Assessing Rural Communities Concerns for Improved Climate Change Adaptation Strategies in Northern Ghana Assessing Rural Communities Concerns for Improved Climate Change Adaptation...

Article in Journal of Disaster Research · August 2014

7 authors, including:

Subhajyoti Samaddar
Kyoto University
26 PUBLICATIONS 107 CITATIONS

Martin Oteng-Ababio
University of Ghana
65 PUBLICATIONS 647 CITATIONS

Mujeeb Adams
University of Energy and Natural Resources
3 PUBLICATIONS 10 CITATIONS

Frederick Dayour
University for Development Studies
21 PUBLICATIONS 93 CITATIONS

Some of the authors of this publication are also working on these related projects:

Rural UrbanConexion in Subsaharan Africa (RURBANAFRICA) View project

SMART PROJECT View project
Northern Ghana is becoming vulnerable to risks induced by climate change. There is an urgent need to improve communities' ability to cope by implementing risk-preventive measures at the household and community levels. However, studies have shown that the existing risk communication system often fails to encourage the people to implement risk-preventive measures because community concerns are not seriously taken in the adaptation planning and management process. The present study systematically examines community concerns about existing risks and possible adaptation strategies by conducting group meetings in four rural communities in the Wa West District. Results show that local communities consider drought or water scarcity to be the most severe risk from climate change because it is directly affecting their livelihood, which is mainly rain-fed subsistence agriculture. As their livelihood is increasingly affected by drought, the local communities are becoming more exposed to floods and other natural calamities. Presently, the climate change adaptation strategies of the local communities are weak and ineffective. It is found that improved irrigation facilitated by rainwater harvesting, watershed management, and seasonal weather forecasting are the preferred adaptation strategies. Though a high level of intention to adopt non-structural preventive measures is observed, local communities report that a lack of knowledge and insufficient financial resources are major impediments to their implementation.

Keywords: concern assessment, climate change adaptation, Northern Ghana

1. Background: Climate Change Risks in Northern Ghana

Northern Ghana, as it is located in West Africa, is considered part of the region most vulnerable to climate variability [1]. It is projected that this region will experience changes in growing seasons and indices of drought, altered rainfall patterns, and higher temperatures, all of which will highly affect livelihood options. The majority of the population in Northern Ghana lives in abject poverty, their livelihoods revolving around rain-fed subsistence agriculture [2]. Ghana, particularly the northern part of the country, has experienced about a 1°C rise in temperature over the past three decades and a 20% reduction in rainfall [3]. Furthermore, statistical analyses of rainfall patterns in the last 60 years have shown that the onset of the rainy season has shifted from April to May, and dry spells during the rainy season have increased [4]. It is forecast that in Ghana, including Northern Ghana, the temperature will rise by 0.6°C by 2020, 2.0°C by 2050, and 3.9°C by 2080, whereas decreased rainfall patterns of 2.8%, 10.9%, and 18.6% will be experienced during the same periods [5]. Climate models for the region project that between 2030 and 2039 the rainy season might start as late as June or even later in Northern Ghana [6]. These future predictions of warming and drying, together with greater variability, will lead to increased intensity and frequency of extreme droughts and floods. In the past 10 years, Northern Ghana has experienced two catastrophic floods, in 2007 and again in 2008. A conservative estimate by the Ministry of Food and Agriculture (MoFA) reveals that 70,500 hectares of land and 50,000 people in Northern Ghana were directly and indirectly affected by the 2007 flood [7]. The death toll from the 2007 flood was 20, but the impact of the flood resulted in the displacement of vulnerable persons and the destruction of key infrastructure, food stocks, and livelihoods throughout the region [7, 8]. In 2008, more than 325,000 people were directly affected, needing external livelihood support [8]. Reports and studies on climate change in Ghana indicate that climate change will ominously aggravate water scarcity and droughts. Because of climate change, rivers, ponds, and streams are drying up, groundwater layers are shrinking and availability of potable water is decreasing [3]. From 1982 to 1983, Ghana experienced a particularly severe drought, followed by a less severe one in 2004.
Though there have been a very limited number of studies done on the impact of climate change in Northern Ghana, these studies have revealed that increasing climate change is directly impacting the communities’ livelihoods, which are predominately based on rain-fed subsistence agriculture [2, 9]. Therefore, communities’ survivability itself is at risk. In a study on food security and climate change impacts in Northern Ghana, Akudugu et al. [9] showed climate change causes crop yields to decline as a result of erratic rainfall, and it eventually has an increasing negative impact on the people’s general welfare. The same study also reported that food insecurity, emigration, and hunger months have become regular phenomena in Northern Ghana as the climate has changed.

