exactly –DEF dog
kpô anyí –tô gâ honyo âdjê, éyiké vuvu -m
see bee – nest big IDEO-sagging INDEF which shake-PROG
segesege le atsí-á dzí
IDEO/dangling/swinging/rocking/shaking be.LOC tree-DEF POSTP/top/on
Avu-á do dë atsí-á té hé -nɔ wò bíá - m bena
Dog-DEF exit ALL tree -DEF under ITIVE-PROG 3PL ask- PROG COMP
dë wó -mé -kpô eklo ṣù ná ye o hâ. Wó - mé –dé nu
PART 3PL -NEG-see tortoise skin DAT LOG NEG QP. 3PL –NEG-put mouth
me ná avu-á o. Tâ avu-a kpô dzikú yé wò –lé atsí
inside DAT dog-DEF NEG. So dog-DEF see anger and 3SG-hold tree
–á vuvú -m béná né anyí á -wó ná -gé ko –a
-DEF shake –PROG COMP if bee DEF-PL SUBJV-fall/drop then –TP
eklo hâ-á gé elabéná é -dzé ne bé eklo
tortoise too POT fall because 3SG - appear DAT:3SG COMP tortoise
á -nyá tá yi dzi-a yé anyí-á wó dqó - ho djë
POT-modal(CERT) crawl go up -DEF and bee -DEF –PL create-nest ALL
e -dzí yí tá - é wó –mé – nu -dé -m me
3SG –POSTP/top/on that why FOC 3PL-NEG –mouth-put –PROG inside
ná ye o.
DAT LOG NEG.
Avu-á nɔ atsí-á vuvú -m ye ko wò –nɔ
Dog-DEF PROG tree-DEF shake-PROG and then 3SG-PROG
atsí -á vuvu -m ko hâ anyí-tô ko –e vá gé dze anyígbá
tree-DEF shale-PROG and PART bee -nest then-FOC VENT fall land ground
gboŋ. Anyí-tɔ fe ge -gé kplé ma -gé -ma – gé ko – IDEO/powerful fall. Bee -nest POSS RED-fall and NEG-fall-NEG fall then-a afi -ví xéyá nɔ δ็ด-m đé éme le do -a me TP mouse-DIM which be.LOC rest-PROG ALL inside be.LOC hole-DEF inside há do go ula hé -gbɔ ná đeví -á be nù ke too exit outside all of a sudden ITIVE-say DAT child-DEF COMP thing what dzɔ háfi wò -vá fu đẹ -m ná ye hà. Yɛ đeví -a happen before 3SG-VENT worry remove PROG DAT LOG QP and child-DEF đọ eŋu nɛ bè ye xolɔ -á eklo ko -é bù ye respond skin DAT:3SG COMP LOG friend-DEF tortoise only-FOC loss LOG dzi -dzí -m. Ga má me tútútù -a anyí-á wó do dzikú. RED-search-PROG. time DIST inside exactly-TP bee -DEF –PL get anger Wó đọ nɔ avu bíá -m bena nù ká -é ye -wó wɔ 3PL put on PROG dog ask-PROG COMP thing what-FOC LOG-PL do nɛ háfi wò -vá fu đẹ -m nɛ nɔ nya bíá -m DAT:3SG before 3SG-VENT worry-PROG DAT LOG-PL DIST-PART QP. Éyiké anyí -wó le fu đẹ -m nɛ nɔ nya bíá -m When bee -PL PROG worry remove-PROG DAT:3SG PROG word ask-PROG avu-a đeví –á hà kpɔ atsi gá tehe te ádẹ yẹ wò -kpɔ bè dog-DEF child-DEF too see tree big IDEO/shaddy INDEF and 3SG-see COMP edo gā ádẹ le atsi-á me. Eya ta é -lfá atsi-a bè hole big INDEF be.LOC tree-DEF inside. So 3SG-climb tree-DEF COMP ye –a -kpɔ bena đewohi eklo vā be đẹ edo -a me LOG IRR-see COMP tortoise VENT hide ALL hole-DEF inside há. Yɛ wò –nɔ kūû dó -m le do –a nù ta QP. And 3SG-PROG calling shout-PROG be.LOC hole-DEF mouth so
A mouse which too PROG sleep sleep-PROG wake up immediately when bee-DEF-wó kpọ bé avu mé –le nọya àdéké ṣú dó -m ná PL see COMP dog NEG-be.at.PRES word none skin answer PROG DAT wó o tà wó káta wó -do hoo o evu du kpọ avu dó be ye – 3PL-NEG so 3PL all 3PL-exit IDEO/noise run chase dog after COMP LOG wó -a -fu –i. Avu -há kpọ bé ye -dó xaxáme éyá tá é -dè PL-IRR beat-3SG. dog too see COMP LOG-arrive trouble so 3SG-put afọ du me kririrr. Ga má me tútútú –é fa –vi - leg/foot race inside IDEO/very fast. time DIST inside exactly-FOC cry-tear - vu –tó –á há kpọ bé ame ádé nọya ye le alọ me blood-ooze -DEF too see COMP person INDEF wake LOG from sleep inside dovọ vọ ye ta eya há nọya Éyike ṣẹvi-á kpọ –fa –vi –vu –tó frighten LOG so LOG too wake up when child-DEF see cry-tear blood ooze fé ẹkú -wó wó -kọ̀ọ̀ ne ko -a vọ -vọ̀ lị -i alégbegbe POSS eye -PL 3PL -shine DAT:3SG then-TP RED-fear grip-3SG so much bé wó –gẹ tsó dzi afọ vuɗuʋuʋu vá gẹ dze anyígbá COMP 3SG-fall/drop ABL top/sky IDEO/shaky VENT fall land ground kpla! Anyí-họ –á vá tsyio mo nē. IDEO/at once/suddenly bee -hive DEF VENT cover face DAT:3SG.

É - kpọ be né ye fọ la, má -nyo ná ye ye -a -ká 3SG-see COMP if LOG get up TP NEG-be good DAT LOG LOG-IRR-split á –ọụ ọ, anyí-à -wọ -a -vá Ḟẹfụ ná ye. Éyá tá é -tsí POT eat NEG bee -DEF 3PL-IRR-VENT worry DAT LOG so 3SG-remain anyígbá.

ground.
Éyiké wò –kpó bè anyí-á - wó kaka kpọ avu-a ṭó
When 3SG-see COMP bee –DEF –PL scatter chase dog-DEF after
vọ – a, hàfí wò – fọ dá fọ du me. Fa –ví – vu –tó hà
COMPL –TP before 3SG-get up put leg race inside. Cry-tear blood-ooze too
bè alọ me -e ye le, le edré vává àdé kú –
COMP sleep inside-FOC LOG be.LOC be.at.PRES dream truly INDEF dream-
m hàfí , éyá tá é -vu du kpọ ḍeví -á ṭó bè ṭó wọ -vọ
PROG before so 3SG-run chase child-DEF after COMP pFOC 3SG-finish
ne kátá nyé yia.
DAT:3SG all COP PROX.

Đeví - á kpọ bè ye – ṭó xaxá me éyá tá é -vu du
Child –DEF see COMP LOG enter difficulty inside so 3SG-run
sésiè vá do go evá ḍé agakpé àdé té. Avu -a hà
very fast VENT exit outside VENT ALL rock INDEF under. dog –DEF too
vá be ṭé agakpé ma té me – nyá bè ḍeví -a hà
VENT hide ALL rock DIST under 3SG:NEG-know COMP child-DEF too
vá be ṭé afí má o. Ké yé ḍeví -á kpọ bè fa – vi –vu
VENT hide ALL there NEG. so when child-DEF see COMP cry-tears blood
- tó yi wọ – ga – yí -ná bè uuùuù òló xe -dó - aме –
- ooze which 3PL-REP-call-HAB COMP a species of owl or bird-plant -person-
kú dzí ye uu mé - kpọ ye o a é – líá agakpé gá
death look LOG for a long time NEG-see LOG NEG so 3SG-climb rock big
la bè ya -ga -dzí eklo béná ṭé ye -a kpọ hà. É -
DEF COMP LOG-REP-search tortoise COMP pFOC LOG-IRR-see QP 3SG-
ka -kpọ náné wọ -ga ṭó atsí fú -fú ìdé ḣdíyá-tá wọ –
REP-see something 3SG-REP-resemble tree RED-dry INDEF so 3SG-
líá atsí-á bena ye - a kpó Klo le affádé hā. Atsí-
climb tree-DEF COMP LOG-IRR-see tortoise be.LOC somewhere UFP tree-
á lé -lé kplé ma -lé -ma -lé - a wò -vá nyé fe -
DEF RED-hold and NEG-hold-NEG-hold –NEG 3SG-VENT COP year
déké -dzo déké -ádé yiké yi hā le alá me ṣdí má one -horn-one -INDEF which 3SG too be.at.PRES sleep inside morning DIST
háfí wò -vá ede é -f é dzo tame. Vɔ -vɔ kplé dzikú
before 3SG-VENT climb 3SG-POSS horn POSTP/top. RED-fear and anger
ná be fe –déké-dzo -déké -á hā etsó kple ḍeví -á
DAT COMP year-one -horn-one -DEF too stand COM child-DEF
tai zi dêka. Yé wò –tsó kplí –í nenémá – a é - dé
IDEO/suddenly time one when 3SG-stand COM-3SG in this way TP 3SG put
afọ du me bé āā nū ké – é nè – vá de nye dzó me
leg race inside COMP ah thing QP-FOC 2SG-VENT climb 1SG horn inside
alea hā. Fe -déké-dzo -déké -á bu – bé dẹvwohi adelá ádé – é
this way QP year-one- horn-one- DEF think COMP maybe hunter INDEF -FOC
dzí be ye - a -wu ye.
want COMP LOG-IRR-kill LOG.
É – vu du kplí – í kó – e tsa le ave – á me,
3SG- run COM-3SG carry-3SG roam be.LOC forest-DEF inside
egba-á me klan klan klan. Avu-a hā kpó be ye návi
bush-DEF inside IDEO/hasty/confused dog-DEF too see COMP LOG colleague
-e má fe -déké -dzo déké -a kọ segesege dzó yí - na
-FOC DIST year-one -horn-one -DEF take IDEO/dangling leave go -HAB
dí éyá – tā éyá hā efú du kpló -e ḍó wò –
towards expressing a direction so 3SG too run chase -3SG after 3SG-
le kúkú -ɖे -m ne be mé –ga – wo -e.

PROG hat/cap –remove-PROG DAT:3SG COMP NEG-REP-do -3SG ne o. Gaké fe ḍéké- dzo -ďéké -a kó – e uuu

DAT:3SG NEG. but year-one- horn –one DEF carry-3SG for a long time vá de xo ađe tame ye wò –nye –vusi ḍeví -á le

VENT climb house INDEF POSTP/top and 3SG-shake off child-DEF LOG é -fě dzo -a wó tame bé wò -a -ガイド.

