The γδ T-cell response to Plasmodium falciparum malaria in a population in which malaria is endemic

Article in Infection and Immunity · November 1996
Source: PubMed

CITATIONS
24

READS
50

8 authors, including:

Lars Hviid
University of Copenhagen
333 PUBLICATIONS 8,668 CITATIONS

SEE PROFILE

Jørgen Kurtzhals
University of Copenhagen
162 PUBLICATIONS 5,468 CITATIONS

SEE PROFILE

Daniel Dodoo
Noguchi Memorial Institute for Medical Research
85 PUBLICATIONS 2,169 CITATIONS

SEE PROFILE

Onike Rodrigues
Korle Bu Teaching Hospital
5 PUBLICATIONS 161 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Surveillance of malaria burden in NE Tanzania View project

Severity of malaria in relation to a complement receptor 1 polymorphism: a case control study View project
The γ/δ T-Cell Response to *Plasmodium falciparum* Malaria in a Population in Which Malaria Is Endemic

LARS HVID, JØRGEN A. L. KURTZHALS, DANIEL DODOO, ONIKE RODRIGUES, ANITA RØNN, J. O. OLIVER COMMEY, FRANCIS K. NKRUMAH, AND THOR G. THEANDER

Centre for Medical Parasitology at RHIMA Centre, Copenhagen University Hospital (Righospitalet) and Institute for Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark, and Noguchi Memorial Institute for Medical Research, Legon, and Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana

Received 14 May 1996/Returned for modification 2 July 1996/Accepted 18 July 1996

Frequencies and absolute numbers of peripheral γ/δ T cells have been reported to increase after episodes of *Plasmodium falciparum* malaria in adults with limited or no previous malaria exposure. In contrast, little is known about the γ/δ T-cell response to malaria in children from areas where malaria is endemic, who bear the burden of malaria-related morbidity and mortality. We investigated the γ/δ T-cell response in 19 Ghanaian children from an area of hyperendemic, seasonal malaria transmission. The children presented with cerebral malaria (n = 7), severe malarial anemia (n = 5), or uncomplicated malaria (n = 7) and were monitored from admission until 4 weeks later. We found no evidence of increased frequencies of γ/δ T cells in any of the patient groups, whereas one adult expatriate studied in Ghana and three adults admitted to the hospital in Copenhagen, Denmark, all with uncomplicated, primary *P. falciparum* malaria, showed increased γ/δ T-cell frequencies similar to those previously reported. All patients had lowered absolute numbers of peripheral γ/δ T cells at admission, changing to increased numbers by days 7 to 14 and then returning to normal levels. The study raises questions regarding age and degree of previous exposure as determinants of malaria-induced γ/δ T-cell responses.

γ/δ T cells have been implicated in the immune response to malaria (17). A number of studies have shown in vitro recognition of malaria antigens by γ/δ cells (1, 7, 21), and others have reported increases in frequencies and absolute numbers of peripheral γ/δ T cells following clinical episodes (4, 11, 12, 22). Although the bulk of malaria-associated morbidity and mortality is borne by African children, most of the above data have been derived from studies of adults with little or no previous exposure to malaria. The relevance of the above findings to the naturally acquired immune response in a setting in which malaria is endemic is thus largely unknown.

To investigate this issue, we have examined frequencies and absolute numbers of peripheral γ/δ T cells following episodes of *Plasmodium falciparum* malaria in 19 children from an area of hyperendemic malaria transmission in Ghana and in four adults without previous history of malaria. All the children were febrile (>37.5°C) at admission to the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana, and were diagnosed as having cerebral malaria (n = 7), severe malarial anemia (n = 5), or uncomplicated malaria (n = 7). Diagnostic criteria for cerebral malaria were a Blantyre coma score of <3 (19), lasting ≥30 min and not responding to intravenous glucose, and exclusion of meningitis, encephalitis, head trauma, diabetes, and a history of neurological disorder. The criteria for severe malarial anemia were as follows: hemoglobin, ≤5 g/dl; asexual parasitemia, ≥10,000/µl; full consciousness; no recent severe bleeding or other known cause of anemia; and an absence of other febrile disease. For uncomplicated malaria, the criteria were as follows: hemoglobin, ≥8 g/dl; asexual parasitemia, ≥10,000/µl; full consciousness; and exclusion of other febrile illness. All children were treated with a standard regimen of chloroquine (in cerebral malaria cases by nasogastric tube) (20), and all children recovered fully. Patients with sickle-cell hemoglobin in either heterozygous or homozygous form were excluded from the study. One European adult with uncomplicated *P. falciparum* malaria but without any history of previous malaria episodes was also studied in Ghana. Finally, three patients admitted to the Department of Infectious Diseases of the Righospitalet in Copenhagen, Denmark, with primary attacks of uncomplicated *P. falciparum* malaria were included in the study.

Samples of heparinized, peripheral blood (250 to 400 µl) were collected from the patients at admission. Additional samples were obtained 1, 2, and 4 weeks later. The study was approved by local Ghanaian and Danish ethical committees. Following automated hematological analysis, samples were centrifuged and the plasma was removed. After resuspension of cells in phosphate-buffered saline (PBS), 50-µl cell aliquots were labelled (20 min, room temperature) with directly fluorochrome-conjugated monoclonal antibodies to CD3 (clone SK7) and the γ/δ form of T-cell receptor (TCR-γ/δ) (clone 11F2) or with nonspecific isotype control antibodies. Erythrocytes were subsequently lysed with fluorescence-activated cell sorter lysing solution, washed twice in PBS-3% fetal calf serum, and analyzed by flow cytometry (using a Becton Dickinson FacScan cytometer in Ghana and a Coulter EPICS-XL cytometer in Denmark). All reagents were from Becton Dickinson, San Jose, Calif. Samples were live gated by forward and side scatter on lymphocytes, and 10,000 events were collected. Flow cytometric data are presented as means and 95% confidence intervals (children) or as individual data (adults).