This region of Africa is also characterized by limited social, political, technical, and other resources to draw upon to combat problems of scarcity and poverty, and these limitations constrain the people’s ability to adapt to changing conditions [7]. Therefore, reducing climate change risks should be considered the primordial policy goal for the local government. As the climate change risks are unavoidable, adaptation at the local level is considered to be an imperative to protect the livelihood of the poor [1]. In support of this view of local adaptation, studies have shown local communities are not passive recipients; significant local initiatives against climate change risks are already evident in many parts of Northern Ghana. Laube et al. [2] in their study in Northern Ghana mentioned several such household strategies, including crop diversification by replacing crops that have long growth periods, such as millet or guinea corn, with other types that mature faster, or the application of green manure from legumes and paddy rice cultivation to adapt to low soil moisture and declining soil fertility. Moreover, there exists a rich local knowledge base to use to fight against emergency situations. For example, there is knowledge of local rain corridors, of the color of clouds, and of changes in the cries of birds, etc. to forecast weather [8].

There is a growing consensus among researchers that top-down, engineering-based measures are not enough to reduce climate change induced risks; there is a need to encourage households to adopt non-structural preventive measures, such as evacuation planning, crop diversification, and water harvesting [18]. However, it is often reported in climate change and disaster management studies that the implementation of non-structural measures at the community level remains low because the conventional risk communication strategies are ineffective [19]. The conventional risk communication system fails to understand that it is not only information that influences individuals’ adaptation behavior; how individuals interpret the information also matters [18]. Therefore, an effective risk community plan should be well aware of a community’s concerns, needs, and priorities. For example, in many parts of Africa, programs have been initiated by the local government and civil society to develop timely seasonal forecasts to encourage rural communities to shift away from intensive maize towards more drought tolerant seeds. It is often reported that it is difficult to convince the people to follow the recommendations [20, 21], and such efforts are much more effective and implementable when participatory risk communication strategies are practiced [22].

2. The Significance of Concerns Assessment in Climate Change Induced Risk Management

In recent times, studies on climate change and disaster risk have pointed out that public involvement in the planning and management process is vital to the establishment of resilient communities [12, 13]. As the researchers and planners are advocating public participation, knowing communities’ concerns has become a prerequisite and primordial task, as suggested not only by climate change and disaster management studies [14, 15] but also by environmental planning and risk management studies [16, 17]. Before providing an elaborate discussion on the definition and concept of a community’s concern assessment, we will argue why the importance of concerns assessment is getting admiration in climate change adaptation studies, as detailed below.