Dog-DEF be.at.PRES race POSTP/top run chase/follow 3PL after Me – nyá bé etá áré le exɔ -á té tútú

3SG:NEG-know COMP lake/pond INDEF be.LOC house –DEF under exactly o. Yé wò – nye vusi nenémá –á ḍeví -a kplẹ avu-a wó – gé NEG. when 3SG-shake off this way TP child-DEF COM dog-DEF 3PL -fall tsó yame vá gé dze tā me duu.

ABL sky VENT fall land lake/pond inside IDEO/sound of falling into the water Wó -ame -ve -a kátā bú dẹ tā me viii.

3PL-person-two-DEF all disappear/submerge ALL pond/lake inside far away Éyi wó -fọ kplẹ etsi -á

When 3PL get up COM water –DEF trololololo me -a

IDEO/describe the clucking noise of the dripping water inside-TP wó -kpọ bé atsk pó gā ádẹ le etā dzí le

3PL-see COMP log big INDEF be.LOC pond/lake POSTP/top PROG va -va -m segesege, segesege. Wó – biá

RED-shake -PROG IDEO/swinging rocking rocking. 3PL -ask
atsíkpó -á bé m -se eklo dé ṅkɔ ná ye -wo -
log -DEF COMP 3SG-hear tortoise INDEF name DAT LOG-PL-
a. É -be ye -kpɔ bé eklo ádé -wó le
UFP. 3SG-say LOG-see COMP tortoise INDEF PL be.LOC
etá fé gö keme dzí tǎ nó -de ye
pond/land POSS shore DIST POSTP/on/top so SUBJ-climb LOG
dzí ye - a -kó wó – yi wó – gbɔ.
POSTP/top LOG-IRR-carry 3PL go 3PL side.
Wó –de atsíkpo-a dzí wò – nɔ etsi - a
3PL-climb log -DEF POSTP/top/on 3SG -be.LOC water-DEF
tǎ segesege kpli wó vuu
POSTP/top/on IDEO/rocking/swinging COM 3PL for a long time
vá dó tefé ádé si eklo -wó nɔ etsi fú -m
VENT arrive place INDEF REL tortoise-PL PROG water swim-PROG
le. Yé wó –kpɔ bé wó -le afi ma ko – a,
be.LOC and 3PL-see COMP 3PL be.LOC there DIST then TP
avu -a ga -dze é -fẹ moví nú - a – wó wɔ -wɔ.
dog-DEF REP-start 3SG-POSS stupid/silly thing –DEF PL RED-do
Yé ḍeví -á gbɔ ná avu be ne ziŋọŋu.
And child-DEF say DAT dog COMP SUBJ keep quiet/be silent
É - dó así nũ. Ye ḍeví -á wɔ dzáá dzáá
3SG-put hand mouth and child –DEF do quietly slowly/stealthily
le atsíkpó-a xá. Wò -á kpɔ kasia wó – fẹ
be.LOC log -DEF side, 3SG-IRR see suddenly 3PL-POSS
klo -á má le wó -tɔ -wó dome aseyetsom. Wó –
tortoise-DEF DIST be.LOC 3PL-POSS -PL midst rejoicing. 3PL-
Tortoise, dog and a boy were very good friends. They lived in a small room. They had a small mat in the room. They did everything together. The dog and the boy slept on the mat on the floor but tortoise, because it lives in water, said it would stay in the pot and they poured water into the pot and put it inside.

One day, deep in the night when the moon was shining brightly, the tortoise crawled out of the room. That time the boy was seriously snoring.
When they woke up, they went and inspected the pot to find out whether Tortoise was sleeping. Tortoise was not sleeping. Before going to bed, tortoise had told the boy and the dog that they should go and sleep. But when they slept, deep in the night, Tortoise slowly and stealthily sneaked out of the pot. Its colleagues were not aware that it left the room. They searched every nook and cranny, lifted the stool, searched everything. During the search, the dog wanted to find out whether the tortoise was hiding in any of the corners of the pot. So it pushed its head into the pot. The pot entangled its neck. The child (boy) did not know that the pot had entangled the head of the dog. Coincidentally, during that time, the child (boy) went and opened the window and was calling tortoise. That time the dog jumped to the window to tell him to remove the pot from its neck. Upon reaching the window, it fell through it very fast with the pot and landed on the ground. The pot shattered. The boy was frightened and asked what happened before the dog fell that way. He ran and went and carried it. The boy carried it and cleaned it. He found that it wasn’t hurt in any way so the two of them set off.

They started searching for the tortoise. They didn’t hear of it anywhere. They passed by a church building and walked under big trees but could not see it.

When they were going about, they saw some bees in a flowering plant. The bees were sucking nectar and he asked them whether they had seen Tortoise. The bees didn’t mind him. The dog became angry that they were asking them questions and they didn’t mind them. Then the (boy) child saw a certain hole and he wanted to find out whether there was something in it and whether Tortoise had entered the hole. At the same time the dog also saw a sagging beehive on a tree, which it shook. The dog went under the tree, asking them whether they hadn’t seen Tortoise. They didn’t mind it. So the dog got angry and shook the tree so that the bees would come out and in the process Tortoise would also fall down and be seen. It thought Tortoise might have crawled up there and the bees had made their hive around it and that was why they were not minding it.

As the dog continued to shake the tree, the beehive fell and landed on the ground heavily. The moment the beehive fell down, a small mouse, which was resting in the hole, also came out suddenly and asked the boy why it was disturbing it. The child (boy) responded saying that his friend was missing and he was searching for it. That time also, the bees had become angry. They asked the dog what they did before it was disturbing them that way. While the bees were worrying the dog, quizzing it, the child also saw a very big shaddy tree and he noticed that there was a big hole in the tree. So he climbed the tree to search inside, hoping maybe the tortoise came to hide there. It then started calling it at the entrance of the hole and the small mouse which was sleeping inside woke up suddenly. When the bees
saw that the dog was not answering them, they all came out and ran after it to beat it up. The dog realized that it was in trouble so it took to its heels. At that time an owl which was also sleeping, got frightened and woke up from the sleep because of someone’s disturbance. When the (boy) child saw the owl, his eyes popped up as he became so frightened that he fell down suddenly. The beehive also landed on his face. He realized if he gets up he would not be safe as the bees would worry him. So he remained on the ground.

When he saw that the bees had scattered and chased the dog, he got up and took to its heels. The owl too said it was deep in sleep, having a serious dream before the boy woke him up. It therefore ran after the boy saying that was his end. The boy saw that he was in serious trouble so he ran very fast and took refuge by a certain rock. The dog also came and hid under (by) the rock. It didn’t know that the child (boy) was also hiding there. So when the boy saw that the owl searched for him for a long time and didn’t find him he climbed the big rock to continue the search to see whether he would find Tortoise. He again saw something which resembled some dry wood so he climbed it to see if he could find Tortoise somewhere. Unknown to him, the ‘tree’ was horns on the head of a certain antelope which was also sleeping that morning before he climbed onto its head. Fear and anger made the antelope to lift up the boy at once. It stood up and started running, asking him why he came to climb and settled between its horns that way. The antelope thought that it may probably be a hunter who wanted to kill him.

It ran carrying him and roamed hastily in the forest. The dog also saw that it was his colleague the antelope was carrying, dangling on its horns going in a direction far away from where they were standing. So the dog also ran after them, begging the antelope not to do any harm to him. But the antelope carried him over a long distance for a long time and came and climbed the top of a certain house and shook him off its horns. (There is nothing to show that the boy fell in a pond and also the dog).

The dog was running after them unaware that there was a certain big log in the pond; it was swinging and rocking. [They asked the log whether it was aware of any tortoise around]. The log said there were some tortoise at the other side of the river bank so they should climb unto it and it would ferry them across to where they were.

They climbed the log and they floated on the water swinging to and fro for a long time until they arrived at a certain place where the group of tortoise were swimming. When they realized they were there, the dog started misbehaving and doing its silly things. So the boy told the dog to keep quiet. He placed his finger on his lips and the boy moved slowly by the log. He went to them, greeted them and asked of their friend. When they left (the group) them they asked the tortoise to tell them why it ran away and made them roam about for so
long. “We looked for you for a long time but didn’t find you” When they asked permission from its colleagues, they willingly released it. The three friends were united again. They carried the tortoise away from its mates and brought it home that day happily.
gba wliwliwli.

3SG-POSTP/on.

Yá wó -yí -e, wó –yí -é ko wó –vá dò ave -é me. And 3PL-go-HAB 3PL-go-HAB then 3PL-VENT arrive forest-DEF inside.

Wó-kpó atí ədê alebe etó dê le atí -é nù Anyi – wó 3PL-see tree INDEF and nest INDEF be.LOC tree-DEF skin bee –PL wó –le ge –gé dê etó me. Avu be ye – a – kpó dá be 3PL- be.at.PRES RED-enter nest inside dog say LOG-SUBJV – see PART COMP
tsfé tútútú kemí le ge – gé dê etó -á me dàa. Ya

What exactly DIST be.at.PRESS RED-enter nest-DEF inside UFP and ɲútsù-ví -é tsfè kpó edò; éyá tsfè lé ɲku ke dê man -DIM-DEF also/too/FOC see whole 3SG also/too/FOC hold eye open ALL do -á bé né -ye – a - kpó –e dá bé tsfè tútútú hole-DEF COMP JUSS-LOG-SUBJV-see -3SG UFP COMP what exactly
yé le edó-á me djáa.
FOC be.LOC hole-DEF inside UFP

Xé njútsú-ví -é le edo-á me kpó djáa bé ye -
When man-DIM-DEF be.at.PRES hole-DEF inside see in a distance COMP LOG -á - kpó eklo le éme djáa, yá avu njú -gá-tó dí be
SUBJV-see tortoise be.LOC inside UFP and dog eye -big-owner want COMP
yé -a - nyá nú sía nu. Yá wò-vá lé atí -é, le atí -é
LOG-SUBJV-know thing every thing and 3SG-VENT hold tree-DEF PROG tree-DEF

úúú be ye -á - kpó dá bé dé tsé na-do le atš me.
Shake COMP LOG SUBJV-see UFP COMP UFP what POT-exit be.LOC nest inside
Kasia wò - lé atsí -é úúú ko - e fine anyí -wó tsó fine wó -
Immediately 3SG-hold tree -DEF shake then-TP where bee -PL ABL where 3PL-
mé - tsó o ko, etš gé ko anyí-á wó do viúuíi
NEG-ABL NEG then nest fall then bee DEF-PL exit IDEO/in large number
le etš me kplo avu-a dó.
be.LOC nest inside chase dog-DEF after

Xé anyí-we le do -do -ó viúuíi le etš me
When bee-PL PROG RED-exit-PROG IDEO/in great number be.LOC nest inside
yí yá njútsú -ví -é tsé vá le atí -tô -á me kpó.
TP and man -DIM-DEF also/too/FOC come PROG tree-hollow-DEF inside see.