Comparison of the three pediatric groups at particular time points was done by one-way analysis of variance (F), and that of patient data at different time-points was done by one-way
repeated-measure analysis of variance (F), supplemented with the Student-Newman-Keuls test (q).

SigmaStat 1.02 software (Jandel Scientific, San Rafael, Calif.) was used for the statistical analysis.

Donor characteristics. Apart from the coma score and hemoglobin-hematocrit (which were used as defining criteria for clinical characterization), clinical characteristics such as age, axillary temperature, symptom duration prior to admission, and parasitemia were similar in the three pediatric clinical groups (0.52 < P < 0.89 in all cases) (Table 1).

γδ T-cell frequencies. The data on γδ T-cell frequencies are summarized in Fig. 1, expressed as the percentage of CD3+ cells that were TCR-γδ+. There were no significant differences between the mean frequencies in either cerebral malaria (Fig. 1A), severe malarial anemia (not shown), or uncomplicated malaria (Fig. 1B) at any particular time point (0.38 < P [F] < 0.89 at all times). Similarly, we could not detect any significant differences between frequencies at different time points in any of the pediatric clinical groups (0.42 < P [F] < 0.64) (data not shown). Patient day 30 γδ T-cell frequencies were similar to those measured in nine age-matched, healthy children from a nearby community (Student’s t test, P [f] = 0.21).

In contrast to the findings in the Ghanaian children, γδ T-cell frequencies increased about twofold from days 0 to 7 in all four adult patients (Student’s t test, P [f] = 0.018) (Fig. 1C). By day 28, γδ T-cell frequencies remained elevated in only one of these patients.

Absolute numbers of γδ T cells. The data on absolute numbers of γδ T cells are summarized in Fig. 2. In the Ghanaian children, absolute γδ T-cell numbers varied significantly with time (P [F] < 0.001) (Fig. 2A). Supplementary analysis revealed that numbers were significantly depressed at day 0 compared with those at days 7, 14, and 30 (P [q] < 0.05 in all cases) and significantly increased at day 7 compared with those at day 30 (P [q] < 0.05). There were no detectable differences between pediatric clinical groups (not shown). Absolute γδ T-cell numbers at day 30 were similar to those measured in nine age-matched, healthy children from a nearby community (Student’s t test, P [f] = 0.29).

A pattern similar to that observed in the children was seen in the adult patients (Fig. 2B).

T cells express either of two distinct forms of the TCR, i.e., TCR-α/β or TCR-γδ (2). The former is by far the dominant in the peripheral blood of healthy adult Caucasians, in which only about 5% of CD3+ cells express TCR-γδ (10). However, the limited data available (reference 8 and the present report) suggest that somewhat higher frequencies are typical of children in areas in Africa where malaria is endemic.

Several lines of evidence suggest a role for γδ T cells in the immune response to malaria as well as to other infectious diseases (17). A number of studies have shown marked responses of unprimed, human peripheral γδ T cells after stimulation by P. falciparum antigens in vitro (1, 7, 21), although limited γδ T-cell responses have been found in other studies (5, 16, 24). In addition, persistent increases in frequencies and absolute numbers of TCR-γδ+ cells following P. falciparum malaria episodes are a general finding (3, 11, 21, 22). In common in all these studies is the fact that adult patients with little or no previous malaria exposure, and suffering from uncomplicated disease episodes, were studied. Little is known regard-

TABLE 1. Clinical characteristics of Ghanaian donors at admission

<table>
<thead>
<tr>
<th>Donor illness</th>
<th>n</th>
<th>Mean ± SD</th>
<th>Parasitemia (parasitized erythrocytes/µL)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Age (yr)</td>
<td>Temp (°C)</td>
</tr>
<tr>
<td>Cerebral malaria</td>
<td>7</td>
<td>6.0 ± 2.2</td>
<td>39.1 ± 1.0</td>
</tr>
<tr>
<td>Severe anemia</td>
<td>5</td>
<td>6.8 ± 1.8</td>
<td>38.4 ± 0.8</td>
</tr>
<tr>
<td>Uncomplicated malaria</td>
<td>7</td>
<td>6.3 ± 3.8</td>
<td>38.9 ± 1.1</td>
</tr>
</tbody>
</table>

* Geometric mean.
of sequestered cells with the submission of disease-induced inflammation.

γ/δ T cells have been implicated in both the pathogenesis of and protection against malaria (17). Not much evidence exists for the former hypothesis, and most evidence for the latter is based on in vitro experimentation and/or animal models, the relevance of which to human infection is uncertain. In any case, we were unable to detect any differences in the γ/δ T-cell responses between different well-defined clinical groups of children in the present study.

The overall conclusion must be that much remains to be learned about γ/δ T cells in relation to malaria, before conclusions on their role can be attempted. To this end, studies of those most vulnerable to morbidity and mortality in areas where malaria is endemic would appear to be the most informative.

Gitte Pedersen, Enid Owusu, John Tsakpo, Alex Coffie, Abdelahman Hammond, Benjamin Abuako, and Collins Ahorlu are thanked for excellent technical assistance. Michael M. Addae is thanked for hematological analyses.

This work was supported by the ENRECA program of the Danish International Development Agency (Danida), the Danish Medical Research Council (SSVF), and the Danish Research Council for Development Research (RUF). L.H. is a Weimann senior research fellow.

REFERENCES


*Editor: D. H. Howard*