There is a growing consensus among researchers that top-down, engineering-based measures are not enough to reduce climate change induced risks; there is a need to encourage households to adopt non-structural preventive measures, such as evacuation planning, crop diversification, and water harvesting [18]. However, it is often reported in climate change and disaster management studies that the implementation of non-structural measures at the community level remains low because the conventional risk communication strategies are ineffective [19]. The conventional risk communication system fails to understand that it is not only information that influences individuals’ adaptation behavior; how individuals interpret the information also matters [18]. Therefore, an effective risk community plan should be well aware of a community’s concerns, needs, and priorities. For example, in many parts of Africa, programs have been initiated by the local government and civil society to develop timely seasonal forecasts to encourage rural communities to shift away from intensive maize towards more drought tolerant seeds. It is often reported that it is difficult to convince the people to follow the recommendations [20, 21], and such efforts are much more effective and implementable when participatory risk communication strategies are practiced [22].
The second important reason behind community concerns assessment is that studies have shown that stakeholders often vary in terms of risk perception and planning options [23]. Diverse and conflicting ideas among stakeholders in climate change adaptation and disaster management are frequently reported. A study by Patt and Schroter [23] on the perceptions of residents and policy makers in a flood affected area in Mozambique showed that the policy makers rated the risk of flooding higher than did the residents and at the same time were less sensitive to the potential costs of the mitigation measures they asked residents to engage in. In technical risk models, risk is often seen as the product of the magnitude and likelihood of harm, but the subjective evaluation of risk diverges from the objective results of formal risk analysis. “Risk is all about thoughts, beliefs, and constructs” [24]. It is often argued that such differences arise, on the one hand, from uncertainties in the factual knowledge base and, on the other hand, from ambiguities in problem framing [17]. Therefore, considering these diverse and sometimes conflicting views among stakeholders, researchers and policy makers argue that climate change and disaster risk problems should be dealt with using “universally correct solutions,” but the goal should be to generate “socially viable solutions” that are acceptable to as many stakeholders as possible at the specific sites and time [25]. Climate change risks are uncertain and complex, and so the management process should be more participatory and anticipatory. Therefore, learning community concerns is essential to knowing why there are different perspectives and how to tackle them constructively.

Concern assessment is a systematic analysis of the associations and perceived consequences (benefits and risks) that stakeholders, individuals, groups, or different cultures may associate with a hazard or cause of a hazard [16]. The significance of concern assessment in risk management and risk governance is to ensure the decision makers account for how the risk is viewed when values, perceptions, and emotions come into play. Concern assessment includes socioeconomic impacts, economic benefits, and public concerns. The International Risk Governance Council [16] has proposed that concern assessment respond to such questions as the following: a) What are the public’s concerns and perceptions?; b) What is the social response to the risk?; c) Is there the possibility of political mobilization or potential conflict?; and d) Are risk managers likely to face controversial responses arising from differences in stakeholders’ objectives and values, or from inequities in the distribution of benefit and risks? Pahl-Wostl [17] suggested that incorporating knowing community concerns (through social learning) into the decision making process in risk management would enable and enhance the following management capacities: being aware of each other’s goals and perspectives, identifying shared problems, understanding stakeholders’ mutual interdependencies, resolving conflicts and learning to work together, building trust, and building formal and informal relationships.

Considering the critical importance of the adoption of preventive measures by local communities for improved climate change adaptation, this study attempts to examine local communities’ concerns on climate change risk and its adaptation strategies or response mechanisms in Northern Ghana. The component of risk perception includes individuals’ perceptions of risk probability, risk severity or vulnerability, and their anxiety [26]. It is generally predicted that high risk perception leads to higher likelihood of disaster preparedness [18]. On the other hand, coping capacity or response orientation is a process or course of preparedness in which individuals look forward to finding the best possible options, actions, and measures that could minimize the losses and damages from exiting or imminent risks [26]. The coping aspect focuses more on the usefulness of the preventive measures and individuals’ skills and knowledge to put them into practice.

3. Methods

The study was based on primary data obtained from group discussions in communities affected by climate change in the Wa-West District in Ghana (see Table 1 and Fig. 1). The Wa-West District is one of nine districts in the Upper West Region of North Ghana. Being a part of the north, the entire district, particularly the rural areas, are highly susceptible to climate change risks. We conducted surveys in four village communities, including Chiatanga, Bankpama, Zowayili, and Balaofili. We selected these four communities for the following reasons. First, they were identified by the research team of the local university, the University for Development Studies (UDS), as highly affected village communities in the region. As these communities were poor, they lacked the socioeconomic resources and political will to mobilize and/or influence the local disaster management authorities to take the initiative in disaster mitigation. Moreover, unlike other nearby communities, these communities were well accessible and operationally convenient areas for organizing workshops, building rapport, and conducting site visits for primary data collection. Moreover, the local leaders had shown a keen interest in initiating activities to improve their community.