Adze -xe dé do zi ñeká. Xé njútsú -ví -é kpó-è vó -vó
Witchcraft- bird INDEF exit time one when man - DIM-DEF see-DEF RED-fear
dó - e, yá wò -gé dze anyígbá kpó. Av -a tsě, e -kpó bé
soak-DEF and 3PL-fall land ground IDEO/ dog -DEF too/also/FOC 3SG-see
COMP
anyí -wó kplo yi dó. É - -ŋku biá yá wò -sí du kábá dzó yi -e
bee - PL chase LOG after 3SG-POSS-eye red and 3SG- run quickly leave go-
HAB kple susu bé -dé anyí -é - wó me - ga -te yi o. Wó - á
-wó
with mind COMP-that bee DEF-PL NEG REP-sting LOG NEG 3PL -DEF-3PL
tsé wó - kplo - e dó. anyígbá le vó -vó
also/too/FOC 3PL -chase -3SG be.LOC ground be.at.PRES RED-fear
né adze -xé káká wò -sí yi -e.. Adze -xé tsé
DAT witchcraft-bird strive/toll 3SG-run go-HAB witchcraft-bird also/too/FOC
kplo wó dó ko yí, wó -bá liá agakpé-é dzí.
chase/follow – 3PL after then TP 3PL -VENT climb rock –DEF POSTP/top
Agakpé xé njútsú-ví -é liá yí, avu-á tsé le vó -
tó dzo wó -ame -eve yé. É -sûsû bé atí yô. Yá wô -vá develop horn 3PL-person -two FOC 3SG-think COMP tree FOC and 3SG -VENT lé. Sîsî elâ vô - nyô ; edzo ve le esî. Yá wô -vá hold not knowing animal 3SG-COP horn two be.at.PRES have and 3SG-VENT lié -é sûsû bé ye -â - kpê akpóxôñû le éfimí. climb-3SG thinking COMP LOG -POT-see refuge from DIST Elâ tšê, xé wô -kpê bame dê lé yî -é sûsû bé Animal too/also/FOC when 3SG -see COMP person INDEF hold 3SG 3SG-think COMP

POSS eye shine/beam/gleam and dog-DEF go 3SG-VENT remain standing ALL
dodome ná njutsú-ví -é kple susu bé ñëwohí etsi -é má-
middle DAT man -DIM-DEF with thinking COMP maybe water-DEF NEG-
mi ye o aló yi –ma –vá gë dé ëto -5 me o
swallow/drown LOG NEG or LOG-NEG-VENT enter river-DEF inside NEG
á -vá kú o. Tà wó -vá de támé ná njutsú -ví -é.
POT-COME die NEG.. also 3SG-VENT climb head-top DAT man -DIM-DEF.

Fifie yì, njutsú-ví -é yì etsi ná avú –a be dé , ne -ná ye –
Now TP man-DIM-DEF FP tell DAT dog -DEF COMP UFP 3SG-SUBJV LOG-
wó ná –líá atìkpo -5 xé wó –líá atìkpo -ó dzí,
PL SUBJV-climb log –DEF when 3PL -climb POSTP/top/on
wó –ame –é wó –líá atìkpo-5 kple susu bé etsi –é
3PL-person-two-DEF 3PL-climb log -DEF COM thinking COMP water-DEF
má – lé yì –wó o Atsìkpo –á dzí xé wó - líá yì káká
NEG-catch/drown LOG-PL-NEG log -DEF top which 3PL-climb TP by the time
wó - ní –kpò anyígbá ñ̋aa yì eklo gbógbó dé -wó-é
3PL-JUSS see down/ground in a distance TP tortoise plenty INDEF-PL-FOC
mí le anyígbá. Yá wó-vá le gbe –bíá wé. Wó –gblo
DIST be.LOC ground. and 3PL-come be.at.PRES question ask PL. 3PL -say
be ye –wó noví eklo bú yá ye –wó le di –i
COMP LOG-PL friend/mate tortoise loss and LOG-PL be.at.PRES search-3SG-
PROG
fètè ye –wó mé –le kpò-ó o eya ta ye –wó–vá
all (over) LOG-PL 3PL -be.at.PRES see -PROG NEG so LOG –PL –COME
Xé wó – le dí –í sísí njutsú -ví -é
When 3PL- be.at.PRES search -3SG:PROG not knowing man -DIM-DEF
le susú wó be ya –wó ñ̋ọgọgọ ye –a –bá
be.at.PRES mind do COMP 3SG-do quietly/stealthily/slowly LOG SUBJV-VENT
lé eklo –ví –é le eháví -wó dome. Ta xé
catch tortoise-DIM-DEF be.LOC colleague PL middle/midst. so when
wó –gë dé etsi -é me é –bá le é -nú ble
3SG enter water-DEF inside 3SG-come be.at.PRES 3SG-mouth deceive
le nya –víví –wè tsi –ne ta dé, é -dëatégé le é -dêkúí
be.at.PRES word sweet-PL tell -DAT:3SG so TP 3SG-forget be.LOC 3SG-self
nú yá ñëvi -é kó -é dzáá. Xé wó –dzó yì –e yá wó –
skin and child-DEF lift/carry-DEF slowly when 3PL -leave go-HAB and 3PL-
le así ñ̋ųvú na eklo susue –wé bë yi –wó dzó.
Be.at.PRES hand wa… DAT tortoise remaining PL COMP LOG-PL leave
Yá wó –kó wó noví tsó dzó yí wó -fë ajéme.
And 3PL -take 3PL mate/fellow take leave go 3PL-POSS home/house.
A boy lived in a certain town. He had a small house. A mat and a small pillow were also in the room. And his friend was a small dog. They picked a tortoise and put it in a small pot. They had been playing with it always. Night fell and they slept and were snoring gbrrrr gbrrrrr. And the tortoise said why should they be snoring while it was sleeping. So it sneaked out quietly from the pot. After it came out of the pot, day broke and the dog and the boy got up. When they got up, they went and looked into the pot, looked under the stool but tortoise was not at any of these places. Unfortunately, the dog pushed its mouth into the pot (suddenly) at once. The boy was searching for the tortoise for a long time and came to the window and opened it to find out whether tortoise got trapped there. He was there when the dog appeared with the pot hanging on its neck. The boy became uncomfortable. Then the dog fell suddenly through the window and hit the ground flat with its mouth. Then the pot removed from its mouth and broke into pieces. And when the boy saw what happened he was depressed. He went and carried the dog and embraced it and checked whether it was wounded. He checked it here and there all over its body, embraced it and sympathized with it because of what happened to it. They hadn’t seen tortoise so they decided to go and look for it. And they set off. They entered a certain forest. Whilst going they shouted and shouted. The dog also barked to see whether the tortoise will come out or not but they did not see it. They arrived in the forest. They saw a certain tree and there was a nest on it. The bees were entering the nest. The dog wanted to find out what exactly were entering the nest (up there). And the boy also saw a hole. He too peeped into the hole to find out what exactly was coming out of the hole.

When the boy was looking into the hole from a distance to find out whether the tortoise was inside, the greedy dog, which wanted to know everything, held the tree and shook it to find out what would come out of the hole. Immediately it held the tree and shook it, where the bees came from, where they did not come from, the bees came out in great numbers from the nest and chased the boy. When the bees were coming out in their numbers, the boy was also looking into the hole in the tree. A certain owl came out at once. When the boy saw it, fear gripped him and he fell down. The dog also saw that the bees were following/chasing it. Its eyes became red and it ran quickly and left with the hope that the bees would not sting it. They also chased it. The boy was also on the ground afraid of the owl. The owl too chased him and he ran and climbed the rock. After the boy climbed the rock, the dog was also afraid so it came and lay down. It didn’t want any thing to happen to it. The boy too climbed the rock, not knowing it was an animal which had developed two horns. He thought it was a tree. And he went and held unto it. Not knowing it was an animal that had two horns. And he went and climbed it thinking that he had found refuge over there.

The animal, when it realized that someone had grabbed it, thought that he maybe a hunter who was coming to do something to it. So it took to its heels with all seriousness, carrying the child (boy) on its horns, running and running. And the dog asked where exactly it was carrying its master too. It also ran and chased them. They moved over quite some distance then landed on a thatch house. The animal on the run, left the dog behind. The dog slipped and fell into the river. The child (boy) also fell flat into the river. After falling into the river they were frightened very much. They didn’t know what to do. They thought that was their end. They were frightened. And the dog went and stood on top of the boy’s head in the hope that it would not get drowned or it would not fall into the river. So it climbed onto the boy’s head.
Then the boy told the dog that it should come so that they would climb the log. When they climbed the log, they did so with the intention that they would not get drowned. After climbing the log, while looking far down, they saw a colony of tortoises on the ground. And they went and interviewed them. They told them that their friend the tortoise got lost and they searched for it everywhere but couldn’t find it. And that was why they came.

While they were searching for it, unknown to them (colony of tortoises) the boy had planned to go quietly and catch the smallest tortoise from its colleagues. So when he entered the water, he went and coaxed it and told it interesting (stories) things. So it forgot itself and boy carried it slowly away. While going, they were waving to the rest of the tortoise that they were leaving behind. And they carried their mate/fellow to their house/home.

Story II

AH: Tɔŋu Dialect

Kofi kple avu wó –nɔ .afem e gbe dqeká. Alébé Kofi –a, é –fê
Name and dog 3PL–live house day one so Kofi -TP 3SG-POS
velîá enye avu –a. É -tsô ŋkô ná avu -a bé L3l5 (Love)
friend COP dog –DEF 3SG-give name DAT dog-DEF COMP L3l5
Wó –fê – ná fe -fê -wó, wó –do -na go ɖi -na -tsa ɖî -
3PL -play-HAB RED-play-PL 3PL-exit-HAB outside roam-HAB-stroll eat -
a nû dqeká ml5 -ná aba dqeká dzì le -a tsi
HAB thing one lie (down)-HAB mat one POSTP/top bath-HAB water
dqeká – e.
one
Ko wó -ga -nɔ fe -fê -m gbe dqeká
Then 3PL-REP-PROG RED-play-PROG day one
vuu ko yé wó -vá kekdé eklo ŋu. Yé wó -kpô
for a long time then and 3PL-VENT came across tortoise skin. When 3PL-see
klo - a, eklo nyá kpô ná wó alégbegbe ta Kofi gblô ná L3l5
tortoise-TP tortoise CERT see DAT 3PL very much so Kofi say DAT L3l5
be ne wô -a -nyô la, ké ye -wô ne – tsô eklo
COMP if 3SG-POT-good TP then LOG-PL JUSS-take/carry tortoise
yi afême-e Wó -kô klo vá afême yé wó -vá -dzì zê vi
go home -DEF 3PL-took-tortoise come home and 3PL-VENT-look pot small
adè he -kô -e dé éme. Alébé zê -ví -á nyá -kpô alégbegbe
INDEF ITIVE-take -3SG put inside. So pot-DIM-DEF CERT-see very much
ta eklo no ze -ví -á me wó -nó kpō-m
so tortoise be.LOC pot-DIM-DEF inside 3PL-PROG see-3SG:PROG
vuu nó dze dó -m Kofi kó así dó tó -nú wó
for a long time PROG converse-PROG Kofi take hands place ear-mouth do
álé nó kpō-m vuu. Ezá dó ta wó -dzó vá
this way PROG see-PROG for a long time night draw near so 3PL-leave VENT mló anyí.
Ko wó -gblé eklo ďeká ďé ze -a mé yé wó
lie down. Then 3PL-leave tortoise one/only ALL pot-DEF inside and 3PL
ame ve -a wó -yi ve mló aba dzí.

person two-DEF 3PL-go VENT:go lie (down) mat POSTP/top/on.
Éyi wó -nó aba dzí vuu ko -a eklo
When 3PL-be.LOC mat POSTP/top/on for a long time then-TP tortoise
kpō bé ye xaló wó do aló tā yé wó -fō be ye hā
see COMP LOG friends-PL sleep so and 3SG-get up COMP LOG too/also
ye va -dį tsa vié ko á -tró va Alébé klo wọ mǐnyémínyé
LOG-VENT-stroll small then POT-return come so tortoise do IDEO/stealthily
yá wó -do go le ezé-ví -á me. Ko, ē Kofi kplé L3ló
and 3SG-exit outside be.LOC pot-DIM-DEF inside. Then ee Kofi and L3ló
yá wó -nó aló dó -m. Kofi nó efa ló -m
3PL 3PL-PROG sleep -PROG. Kofi PROG snore weave-PROG
grrrr. Wó -nó vuu n'ụ ke Éyi ṣụ
IDEO/snoring sound. 3PL-be.at.PRES for a long time day open when day
ke la, avu-a fō gbā wò -le du dzí,
open UFP dog-DEF get up first 3SG-be.at.PRES race POSTP/top/on
le du dzí vá kpō eza-a me bé ye -a -be.at.PRES race POSTP/top/on VENT see pot-DEF inside COMP LOG-IRR-
kpō eklo hā. Mé -vá kpō eklo o. Yé wó -dó ylí
see tortoise QP 3SG:NEG -VENT see tortoise NEG. and 3SG-cry shout
yó Kofi bé né -fō kábá, eklo mé - le eza-a
call Kofi COMP 3SG:JUSS-get up quickly tortoise 3SG-be.LOC pot-DEF
me o. Ye wó -vá ko Kofi do go vá wó -vá kpó
inside NEG. and 3SG-come then Kofi exit outside come 3SG-VENT see
eza-a me. Eklo mé -li o,
pot-DEF inside. Tortoise NEG-be.LOC NEG.
Avu tsa, wó -tsó wó ṣe ụb -yi - ẹ ụb -yi -wó,
Dog roam 3SG-take 3PL-POSS thing-PROX ee thing-PROX-PL
afskáa exá -á fẹ dzoguí-wó me, aọ, eklo mé - li o.
footwear room-DEF POSS corner -PL inside no tortoise NEG-be.LOC NEG.
Alébé L3ló vá ẹ -fẹ tá kó dé ze -ví -á me be ẹj
So L3ló VENT 3SG-POSS head take put pot-DIM-DEF inside COMP pFOC
eklo le eme hã. Mé - nyó ná Lá lá o, me - nu - yi tortoise be.LOC inside QP. 3SG-NEG NEG 3SG:NEG-thing-PROX wa-m o. Mi -nyá nú ka -é dzɔ o dẽ. Avu fé do -PROG NEG. 3PL:NEG-know thing QP -FOC happen NEG UFP dog POSS tã tsí eza-á me. Taim ýá Kofi mé -nyá o loo! Kofi zã head remain pot-DEF inside. Time when Kofi NEG-know NEG UFP. Kofi walk yi dê fësré tó bé ye -a -kpõ bé eklo le go ALL window edge/opening COMP LOG-IRR-see COMP tortoise be.LOC afi ma hã. Êwõmãhĩ eklo tó fësré -á do go Ko avu mouse PROX QP. maybe tortoise pass window-DEF exit outside then dog hã fé ta gé dê eza-a me. Wô -le nu -yi too/also/FOC POSS-head enter pot-DEF inside 3SG-PROG thing-PROX wa-m wó wó wó. Wô -le nú -á wɔ-m uu ko do-PROG IDEO/barking 3SG-PROG thing-DEF do -PROG for a long time then yí hâ vá do go dê fësré -á tó. É -ga -nɔ 3SG too VENT appear outside ALL window-DEF edge/opening 3SG-REP-PROG nú -a wɔ-m uu këkëkë wɔ -wɔ -m. Kofi hã fë thing-DEF do-PROG for a long time RED-bark-PROG Kofi too POSS susu mé -le e -fũ o. Ko yí ko Lá lá le mind/attention NEG-be.at.PRES 3SG-skin NEG then and then Lálá be.at.PRES é -dzí uu këkëkë ko egboyii wó -gê 3SG-POSTP/on for a long time then IDEO sound of breaking pot, 3SG-fall tó fësré -á ko eza-a kaka kpoiyii. through window-DEF then pot-DEF shattered IDEO/splitting sound of the pot.

for a long time and then Kofi VENT tell DAT Lɔlɔ COMP the way thing –á le -a fifiá, ye -wó ma – má gé yí hâ nɛ – -DEF be.at.PRES TP now LOG-PL RED-divide PROSP 3SG too 3SG:JUSS nɔ tɔsá -m ye hâ ye -a -nɔ tɔsá -m PROG RED-roam-PROG LOG too LOG-POT-PROG RED-roam -PROG gakɛ mɛ -ga -yi di ɗi -fɛ ɔ o he. Wɔ -bɛ yoo.

but 3SG:NEG -REP-go long-place NEG UFP 3SG-say all right Ke éyi wɔ -yí -yí -sɛ yí ko Kofí vá kpɔ edo
So when 3PL-RED-go-for some time and then Kofi VENT see hole ádɛ ëyí wɔ -kpɔ edo -a yɛ wɔ -kɔ enu dó ðɛ edo -a INDEF when 3SG-see hole-DEF and 3SG-take mouth push ALL hole-DEF gbɔ wɔ eklo yɔ -m, “Eklo, eklo, eklo kâkâkâ ko - á, side 3PL tortoise call-PROG tortoise tortoise for a long time then TP afi ádɛ ṭɛko wɔ -fù du sesɛ ádɛ ko wɔ -vá to mouse INDEF just 3SG-run race fast INDEF then 3SG-VENT prick/punch ñotsí nɛ tsa. Wɔ -be adzeei oo nú ka mɛ -wɔ? Afi -á nose DAT:3SG at once. 3SG-say ouch oh thing QP, 1SG -do? Mouse-DEF hâ kpɔ dzi -kú be léké wɔ -vá fuɗe -m ná ye ðɛ too see heart-death COMP why 3SG-come worry-PROG DAT LOG morning kânyâkânyâ yâ, enu hâ mɛ -ke o yí ko nɛ -vá IDEO/very early PROX day too NEG-open NEG and then 2SG-come fuɗe -m ná -m Kofi ðɔ é -ŋu nɛ bé eklo disturb-PROG DAT-PROG Kofi respond 3SG-skin DAT:3SG COMP tortoise ko dí -m ye le. Afĩ -á bé né -do go only, search-PROG LOG PROG. mouse -DEF COMP SUBJV-exit outside afi yia wɔ -vá yi á -vá yi dzi é -fɛ place PROX 3SG-VENT go POT-VENT go look for/search 3SG-POSS klo -á le tefɛ búbu. Ke éyi emá le edzi yi -m -tortoise-DEF be.LOC place different. So when DIST PROG top go-PROG-a, avu -yá vá kpɔ nâne le atî -ádɛ tame ko – a é – TP dog -PART VENT see something be.LOC tree-INDEF top then TP 3SG-bu bé eklo fé afɔ ye má tsi dê atî -á ŋú. think COMP tortoise POSS leg FOC DIST hang ALL tree-DEF skin Enù -á ve -vɛ -m lîlîlî. Åা nú ka -e

Thing-DEF RED-smell-PROG emitting a sweet scent. Ah thing QP-FOC nyɛ cya hâ? È -wɔ abe eklo le enú -á me. Wɔ – COP PROX QP? 3SG-do like tortoise be.LOC thing-DEF inside. 3SG-nù -á wɔ -m vuukêkêkê, dzo -dzo -m, dzo -dzo -m, thing-DEF do-PROG for a long time RED-jump-PROG RED-jump-PROG dzo -dzo -m ko -a enu – a gé ekpɔ RED-jump-PROG then-TP thing-DEF fall IDEO/sound from the beehive landing.
kplo L3l5 qó. L3l5 tó xeví-á kplo -e qó, adze -xé -á dzó -chase L3l5 after. L3l5 stop bird-DEF chase-3SG after witchcraft-bird-DEF RED-dzo-m papapa kplo -e qó. L3l5 yi -yi -fly -PROG IDEO/sound of flapping of wings chase-3SG after. L3l5 RED-go-m. L3l5 yi -yi -m ūuu kékéké wó -yi -yi -m ūuu kékéké PROG. L3l5 RED-go-PROG for a long time 3SG-RED-go-PROG for a long time yí ko L3l5 vá be dę ekpé ádè xá. and then L3l5 VENT hide ALL INDEF side.