To accumulate local communities’ concerns on climate change risks and household adaptation strategies, we organized group meetings in four villages (Table 1). Following the local tribal tradition, to conduct a meeting in each community, we first informed the chief of the community of our intention to hold a meeting, and, after we received the chief’s consent, the date and place of the meeting was decided. It was the chief who decided the list of participants from the particular community and summoned them. In general, the participants of a group meeting included the chief of the tribal community, village wise men and elder council members, village assemblymen, and few general members of the community (see Fig. 2). Notably, except in Zowayili, women did not participate in any focus group meeting. During the focus group meetings, the opinions and views of the chief were considered.
as the final verdict; however, other participants were allowed by the chief to share their concerns about existing risks and possible coping options. In the majority of the meetings, the number of participants was 7 to 10, excluding the researchers. However, in many cases, the number of participants was as high as 20. During the meetings, the leader of the research team first explained the aims and scope of the meeting, and then the discussion began in a structured manner, following the research objectives. The meeting was organized in the community and carried out in a semi-structured manner; that is, for every meeting there was a fixed number of questions. However, the participants were allowed to express their concerns freely and in an open-ended manner. Furthermore, in several occasions, questions were also asked to deepen the understanding of particular facts or concerns provided and expressed by respondents. On average, the meetings lasted 2.5 hours. The village meeting was conducted in the local language, Wala. The fifth author of this paper acted as interpreter between the research group and the communities. The surveys were carried out in two phases, the first in June, 2013 and the second in November, 2013. The issues discussed in the group meetings were climate-change-induced risks and communities’ existing coping orientations. Table 1 provides an outline of the survey process to understand the communities’ concerns about the impact of climate change the Wa-West District.

4. Results

Based on 8 group meetings, this study collected communities’ concerns on two different but mutually interdependent aspects: climate change risk perception and community coping orientation.

4.1. Nature and Magnitude of Climate Change Risks

Based on group meetings with all four communities, common rain calendars as perceived by the communities were drawn (Fig. 3). Fig. 3(A) shows that during normal times, the rainfall was concentrated in the period from April to October, and during the period of August, the rains used to reach their peak levels. Normally, the dry season continued from November to the end of March or the beginning of April (Fig. 4). Fig. 3(B), which is also drawn based on communities’ common understandings, shows that in the last 15 to 20 years, local communities have seen clear changes in the climate pattern. The wet season is now getting shorter; the onset of rain has shifted to June instead of the beginning of April. Moreover, in several years there was no rain observed until the end of July. Similar findings were reported by the study of Laube et al. [2] in Northern Ghana. Statistical
analyses of rainfall patterns over the last 60 years have shown that the onset of the rainy season has shifted from April to May, and the dry spell during the rainy season has lengthened [4]. Over the past three decades, there has been a 20% reduction in rainfall [3]. The immediate and concomitant consequence of this long dry season is water scarcity and drought, which brings more suffering and even starvation to these poverty stricken communities. According to the community, in the normal climate scenario, the dry season continues for a period of 5 to 5.5 months (see Fig. 3(A)), but it has extended to up to 6-7 months without a drop of rain (see Fig. 3(B)). Besides that, communities are now experiencing erratic and sometimes very intensive rains along with wind storms in August, which is immediately after the long dry spell. Consequently, the frequency of floods has also increased. Due to changing nature of the climate, communities such as Chiatanga and Baleofiili have reported that they are experiencing drought and flooding in succession in a single year. This means the frequency of floods has increased, but the wet spell has gotten shorter and shorter while water scarcity has increased overall.

In summary, the following are the important concerns the communities expressed about climate change risks.

i) Temperature has increased. The frequency of drought has increased. Drought or water scarcity is the most frequently observed phenomenon caused by climate change. Communities believe that they will experience more droughts in the future, and that situation will severely affect their livelihoods.

ii) Rainfall has become erratic and sometimes very intensive. The total span of the wet season has shortened and total precipitation has decreased, but the frequency and severity of floods have increased.

iii) More, stronger winds have been observed. The frequency and severity of the winds have increased.

iv) As a result of the expansion of agricultural land, bushfires, and the high demand for firewood, forest cover of the research area has been vanishing.