Ko nú yi wó hà wó -fú du trrrrr yé Then thing PROX 3PL too 3PL-run trrrr IDEO/in a straight line and wó -dzó, wó – tso me dzó. Ko Kofi hà le du 3PL-leave 3PL-cross inside leave. then Kofi too/also be.at.PRES race dzí ūuukékéké ko ekó ya né le ekpé-á POSTP/top/on for a long time then anthill PROX which be.at.PRES rock-DEF xá ko me -nyá o ko eta vá zi kpá-á ko -yá side then 3SG:NEG-know NEG then head VENT hit rock-DEF then-TP qeži vá te njú ko wó-bé ok, ké né – nyé nenémá a ye - weakness VENT press skin then 3SG-say ok if 3SG COP that way TP LOG- a – de atí -má -wó le ekó táme dzí né – ye -a -kpó atí -á - POT-tree-DIST-PL be.LOC anthill top POSTP/on so-LOG-IRR-see tree-DEF-wó táme kpó dą bé ké nu yi eklo dę wó -vá le PL top see UFP COMP then thing PROX tortoise pFOC 3SG-VENT be.LOC

afi má hà. Wó -de ekó táme vá lá atí -ló kláyekláye place DIST UFP 3SG-climb anthill top VENT hold tree-branch IDEO/disorderly ádè -wó. Atí -á wó -lé vó -á mi -nyá o dę hmm INDEF-PL. tree-DEF 3SG-hold COMP-TP 3PL:NEG-know NEG UFP mmm wó -a -kpó kásíáa elá dę yi, fe -déké-dzo -déké. Éyi Kofi 3SG-IRR-see suddenly animal INDEF PROX year-one -horn-one When Kofi kpó elá -a nenémá, mé -nyé atí -é o ko dzidzi see animal-DEF that way 3SG:NEG-COP tree-DEF NEG then electric fish fo -e wó -vó zi dęká. Éyi wó -vó -a elá -beat/knock-3SG 3SG-panic/fr frighten time one. When 3SG-panic UFP animal-á dé fó du me. Éyi wó -dé afó du me -a, avú-a DEF put leg/foot race inside when 3SG-put leg/foot race inside-UFP dog-DEF yike nyé L3l5, kpó yé -fé veliá gé-dę kuxí me ko -a yí which COP L3l5, see LOG-POSS friend enter trouble inside then-UFP 3SG hà dze wo -wó -m wó, wó, wó, wó -le du -too/also start RED-bark-PROG sound of barking of dog 3SG-be.at.PRES race -a dzí le du -a dzí elá -á hà vó -vó -
DEF POSTP/on be.at.PRES race-DEF POSTP/on animal-DEF too RED-fear-m bu -na ḅe -me -ńi -a ṣe -a -a -e vá lé ye. Wò – PROG think-HAB maybe -person INDEF-FOC come catch LOG. 3SG-le du -a dzí, le dzí vuu kékéké ko be.at.PRES race-DEF POSTP/on be.at.PRES POSTP/on for a long time then yè fe -djaké -dzo -djaké vá kp5 bé ao, fì ya ye yi -na and year-one -horn-one VENT see COMP no, place PROX LOG go-HAB anyigbá me -ga -li o. Yí ko wi -tó zi djéká krrr ground/land NEG-REP-exit NEG. and then 3SG-stop time one IDEO/sudden stop wò -tö krrrr nenémá ko -a, avu -a ya me -nyá o 3SG-stop IDEO/suddenly that way then-TP dog-DEF LOG NEG-know NEG elabe é -trò megbé kple é -fè nù lābās mà ta me because 3SG-turn back with 3SG-POSS mouth DIST so 3SG:NEG nó kpō-m o káká wò -á -nyá la é -fù du egé dze PROG see-PROG NEG by the time 3SG-SUBJV-know TP 3SG-run fall land eva me ko wò -zu bé etò -é mà.

hole inside then 3SG-turn COMP river-DEF DIST.

Fe ḅe -djaká-dzo -djaké-á há ési wò lé é -fokú

Year-one -horn-one -DEF too when hold/brake 3SG-self krrrr nenémá ko -a, yí ko é -và. Kofí gé IDEO/brake suddenly that way then -TP and then 3SG-finish Kofi fall le é -fè dzo -a dzí toñbúi.

be.LOC 3SG-POSS horn-DEF POSTP/top IDEO/light weight item dropping in water Mè lolo o ta é -gé dze etsi -a me. Étsi -a mé 3SG:NEG be big NEG because 3SG-fall land water-DEF inside. water-DEF inside há mé goglo o. Mawu wò ḥi ko -a yá ko wò – too NEG deep NEG. God POSS be gracious only-TP and then 3SG-le dzí, wò – le etsi -a fù -m vívivi vívivi. be.at.PRES up/floating 3PL PROG water-DEF swim-PROG gradually/slowly. Wò -le etsi -a me é -fù -m vívivi. 3SG-be.LOC water DEF inside 3SG-swim -PROG slowly/gradually. Ke wò -nyá Lālā te ḅe Kofi -gbó ta Kofi yi vá ko Since 3SG-COP Lālā close ALL Kofi-side so Kofi go VENT take/carry avu -a sè háffi dze tsi -á fù -fù kpli -i wò -dog-DEF for some time before start water-DEF RED-swim ABL-3SG 3SG -le dzí wò le le dzí vuu kékéké wò – be.at.PRES on 3SG be.at.PRES on be.at.PRES on for a long time 3SG vá do -do -m ṣé gota ko -a, dzí nọ é -dzó -m VENT RED-exit-PROG ALL shore then-TP heart PROG 3SG-straight-PROG bé ye -wó do -do -m ṣe gota. Yi ko avu -a wò -ga -dze
COMP LOG-PL RED-exit-PROG ALL shore and then dog-DEF 3SG-REP-start wo -wó go mó. Kofi be né ḍọto né ḍọtọ elabena RED-bark start. Kofi say 3SG:JUSS keep quiet 3SG:JUSS keep of because ḍéwómáhí ye -wó-á-té nú á -kpó eklo le afi má yé maybe LOG-PL 3SG-press press POT-see tortoise be.LOC place DIST and ko wó -wó ḃándá do go yí ko wó -vá -kpó then 3PL-do slowly/quietly/gently exit outside and then 3PL-VENT-see

Yí ko eklo -á ḍẹká be ye -wo nñí -wó hà ga – and then tortoise-DEF one COMP LOG-PL sibling-PL too REP-

li eya ta ye -wó á -yó wó do gu -i. Yí ko eklo – be.at.PRES there so LOG-PL POT-call PL exit outside-FOC and then tortoise-

á -wó káta wó -do go vá. Éyi wó – do go va ko -a wó – DEF-PL all 3PL-exit outside come. When 3PL-exit outside come then-TP 3PL-

mé -ga – nyá eklo -a ke -e ga -nyé wó-tó hà o. Eklo - NEG-REP know tortoise-DEF QP-FOC REP-COP 3PL-POSS too NEG. tortoise-

a vá ño agbó. Yí ko wó -kpó-e dzesi -í zi ḍẹká DEF come measure plenty. and then 3PL-see-3SG recognise-3SG time one

yé wó -bë “óó Kofi”. Éyi wó bëná Kofi nenémá ko -a edzidzó wó and 3SG-say Oh Kofi. when 3SG COMP Kofi that way only-TP happy 3PL

“Kofi and dog lived together one day. Kofi’s friend was a dog. He named it Lɔlɔ (Love). They played a lot, strolled, ate together, slept together on a small mat and bathed together.

They were playing one day for a long time when they came across a tortoise. When they saw the tortoise it was very attractive so Kofi told Lɔlɔ that they should send the tortoise home and they did. They looked for a small pot and put it in. Since the pot was very attractive, the tortoise was in the small pot and they kept looking at it and conversed with it for a long time. Night fell so they went to bed and left the tortoise alone in the pot and the two of them went and slept on a mat.

Whilst they were sleeping, tortoise noticed that its friends were asleep so it got up to also go and stroll and come back. Tortoise moved stealthily and came out of the small pot. By then Kofi and Lɔlɔ were asleep and Kofi was snoring heavily for a long time till day broke. When day broke, the dog woke up first and ran to go and look into the pot. It did not see tortoise and it shouted and called Kofi to get up quickly. It said tortoise was not in the pot. When he came he looked into the pot. Tortoise was not there.

The dog roamed and roamed. It lifted things, the footwear, searched the room, the corners; oh no! The tortoise was not there. So Lɔlɔ went and put its head into the small pot to find out whether the tortoise was in it. It wasn’t easy for Lɔlɔ. You wouldn’t know what happened. The dog’s head got stuck in the pot. All this while Kofi was not aware of this. Kofi walked to the window to find out whether the tortoise was there. Maybe it passed through the window and went out. When the dog’s head got stick in the pot, it was struggling and barking. It behaved that way for a long time and approached the window. It continued to do that for a long time and was barking. Kofi’s attention was not on why Lɔlɔ was behaving that way until it fell through the window and the shattered the pot into tiny pieces.

When Kofi heard it (the sound) that way he got frightened. By the time he realized it, Lɔlɔ was on the ground. He ran without thinking and went and carried Lɔlɔ and expressed his sympathy to him. “Lɔlɔ, sorry, understand? Lɔlɔ sorry, understand? Lɔlɔ was also happy that it saw Kofi. Kofi kissed it on the cheeks. They then started roaming around. They set off telling themselves that they needed to search for tortoise. They roamed and walked for a long time and then Kofi told Lɔlɔ that the way things were, they had to separate so that each of them would go separate ways during the search but it shouldn’t go far.

When they were going, not quite long, Kofi saw a hole. On seeing the hole he put his mouth close to it and started calling Tortoise; Tortoise, Tortoise for a long time. Then a mouse came out of the hole running very fast and punched and pricked Kofi’s nose. Kofi
asked what he had done. The mouse was also angry and asked him why he was disturbing it early in the morning that way, “Day hasn’t broken and you are disturbing me like that.” Kofi responded by telling him that they were looking for Tortoise. The mouse told him to get away from there and go and look for his tortoise at a different place. While this was going on, the dog also saw something on top of a tree. It thought that was the tortoise’s leg/foot hanging on the tree. The thing was smelling nicely. It watched it for a long time and then started jumping, jumping, jumping. Then the thing fell. The thing the dog thought was the tortoise, was rather a hive made by bees. The bees wax was long and shining.

When the thing (hive) fell and landed flat, all the bees started humming. The dog got frightened so much that it took it its heels. The dog, I say its name is Lɔlɔ (Love) understand? It took to its heels, it was running, it was running. It ran away. “This thing, how do they say it”, Kofi too roamed for a long time and when the mouse punched his nose he felt pain slightly and left and went and climbed a tree. He saw a hollow/holes inside the tree and so he got closer to the entrance of the hole to find out whether Tortoise had hidden there. I’m talking about the hole. As he was peeping into the hole, an owl came out and shouted loudly tsrrrr. Kofi got frightened and fell down. Since he was not fat he fell. The way he fell, he felt pains in the waist. He was angry. He got up. On getting up the owl too was flying over his head wanting to grab him and bite him. Kofi ran and the bird too ran after him as he was also running after Lɔlɔ. Lɔlɔ stopped; the bird chased him, flying and flapping its wings. Lɔlɔ was on the move for a long time and then came and hid by a certain rock.