Based on the above concerns, the communities face two major risks: flood and drought. Next, each of the risks will be discussed.

4.1.1. Flood Risks

Table 2 shows that only one community has experienced floodwaters inside the settlement, namely Baleofiili in 2010. None of the other communities could remember floodwaters entering their houses or settlement in the past.
20 to 30 years. There is also no record available at the district level on the flood of 2010. Baleofiili, which is considered to have comparatively better socioeconomic capacities, had floodwaters inside people’s homes for less than 24 hours in 2010. Heavy rain caused this flood, which damaged mud buildings and crops stored in houses. No human loss or injury was reported (damaged mud buildings and crops stored in houses). No floodwaters inside people’s homes for less than 24 hours in 2010. Heavy rain caused this flood, which damaged mud buildings and crops stored in houses. No human loss or injury was reported (damaged mud buildings and crops stored in houses).

Table 2. Flood risks: nature and causes.

<table>
<thead>
<tr>
<th>Village</th>
<th>Flood settlement in agricultural land</th>
<th>Flood in (in feet)</th>
<th>Floodwater level (in feet)</th>
<th>Duration of flood (in months)</th>
<th>Time of water logging</th>
<th>Frequency of floods</th>
<th>Reasons for floods</th>
<th>Last flood observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiatanga</td>
<td>Never</td>
<td>Yes</td>
<td>20</td>
<td>2</td>
<td>July to August</td>
<td>Once every 3 years</td>
<td>Dam across the Black Volta</td>
<td>2007</td>
</tr>
<tr>
<td>Bankpama</td>
<td>Never</td>
<td>No</td>
<td>15</td>
<td>1</td>
<td>July</td>
<td>Never</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Zoawayili</td>
<td>Never</td>
<td>A little</td>
<td>20</td>
<td>2</td>
<td>July to August</td>
<td>Once every 10 years</td>
<td>Heavy rain</td>
<td>2003</td>
</tr>
<tr>
<td>Baleofiili</td>
<td>A little in 2010</td>
<td>Yes</td>
<td>10</td>
<td>1</td>
<td>July to August</td>
<td>Once every 3 years</td>
<td>Heavy Rain</td>
<td>2010</td>
</tr>
</tbody>
</table>

Table 3. Impacts of floods on villages.

<table>
<thead>
<tr>
<th>Villages</th>
<th>Human loss and injury</th>
<th>Damage to buildings</th>
<th>Damage to durable assets</th>
<th>Damage to household</th>
<th>Crop loss</th>
<th>Livestock loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stocked foods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiatanga</td>
<td>Not at all*</td>
<td>Very little**</td>
<td>Not at all</td>
<td>Very little</td>
<td>A Great Extent</td>
<td>Very little</td>
</tr>
<tr>
<td>Bankpama</td>
<td>Not at all</td>
</tr>
<tr>
<td>Zoawayili</td>
<td>Not at all</td>
<td>Not at all</td>
<td>Not at all</td>
<td>Very Little</td>
<td>Very Little</td>
<td>Very Little</td>
</tr>
<tr>
<td>Baleofiili</td>
<td>Not at All</td>
<td>Very little**</td>
<td>Not at All</td>
<td>Very little**</td>
<td>Some Extent</td>
<td>Not at all</td>
</tr>
</tbody>
</table>

Note : Scale used for flood impacts : Totally, A great extent, Some extent, Very little, Not at all.
*It was reported that a fisherman who used to live in close proximity to the river had lost his life.
**Reported damage was mainly due to heavy rain falling on buildings made of mud.

Table 4. The relation between flood vulnerability and lack of livelihood security in upland areas, as explained by the chief of Chitanga.

<table>
<thead>
<tr>
<th>Merits (benefits)</th>
<th>Demerits (Costs)</th>
<th>Merits (benefits)</th>
<th>Demerits (Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No flood/ water logging</td>
<td>Lack of water source</td>
<td>Plenty of water</td>
<td>Heavy rain and river overflow</td>
</tr>
<tr>
<td>No irrigation facilities</td>
<td>No threat to life and property</td>
<td>Better irrigation source</td>
<td>Opening of dam water gate without prior notice</td>
</tr>
<tr>
<td>Infertile land</td>
<td>Preferred residential location</td>
<td>Fertile land</td>
<td>Threat to life and property</td>
</tr>
<tr>
<td>Lack of alternative employment</td>
<td>Source of income from agriculture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20 to 30 years. It is notable that floods have caused enormous damage to agriculture, but the affected communities are reluctant to build embankments or levees on the river banks. This is because riverside lands are fertile because of river sedimentation and the easy access to water for irrigation, but they are susceptible to flooding.

It is notable that floods have caused enormous damage to agriculture, but the affected communities are reluctant to build embankments or levees on the river banks. This is because riverside lands are fertile because of river sedimentation and the easy access to water for irrigation, but they are susceptible to flooding.
Assessing Rural Communities Concerns for Improved Climate Change Adaptation Strategies in Northern Ghana

Table 5. Nature of water scarcity.

<table>
<thead>
<tr>
<th>Villages</th>
<th>Lack of drinking water</th>
<th>Lack of water for irrigation or agriculture</th>
<th>Lack of water for livestock rearing</th>
<th>Water borne disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiatanga</td>
<td>Great extent</td>
<td>Absolutely</td>
<td>A great extent</td>
<td>Very little</td>
</tr>
<tr>
<td>Bankpama</td>
<td>Absolutely</td>
<td>Absolutely</td>
<td>A great extent</td>
<td>A great extent</td>
</tr>
<tr>
<td>Zoawayili</td>
<td>Absolutely</td>
<td>Absolutely</td>
<td>A great extent</td>
<td>Some extent</td>
</tr>
<tr>
<td>Baleofiili</td>
<td>Some extent</td>
<td>Some extent</td>
<td>Some extent</td>
<td>Very little</td>
</tr>
</tbody>
</table>

Note: Scale used for water scarcity: Absolutely, A great extent, Some extent, Very little, Not at all.

Table 6. Sources of drinking water facilities.

<table>
<thead>
<tr>
<th>Communities</th>
<th>Borehole/deep tube-well</th>
<th>Well</th>
<th>Natural steams</th>
<th>Pond in village</th>
<th>Access to pond outside village</th>
<th>River (access to river)</th>
<th>Rainwater harvesting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiatanga</td>
<td>0</td>
<td>0</td>
<td>Only in rainy season</td>
<td>0</td>
<td>Yes</td>
<td>Yes</td>
<td>Only in rainy season</td>
</tr>
<tr>
<td>Bankpama</td>
<td>0</td>
<td>1</td>
<td>Only in rainy season</td>
<td>0</td>
<td>Yes</td>
<td>Yes</td>
<td>Only in rainy season</td>
</tr>
<tr>
<td>Zoawayili</td>
<td>1</td>
<td>1</td>
<td>Only in rainy season</td>
<td>0</td>
<td>Yes</td>
<td>Yes</td>
<td>Only in rainy season</td>
</tr>
<tr>
<td>Baleofiili</td>
<td>1</td>
<td>2</td>
<td>Only in rainy season</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>Only in rainy season</td>
</tr>
</tbody>
</table>

Implementation caused by floods. Moreover, the construction of levees would inhibit the communities’ free access to river water. The chief of Chiatanga also suggested that adequate irrigation facilities in upland areas or alternative employment may reduce this risk by decreasing the number of people farming near the riverside. In summary, even knowing the floods could be catastrophic, the tribal communities, such as Chiatanga, welcome such natural calamities, as they keep their agricultural land fertile.

4.1.2. Water Scarcity and Drought Risks

Water scarcity or drought is reportedly the most severe climate change impact faced by the community. In Table 5, it is shown that due to climate change, all communities in the study area are facing water-related risks, such as water borne diseases and the lack of potable water and irrigation systems. Communities’ concerns over water-related risks can be divided into two parts: drinking water risks and inadequate water for agriculture or irrigation.