Then ‘these things’ also ran trrrrr in a straight line and moved across (the field). Kofi too run for a long time and hit his head against a rock by an anthill and became tired. He said should that be the case he would climb onto those trees around to find out whether the tortoise was over there. He climbed to the top of the anthill and held onto some disorderly ‘branches’. After holding on to the tree, “you couldn’t believe it”, by the time he realised it was an antelope. When Kofi saw the animal and got to know that it wasn’t a tree, he became frightened at once. When he panicked the animal took to its heels. When it took to its heels, the dog, ‘which is Lɔlɔ’ (Love) saw that its friend was in trouble. Then it started barking ‘wow, wow, wow’. It barked and on the ran. The animal too was frightened as it thought that it was someone who caught it. It ran and ran for a long time and then realized that where it had gotten to there was no land. It therefore stopped all of a sudden. The dog did not expect the sudden stop. So before it could realise it, it fell into a depression, which turned out to be a river.

When the antelope stopped suddenly, Kofi also fell/dropped from its horn and landed in the water/river. The water was not too deep. By the grace of God, they floated on
the water and swam slowly, slowly. Since Lɔlɔ was close to Kofi, Kofi went and carried it for some time before he started swimming with it for a long time before landing/arriving at the shore. He was happy that they were going to land at the shore. Then he was happy that they were going to land at the shore. The dog realized that it fell into a depression which turned out to be a river.

When the antelope stopped all of a sudden, Kofi fell/dropped from its horns and landed in the water. The water was not very deep. By the grace of God, they floated on the water and swam slowly, slowly. Since Lɔlɔ was close to Kofi, Kofi went and carried it for some time before he started swimming with it for a long time before landing/arriving at the shore. He was happy that they were going to land at the shore. Then the dog started barking again and Kofi told it to keep quiet because maybe they could find tortoise over there. They then moved quietly/slowly to the other bank of the river and looked at the back of the tree. When they came out, they saw two tortoise. They rejoiced but only briefly. The two tortoise did not resemble theirs. They were too big. The dog said they were not their tortoise. Then one tortoise said their siblings too were there so they would call them to come out. Then all the tortoise came out and they couldn’t recognise which was theirs. The tortoise were many. Then they recognized it at last when it said “Oh Kofi!” When it called Kofi, they became happy and lifted it at once. When they carried it, they told the oldest tortoise that they had found their friend so they would carry it away and then all the other tortoise became sad that their sibling/friend was leaving. Kofi went and carried it and then he, Lɔlɔ as well as the tortoise all said goodbye to them and they returned home safely.”
APPENDIX C

WORDLESS PICTURE BOOK

KLO AFÍ KÁ NÈ LE? (TORTOISE WHERE ARE YOU)?
APPENDIX D1

ELICITATION TOOLS

SLOBIN MANNER CLIPS

Ɖeví –á le dzo – dzo –m dě afɔ qeqká dzí.
Child – DEF PROG RED- jump – PROG ALL leg one POSTP/on
‘The child is jumping on one leg.’ [YT]

Nyónu – á le dzo – dzo –m.
Woman – DEF PROG RED – jump-PROG
The woman is jumping.’ [AR]

É -zɔ kábá vá yi.
3SG-walk quickly VENT go
‘She walked quickly and passed by.’ [TE]

É -le zɔ -zɔ -ɔ dada – tɔe xɛ wɔ – kpɔ srɔ –á
3SG-PROG RED-walk –PROG pride – suffix when 3SG – see spouse
‘S/He was walking proudly when he met the wife.’ [AH]

É -fũ du tɔ́ ame -á -wó dome.
3SG – run pass person-DEF-PL middle
‘He ran through the people.’ [KP]

Ɖeví –é le ta – tá -á le fo dzí.
Child – DEF PROG RED-crawl-PROG be.LOC stomach POSTP/on
le xɔ -ɔ me
be.LOC room – DEF inside
‘The child is crawling on its stomach in the room.’ [MV]

Nyńu - á zɔ -zɔ - m tɔ́ gba – a me
Woman – DEF RED- walking-PROG pass bush-DEF inside
‘The woman is walking through the grass.’ [DE]

Wó– tso mó -ɔ já wó – gbo -ɔ
3PL-cross road – DEF and 3PL – come - PROG
‘They crossed the road and they are coming.’ [EA]

Ɖeví - é le ta – tá línylínyé
Child – DEF be.at.PRES RED-crawl slowly
‘The child is crawling slowly.’ [DE]
heví á zó - zó - m takataka kplá fofo - á ḍó
Child – DEF RED – walk – PROG scaterringly follow father – DEF after
‘The child is staggering after the father. [KP]

heví á le zó - zó - ḍ kplá etó - wó ḍó.
Child – DEF PROG RED-walk-PROG follow father – PL after
tinyatinya
IDEO/moving to and fro/tripping [TA]

É le du fú - u.
3SG – PROG race run - PROG
‘S/he is running.’ [5;4 SEL]

Kesé - é le anyí dze – e
Monkey – DEF PROG down fall - PROG
‘The monkey is falling down.’ [5;10 MAU]

Eda - á le du fú - ú
Snake – DEF PROG race run - PROG
‘The snake is running.’ [4;7 PH]

É - le dzo – dzo – o
3SG be.at.PRES RED – jump - PROG
‘S/he is jumping.’ [4;9 MNY]

É - le anyidze – é
3SG – PROG down-fall - PROG
‘S/he is falling down. [7;5 EY]

Kesé - é - wé le xláfo ati – é
Monkey – DEF – PL be.at.PRES circling tree – DEF
‘The monkeys are moving round the tree.’ [7;10 EL]

É - le zó - zó - c le etsi – e me
3SG be.at.PRES RED-walk-PROG be.LOC water – DEF inside
‘S/he is walking in the water. [9;9 DZM]

Nú - dqé le zó - zó - ḍ etsi – é me.
Thing INDEF be.LOC RED-walk –PROG water – DEF inside
‘Something is walking in the water. [5;3 MAK]
APPENDIX D2

ELICITATION TOOLS

RUN/WALK/CLIMB/CRAWL CLIPS

É - le du fú –ú blewuu vá tso lɔrĩ –mɔ
3SG-PROG race run-PROG slowly VENT cross lorry -road
‘S/he ran slowly across the road.’ [DE]

Eda – a ta -tá – m.
Snake – DEF RED-crawl-PROG
‘The snake is crawling.’ [KA]

É – le ta –tá –á le klo dzí / nǔ
3SG- PROG RED-crawl –DEF be.LOC knee POSTP/ mouth
‘S/he is crawling/moving on the knees.’ [9;9 DZM]

Elã ñé le tsi fú – ú
Animal INDEF RPOG water swim- PROG
‘A certain animal is swimming.’ [4;10 DNL]

Kesé – ví – é le zɔ –zɔ - ɔ le anyi- dzé – é
Monkey –DIM –DEF be.at.PRES RED – walk – PROG be.LOC down-fall - PROG
‘The small monkey, is walking and falling down.’ [9;5 LA]

Monkey –DIM – PL be.at.PRES RED- turn – PROG circle –PROG tree - DEF
‘The monkeys are turning/moving around the tree.’ [9;8]

É –le tsa – tsá – á le etɔ - ɔ me
3SG-be.at.PRES RED-roam-PROG be.LOC river –DEF inside
‘It is moving/roaming in the river.’ [7;10 KO]

Eló – á ta - tá – m yí –ná ñé etsi –á me.
Tortoise –DEF RED –crawl – PROG go- HAB ALL water- DEF inside
‘The crocodile is moving into the water.’ [TA]
ADULT TORTOISE NARRATIVE: ET

Dútsu –ví dɛ̀ nɔ du dɛ̀ me. Exɔ sùɛ̀ dɛ̀ nɔ
Man –DIM INDEF be.LOC town INDEF inside house small INDEF be.LOC ě -sí. Tsítsí kple sùdú dɛ̀ tɔ̀ le exɔ –ɔ̀ me. 3SG-hand mat and pillow small INDEF also/too/FOC be.LOC room-DEF inside Yá exɔ nyɛ̀ avu–ví sue dɛ̀ yá wɔ̀ –lɛ́ eklo kɔ̀ dɛ̀ eze -ví
And friend COP dog-DIM small INDEF and 3PL –grab tortoise take put pot - DIM dɛ̀ me yá wɔ̀ –nɔ fɛ̀ fɛ̀ – e kplé -é yɛ́ sìayí. INDEF inside and 3PL –PROG play play-PROG COM –DEF always
Ézǎ dó yá wɔ̀ - mlɔ̀ anyí le afa nɔ gbrrrr egbrrrr
Night fall and 3PL –sleep down be.at.PRES snore IDEO/sound describing the snoring
yá eklo bɛ̀ lémsg ye mlɔ̀ anyí ko wɔ̀ - nɔ eʃa nɔ - ó sìgbɛ̀.
and tortoise COMP why LOG sleep then 3PL-PROG snore drink-PROG this way
Yá wɔ̀ –wɔ̀ fɔ̀fɔ̀ ko wɔ̀ – do le eze -é me.
And 3SG-do slowly/quietly then 3SG –exit be.LOC pot –DEF inside
Xé wɔ̀ – do le eze -é me – a enu ke yá avu kpakple nụtsu-
When 3PL-exit be.LOC pot-DEF inside TP day open(break) and dog and man-
Ví –é wɔ̀ – ðɔ̀. Xe wɔ̀ – ðɔ̀ wɔ̀ –yí vá kpɔ̀ eze -é me,
DIM-DEF 3PL- get up When 3PL – get up 3PL-go VENT see pot-DEF inside
kpɔ̀ kpükpɔ̀-ɔ̀ dɔmɛ̀ gakɛ̀ eklo mɛ̀ –le effi wɔ̀ domɛtɔ̀ ɛkɛ̀ o see stool –DEF under but tortoise NEG-be here PL among none NEG
Yá dzogbevštɛ̀ avu–ɔ̀ yi bá tsɔ̀ nù dɛ̀ eze -ɛ̀ me
And unfortunately dog –DEF go VENT take mouth put- DEF inside
vlɔ̀ nụtsu–ví - é le dì í kákkáká
sound of peferation of pot man –DIM –DEF PROG search -3SG for a long time
vá avu-ɔ̀ vá do eze -é le ekɔ̀ ni -i nụtsu–ví -é
And dog-DEF VENT exit pot -DEF be.LOC neck DAT-3SG man - DIM-DEF
xixe náá. Ya avu -a ko -e dzɔ̀ tɔ̀ fɛ̀srɛ̀ tɔ̀ vá kɔ̀ not free dog – DEF then-FOC fall through window edge VENT take nụ́ tɔ̀ anyígbɔ̀ gbanyaa ko eze –è gba dɛ̀ le enu -ɔ̀
mouth hit ground IDEO/flat then pot –DEF break remove be.LOC mouth-DEF
gba wliwliwli. Yá nụtsu – ví -é yè wɔ̀ – kpɔ̀ enù -ɔ̀
break IDEO/break into tiny pieces and man -DIM-DEF then 3PL see thing-DEF
sìgbɛ̀ yì - tɛ̀ -dɛ̀ -é - dzi. Yá wɔ̀ –yì vá kɔ̀
that way UFP 3SG-press –ALL 3SG –POSTP/top and 3SG-go VENT carry/take
avu-ɔ̀ yá wɔ̀ - kplɔ̀ ní -i kpɔ̀ -é qa be é -xɔ̀
dog –DEF and 3SG –embrace DAT-3SG see –DEF UFP COMP 3SG-receive
abi náa wo – lé ṅku ké é -ńú le éfì, wò -lé ṅku ké é -ńú wound UFP 3SG- inspect ALL 3SG –skin be.LOC here 3SG –inspect ALL 3SG-
skin
le fime yá wò –kplé ké akó áfè le
be.LOC there and 3SG-hang round ALL chest before be.at.PRES
baba dó né be enu mí bá dzɔ ké
time of sympathy express DAT:3SG COMP thing DIST VENT happen ALL
dzì.