4.1.3. Drinking Water Risks

All communities reported that they have a 100% drinking water problem, which means that they have inadequate drinking water resources, a dropping groundwater level in the dry season, poor drinking water quality, including muddiness, iron, and smell, water borne diseases, and remote access to drinking water sources. Table 6 shows that, irrespective of the communities, the major source of drinking water is the river and ponds. Only two communities reported that they have a borehole, and only one community has a pond of its own (Fig. 5). In the present climate change context, communities are forced to alter their sources of drinking water throughout the year, as shown in Fig. 6. During the rainy season, the options are much more open; even using rainwater from rooftops is also observed. Traditional wells, hand pumps, and natural streams are also common sources of drinking water in the rainy season. Local wells and hand pumps or boreholes are functional only until January, that is, just a few months after the rainy season. Afterwards, local people have to depend on ponds and the river for drinking water. Furthermore, if rains do not come until May or June due to changing climate, the water scarcity reaches its highest level, and the communities have to travel a long distance every day to fetch drinking water. With the changing climate pattern, the scarcity of drinking water and inefficiency of the existing drinking water supply system become prominent.

Figure 7 shows that in the present climate change context, it is only for the 4 to 5 months from August to November that communities have plenty of drinking water because of rain. Though the communities have started recycling rainwater for drinking water and other purposes, they do not yet have any mechanism for storing rainwater for the dry season. Natural streams that are active during the rainy season become inactive if there is no rain. For the first few months just after the rainy season, communities also have access to safe drinking water because during this time boreholes and wells work well as the groundwater is replenished by rains. The situation gets difficult starting between January and March. From January onwards, boreholes become nonfunctional and traditional wells dry up because of the falling groundwater level. Moreover, there are not enough boreholes. Generally, one borehole services six to seven village communities. Therefore, to get a little water, the women of

Fig. 5. A pond in Baleofiili.
the house have to travel long distances and wait in long lines for water from boreholes. Usually, before the climate changed, by the end of March the area used to have rains which replenished local water bodies. However, due to climate change, no rainfall can be observed until May or June. People have to satisfy their water requirement by traveling 6 to 10 km every day, and that is to get muddy, polluted, bad colored river water which often bears disease. Therefore, all individuals, irrespective of their gender, education and economic status, have expressed a deep need for a safe drinking water system.

Communities have reported that water scarcity or drought is accelerating their livelihood risks. As Fig. 8 shows, in former days, communities were usually engaged in agricultural activities from April to October, and whatever they produced was used to satisfy their own needs during the dry season. Animal husbandry and sometimes forestry were considered as secondary occupations practiced during dry seasons. However, Fig. 9 shows that with the climate change impacts, this subsistence agriculture economy is under great threat. People cannot depend with certainty on agriculture for their livelihood. Because of erratic and decreasing rainfall and the lack of access to bodies of water, the traditional system of agriculture is under great threat. People do not have much water in upland areas, so they go to the riverside, but it is prone to floods. As a result, the crops produced are not adequate for the requirements of the communities. As farming provides the basis of the livelihoods of the local communities, several households are experiencing difficulty gaining enough income for basic amenities or education. Communities have indicated that the declining success of their crops has occasionally obliged them to keep what they could harvest for their household needs in lieu of selling them in the market, reducing household

Fig. 6. Sources of water according to the rain calendar.

Fig. 7. Drinking water risks due to climate change.
Assessing Rural Communities Concerns for Improved Climate Change Adaptation Strategies in Northern Ghana

Preparation of Land Plantation Water Management/ Pest Management Harvesting Livestock Management and other secondary occupations

Calendar

Indicators
- Little Rain
- Normal Rain
- Dry Season
- Heavy Rain

Fig. 8. Normal livelihood pattern and agricultural activities.

Livelihood Activities

Calendar

Migration and other economic problem Migration and Starvation Riverside Agriculture and loss of crops due to flood Selling livestock

Indicators
- Little Rain
- Normal Rain
- Dry Season
- No Rain in Rainy Season
- No Rain for long / Drought
- Heavy Rain

Fig. 9. Water scarcity and climate change impacts on agriculture and welfare.