3SG-POSTP/on.

Now 3PL NEG –see tortoise –NEG so 3PL say LOG-PL POT ALTRI-search
i
3SG.

Yá wó – dze mó wó - vá gé ké ave ké me. Xë wó –yí
And 3PL –set off road 3PL –VENT enter forest INDEF inside when 3PL-go –
-é
HAB
wó -nɔ afù do, afù do. Avu -ó le wó – wó – o kpó
bë eklo á -do aló má -á o. Gaké wó – me – kpɔ – e o.
COMP tortoise POT-exit or NEG –SUBJ NEG but 3PL-NEG see 3SG NEG

Yá wó -yí -e, wó –yí -é ko wó –vá dò ave -é me.
And 3PL-go-HAB 3PL-go-HAB then 3PL-VENT arrive forest-DEF inside.

Wó-kpó atí ádè alebe etó ké le atí -é nù Anyi –wô
3PL-see tree INDEF and nest INDEF be.LOC tree-DEF skin bee –PL
wó – le ge –gé ké etó me. Avu be ye –a – kpó đà
3PL- be.at.PRES RED-enter nest inside dog say LOG-SUBJ –see PART
be
COMP
tsiè tútútú kemí le ge –gé ké etɔ -ɔ me đàa. Ya
What exactly DIST be.at.PRESS RED-enter nest-DEF inside UFP and
njutsú-vi' -é tsiè kpɔ edɔ ; éyá tsiè lé njú ke ké ké
man -DIM-DEF also/too/FOC see whole 3SG also/too/FOC hold eye open ALL
do -á bë né -ye - a - kpɔ – e đà bë tsiè tútútú
hole-DEF COMP JUSS-LOG-SUBJ-see -3SG UFP COMP what exactly
yé le edɔ -á me đàa.
FOC be.LOC hole-DEF inside UFP

Xè njutsú-vi' -é le edo -á me kpɔ đàa bë ye -
When man-DIM-DEF be.at.PRES hole-DEF inside see in a distance COMP LOG -á - kpó eklo le éme qáa, yá avu ṣkú -gâ-tó dí be SUBJV-see tortoise be.LOC inside UFP and dog eye -big-owner want COMP yé – a – nyá nú síá nu. Yá wò –vá lě atí -é, le atí -é LOG-SUBJV-know thing every thing and 3SG-VENT hold tree-DEF PROG tree-DEF

vúúú be ye -á - kpó dák bé dě tsé na -do le ató me. Shake COMP LOG SUBJV-see UFP COMP UFP what POT-exit be.LOC nest inside

Kasia wò -lé atsi -é vúúú ko – e fine anyí –wó tsó fine wó– Immediately 3SG-hold tree -DEF shake then-TP where bee -PL ABL where 3PL-mé - tsó o ko, etó gé ko anyí -á wó do viivi

NEG-ABL NEG then nest fall then bee DEF-PL exit IDEO/in large number le etó me kpłó avu-a qó. be.LOC nest inside chase dog-DEF after

Xé anyí-we le do –do -ó viivi le etó me When bee-PL PROG RED-exit-PROG IDEO/in great number be.LOC nest inside yí yá ṣnutsú -ví -é tsé vá le atí -tó -á me kpó. TP and man –DIM-DEF also/too/FOC come PROG tree-hollow-DEF inside see.

Adze -xe dě do zi děká. Xé ṣnutsú -ví -é kpó-è vó –vó Witchcraft- bird INDEF exit time one when man - DIM-DEF see-DEF RED-fear dó - e, yá wò -gé dze anyígbá kpó. Av –a tsé, e –kpó soak-DEF and 3PL-fall land ground IDEO/ dog -DEF too/also/FOC 3SG-see bé COMP

3PL

tsé wó - kpłó - e dó. anyígbá le vó –vó also/too/FOC 3PL –chase -3SG be.LOC ground be.at.PRES RED-fear né adze -xě káká wó -sí yí –e.. Adze -xě tsé DAT witchcraft-bird strive/toll 3SG-run go-HAB witchcraft-bird also/too/FOC kpłó wó dó ko yí, wó -bá liá agakpé-é dzí. chase/follow – 3PL after then TP 3PL -VENT climb rock –DEF POSTP/top Agakpé xé ṣnutsú-ví -é liá yí, avu -á tsé le vó - Rock which man -DIM-DEF climb UFP dog-DEF also/too PROG RED-vó -s tâ dě -é -vá bôbô dě agakpe-é xá. Mé -
afraid-PROG so UFP 3SG-VENT bend down ALL rock -DEF side 3SG:NEG-dí bé nü ðéké né - wò yi o. Yá njũtsũ-ví -é tsí want COMP thing none 3SG do LOG NEG and man -DIM-DEF also/too/FOC agapké -é dzí xé wò -vá liá yi síí síí elá rock -DEF POSTP/top which 3SG-VENT climb UFP not knowing animal dë INDEF

POSS eye shine/beam/gleam and dog-DEF go 3SG-VENT remain standing ALL
dodome ná njútsu-ví -é kple susú bé qewohí etsi -é má -
middle DAT man -DIM-DEF with thinking COMP maybe water-DEF NEG-
mi ye o áló yí -ma -vá gè dé éto -í me o
swallow/drown LOG NEG or LOG-NEG-VENT enter river-DEF inside NEG
á -vá kú o. Tá wò -vá de táme ná njútsu -ví -é.
POT-COME die NEG.. also 3SG-VENT climb head-top DAT man -DIM-DEF.

Fifie yí, njútsu-ví -é yí etsi ná avú -a be dé, ne -ná ye -
Now TP man-DIM-DEF FP tell DAT dog -DEF COMP UFP 3SG-SUBJV LOG-
wót ná -liá atíkpo -í xé wót -liá atíkpo -í dzí,
PL SUBJV-climb log -DEF when 3PL -climb POSTP/top/on
wó - ame -vé wót -liá atíkpo -í kple susú bé etsi -é
3PL-person-two-DEF 3PL-climb log -DEF COM thinking COMP water-DEF
má - lé yí -wó o Atoíkpo -á dzí xé wót -liá yí káká
NEG-catch/drown LOG-PL-NEG log -DEF top which 3PL-climb TP by the
time
wó - ní -kps anyígbá ᵃaaa yí eklo gbógbó dé -wó -é
3PL-JUSS see down/ground in a distance TP tortoise plenty INDEF-PL-FOC
mí le anyígbá. Yá wót -vá le gbe -bá wé. Wó -gblo
DIST be.LOC ground. and 3PL-come be.at.PRES question ask PL. 3PL -say
be ye -wó nəví eklo bú yá ye -wó le di -i
COMP LOG-PL friend/mate tortoise loss and LOG-PL be.at.PRES search-3SG-
PROG

fété ye -wó mé -le kpó -bá o eya ta ye -wó -vá
all (over) LOG-PL 3PL -be.at.PRES see -PROG NEG so LOG -PL -COME
Xé wót - le dí -í bí bí njútsu -ví -é
When 3PL- be.at.PRES search -3SG:PROG not knowing man -DIM-DEF
le susú wót be ya -wó ᵃulação ye -a -bá
be.at.PRES mind do COMP 3SG-do quietly/stealthily/slowly LOG SUBJV-VENT
lé eklo -ví -é le eháví -wó dome. Ta xé
catch tortoise-DIM-DEF be.LOC colleague PL middle/midst. so when
wót -gè dé etsi - é me é -bá le é -nú ble
3SG enter water-DEF inside 3SG-come be.at.PRES 3SG-mouth deceive
le nya -vví -wé tsi -ne ta dé, é -dẹjẹfí le é -děőúí
be.at.PRES word sweet-PL tell -DAT:3SG so TP 3SG-forget be.LOC 3SG-self
nú yá déví -kó -é dzáá. Xé wót -dzó yí -e yá wó -
skin and child-DEF lift/carry-DEF slowly when 3PL -leave go-HAB and 3PL-
le así òvú na eklo susú -wé bé yí -wó dzó.
Be.at.PRES hand wa… DAT tortoise remaining PL COMP LOG-PL leave
Yá wót -kó wór nəví tsó dzó yí wó -fè ajēmę.
And 3PL -take 3PL mate/fellow take leave go 3PL-POSS home/house.
A certain boy lived in a certain town. He had a small house. A mat and a small pillow were also in the room. His friend was a small dog. They picked a tortoise and put it in a small pot and they played with it always.

Night fell and they slept and were snoring gbrrrr gbrrrr. The tortoise said why should they be snoring while it was sleeping. So it sneaked out quietly from the pot.

After it came out of the pot, day broke and the dog and the boy woke up. When they got up, they went and looked into the pot and under the stool but tortoise was not at any of these places. Unfortunately, the dog went and put its mouth into a pot (suddenly) all at once. The boy searched for the tortoise for a long time and came to the window and opened it to find out whether tortoise got trapped there. The boy was there when the dog appeared with the pot hanging on its neck. He became uncomfortable. Then the dog fell suddenly through the window and hit the ground with its mouth flat. Then the pot removed from its mouth and broke into pieces.

When the boy saw what happened he was depressed and he went and carried the dog and embraced it and checked whether it was wounded. He checked every part of the dog, embraced it and sympathized with it because of what happened to it.

Since they hadn’t seen tortoise, so they decided to go and look for it. They set off and entered a forest. On their way, they shouted and shouted. The dog barked to see whether the tortoise will come out or not. But they did not see it. When they were going, they got to a forest. They saw a tree and there was a nest on it. Bees were entering the nest. The dog wanted to find out what exactly were entering the nest (up there). And the boy also saw a hole. He too peeped into the hole to find out what exactly was coming out of the hole.

While the bees were coming out in their numbers the boy was also looking into a hole in the tree. An owl came out at once. When the boy saw it, fear gripped him and he fell down. The dog also saw that the bees were following/chasing it. Its eyes became red and it ran quickly and left with the hope that the bees would not sting it. They chased it. The boy was on the ground afraid of the owl. The owl too chased him and he ran and climbed a rock. After the boy climbed the rock, the dog which also was afraid so it came and lay down.

It didn’t want any thing to happen to it. Unknown to the boy, the rock that he climbed was an animal which had developed two horns. He thought it was a tree and he went and held on to it. Not knowing it was an animal which had two horns. When he climbed it, he thought he had found refuge there.

The animal realized that someone had grabbed it. Thinking he might be a hunter who was coming to do it some harm, it took to its heels with all the seriousness, carrying the child (boy) on its horns, and ran and ran. The dog asked where exactly it was carrying its master to. It also ran and chased them. They moved over quite some distance and then landed on a thatchhouse. The animal was on the run, running. The dog slipped and fell into the river. The child (boy) also fell into the river.

After falling into the river they were frightened (very much). They didn’t know what to do. They thought that was their end. They were frightened. And the dog went and stood on top of the boy’s head so that it would not fall into the river and get drowned. So it climbed onto the boy’s head.
The boy told the dog they should climb on to a log in the river (with the intention of saving them from drowning/ so that they would not get drowned). After climbing the log, they looked far down, and saw a colony of tortoise on the ground. And they went and interviewed them. They told them their tortoise friend got lost and they had searched for it everywhere but couldn’t find it and that was why they had come. When they were searching for it, unknown to them, the boy had planned to go quietly and catch the smallest tortoise from among the colleagues. So when he entered the water, it went and coaxed it and told it interesting (stories) things and it forgot itself and the boy carried it away slowly. While going, they were waving to the rest of the tortoise that they were leaving. And they carried their mate to their house/home.
APPENDIX E

DATA COLLECTION PROCEDURE

Appendix

The Tortoise Story Elicitation tool.

Child Data Collection

In order to elicit a narrative rather than a series of picture descriptions, the children/subjects were asked to first go through the entire book, and then tell the story. In most frog stories, the story is told to the experimenter who sits next to the child and views the book together with him/her. However, it has been realized that this technique has some drawbacks.

1. The child may be less motivated to elaborate and clarify, since it is obvious that the experimenter knows the story and can see pictures.

2. The child can have recourse to pointing, rather than verbal description, since both child and experimenter are looking at the book.

In an attempt to overcome these problems, researchers have, more recently, tried another procedure, which appears promising:

The child first looks through the book with the experimenter, being prepared for the fact that the story will then be told to someone else (researcher, a parent, an older sibling, an available familiar adult, the new listener) that enters and is seated where s/he cannot see the pictures in the book. This procedure is described below. Although it requires an additional participant, it is believed that it is a more useful procedure.
Elicitation Procedure

Give the book to child. The title of the book should be covered so that the child will not use the title in narration (or ask for its translation). Say

Agbalé enye esi. Agbalé sia gblo ŋutinya tso ŋutsuvi (point to the picture on cover) avu (point, kple wo (point) ŋuti.Gbã la, medi be nálé ŋku ñe nɔnɔmetata/nutatawo katã ŋuti. Lé ŋku ñe nutata ñe sia ñe sì ñɛkpo la ŋu nyuie eye emegbe nàgbło ŋutinya la nam.

English Translation

Here is a book. This book tells a story about a boy [point]. First, I want you to look at all the pictures. Pay attention to each picture that you see and afterwards you will tell the story to X [parent, older sibling etc.]

The child now looks through the book to get an idea of the story. The experimenter may help younger children turn the pages if necessary. Make sure that the child has seen each page. On completion of looking through the book, say:

Azɔ midze ŋutinya la gbɔgbɔ tso gɔmedze/e eye agblo ŋutinya la na Efo Kwami/Daavi/Dada/Togbe.

English Translation

Now let’s start telling the story from the beginning and you will tell the story to X [parent, older sibling, etc.]

Prompts

The listener was advised/instructed (in advance) to prompt the child only when necessary. It is important to avoid prompts that may bias the child’s choice of verb,
tense, aspectual marking or choice of perspective. The following list of prompts in order of preference were used.

1. Silence or node of head.

2. Elé ě, enyo (Uh – huh/Okay/Yes)

3. Nu bubu aɖe galia?/Nu ɖe galea? (Anything else?)

4. Kple (and) [with rising intonation]

Noting of contextual Information for Transcription.

Page turns were indicated by tapping the microphone lightly. Some written notes were taken of any references to events/characters on previous or subsequent pages, as well as pointing to certain features of the pictures which may clarify the transcript. If the child switches back and forth between pages, this was noted and recorded for inclusion in the transcript.

Adult Normative Data Collection

To avoid any variation in adult data due to different interpretations of the task, the following instructions would be used for adults.

Dutinya sia tso nɔtsuvi, avu kple akpɔkplɔ aɖe nɔt. Abe ale si wɔ nɔt nɛnyee alov kpo la, ḍeviwo fɛ nɔtinya gbɔgblɔ tovoro sɔ tso ametsitsiwo tɔ gbɔ. Miele nku lɛm ḍe ale si ḍeviwo dzea nɔtinya gbɔgblɔ gome vu va se ḍe esime woate nɔ agblɔ nɔtinya abe ametsitsiwo ene. Madi be nɔgbɔ nɔtinya la nam be matsɔe aso kple esi ḍeviawo hɔ agblɔ. Meďe kuku, gbɔ nɔtinya la le dzidɛdzi kple wo nukpɔkplɔ nu.

‘This is a story about a boy, a dog, and a frog. As you probably realize, children will tell this story very differently than adults. We are looking at developments in story-
telling to find out how children get to be like adult story-tellers. We would like you to tell the story as naturally as you can.’

Debriefing Statement

The following is the debriefing statement that will be given to the adult subjects after they have participated in the study.

Akpe na wò be nèlɔ fāa be yeanye nugɔmɛkuku sia fe akpa dɛ. Medi be makaŋ be edzi na wò be w ηkɔ mádze le nuledeŋɔmdzi la me o. Dzesidee bubu sā ana mɔ/okpeawo dзи eye matɔ w ṅutinya atsɔ asɔ kple ametsitsi bubu siwo hà fe ηkɔ mádze o la tɔ.

Nugɔmɛkuku sia fe taŋɔrdzi nu enye be miase ale si amtstsitsiwo, to ηku lele dɛ nɔŋɔmɛtatawɔ ŋu la tua woawo ŋuto fe ŋutinya ɖɔ. Nu si le vehie le ɖwɔna sia me la enye be miambil ηku dɛ.

1. Ale si ametsitsi kɔa nuwɔnɔwo ŋu le ŋutinyatutuɖɔ me

2. Nuwɔna siwo le ŋutinya la me si amewo bu be wo le vehie kple esiwo wobu be mele vehie o.

3. Nyati alo gbe ŋutise alo gbezazãɗaŋu siwo wotsɔ gbloa ŋutinyawoε.

Miegblo ŋutinya to mɔ vovovowɔ nu eye mɔnu dɛ sia dɛ le etee pepepe. Taflatse, dɛ dзи dʒì nadzyro nume alo abia nya nugɔmɛkula la, ne nane me mekɔ na wɔ o.

‘Thank you for agreeing to participate in the study. Please be assured that the information you provided us today will remain confidential. Each transcript will be identified only by a code number, and the data obtained will be analyzed
quantitatively along with data from others performing the same task. At no time will your name be used or will your identity be made known.

The purpose of the project is to understand how adults construct stories using information provided in pictures. We are interested in: (1) how people structure the events presented in the pictures; (2) which events people choose to highlight and which events people see as less important, and (3) which linguistic devices people use to express those distinctions. There are many different ways to structure and to tell the stories, and no version is “right” or “wrong”. Please feel free to discuss any aspect of the procedure or the study itself with the experiemnter.’

Transcription Format and Data Analysis

The Transcription Conventions were excepted from Berman and Slobin (1991). All the speech of the participants were orthographically transcribed by the researcher. Reliability was ensured by giving the recording to two graduate assistants with Linguistic background to transcribe. Data was first transcribed, and then analysed by age, target domain and linguistic form.
APPENDIX F

INFORMATION AND CONSENT FORMS

Information and Consent Form (Parents)

Dear Parent,

My name is Francisca Adzo Adjei. I am a graduate student at the Department of Linguistics, University of Ghana. I am writing to inform you about a research project that I am conducting for my Ph.D. Please read/listen to the following information and decide if your/your child would like to participate.

The research is designed to examine how children express motion events in Ewe at different stages of their development. Each child will tell a story that will last no more than 20 minutes. The child will narrate a story while looking through a wordless picture book and then will be asked to tell it back to the researcher. At the end of the storytelling, the child will be given a present.

The project does not involve any risks, and children typically enjoy telling stories, describing pictures etc. However, at any time during the course of the project, if your child becomes reluctant to participate she/he will be allowed to withdraw. All interviews will be audiotaped and transcribed for future analysis. You and your child will never be identified by name (unless you want it). That is, the audiotaped and transcripts will be identified by code only. The key to this code will be kept separately from the audiotapes themselves. Direct access to the tapes and codes will be available only to me.
Participation in this study is voluntary and will be greatly appreciated. General results will be made available upon completion of this project for those people who are interested.

Thank you for taking the time to read/listen to this letter. If you have any questions about this study, you can ask me now or call me at 0242-151152.

Sincerely,

Francisca Adzo Adjei (Mrs)

General Consent Forms for Parents

In have read the letter/listened to the letter read to me which described the research project being conducted by Francisca Adzo Adjei. I agree to allow my child to participate in this study. I understand that my child will be audiotaped while engaging in a variety of language related activities. I also understand that my child may withdraw from the study at any time.

Parent’s Name Parents’ Signature/ Date

………………………….. ……………………… …………………

(Please print clearly) Thumbprint
CHILD ASSENT LETTER

I would like you to be in a children’s story-telling study. It is a study of how children tell stories in different languages. You will tell a story about a boy, a dog and his pet tortoise. I will record your story on a tape recorder and then we can listen to some of them after you finish telling the stories if you wish. You do not have to be in the study if you don’t want to, and we can stop or take breaks at any time if you want to be in my study, please print your name or put your figure print on this paper next to the smiling face.

..

Signature/Identification Mark