In addition to that, practicing animal husbandry is becoming challenging because of a lack of water and pasture land. As a result, from January on, migration to nearby towns is observed. In extreme cases, if rains do not come by April or May, this drought brings starvation and disease.

4.2. Communities’ Coping Orientations

The entire community has recognized that floods and droughts are recurring events and their impacts are severe, but to reduce the risks of climate change, there are not many coordinated and planned actions initiated at the community or household levels. Presently, there are almost no governmental or non-governmental organizations providing support to local communities to enhance their resilience against floods and droughts. Local communities have indicated that major impediments to implementing adaptation strategies are the lack of financial resources and knowledge. Communities have informed us that they have barely any knowledge as to what they can do on their own, and any adaptation strategies they could foresee require considerable funding. Communities have, however, communicated that they have manpower, plenty of land, timber and sand, all of which can be mobilized for the implementation of preventive measures. During the group meetings, communities stated their preferred adaptation strategies and status of those adjustments, as follows (also see Table 7).

i) Irrigation was the most preferred adaptation strategy among the communities. Access to irrigation would bring security in cultivation and provide more stable income for the families. Farmers currently use river water extracted mainly by manual means using buckets. A few farmers use shallow groundwater, which they access from dugouts.

ii) Communities also listed wells and boreholes as preferred strategies. Communities contend that they spend a significant amount of time every day hauling...
water from distant sources, and the quality of the water is extremely bad. As a result, wells and boreholes were considered to be essential adaptation strategies during periods of drought. Communities complained of the unavailability of pipe boreholes, because wells often completely dry up during periods of drought. Rainwater harvesting can be observed only in the rainy season. During the rainy season, the majority of the households store rainwater in plastic drums for use as drinking water. There is no mechanism developed to store and recycle rainwater for future use as people think large household size and the lack of financial resources prohibits them from harvesting rainwater for use as drinking water.

iii) Communities also prefer to have seasonal forecasts to prepare better for the season, especially in order to know whether or not to go to the riverside for farming and also to decide the times for field preparation, seed sowing, and water management. Early warnings for evacuation did not receive much support. This is because evacuation would mean that they could save their lives, but they could not save their crops, which are the source of their livelihood. In contrast, seasonal forecasts could help them not only by telling them when to cultivate but also if the rivers may overflow their banks. It was also expressed that local knowledge related to seasonal predictions was gradually disappearing, and people could no longer rely on it.

iv) Drought tolerant crops were another adaptation strategy preferred by communities.

v) Opportunities for employment or work outside subsistence agriculture are scare, limiting residents’ ability to seek other sources of income. Residents increasingly turn to charcoal production as a means of gaining income, but the implications of that are bushfires and deforestation. Moreover, deforestation, overgrazing, and bushfires have degrading effects on the already poor soils of the area.

vi) Migration is not a preferred coping strategy but a commonly adopted one nonetheless. Farmers generally migrate to southern Ghana in search of work in the mining, plantation, and urban areas. Both permanent and seasonal migration are observed. Many migrants stay for a number of years in the south and later return to begin farming again in the homeland. Seasonal migration usually takes place during the dry season when agricultural production comes to a halt and the demand for labor is high in urban areas.

5. Discussion and Conclusions

As Northern Ghana is considered as one of the most vulnerable regions due to climate change, there is a growing need to enhance the ability of local communities to cope by encouraging them to adopt household- and community-level preventive measures. However, studies across the world on disaster and climate change risks inform us that the adoption of non-structural preventive measures by local communities remains elusive. It is considered that planners and policy makers often neglect community ideas, opinions, and views about risk and mitigation strategies. As a result, the concerns of communities are not reflected in climate change adaptation decisions. The concomitant results of this are that local communities have refused to adopt the proposed and desired preventive measures or actions, including crop alteration, watershed management, evacuation planning, crop conservation, etc. Therefore, community concern assessment is considered to be a critical step in the climate change risk governance process. Considering the importance of concern assessment, this study has systematically examined the concerns of four rural tribal communities affected by risks induced by climate change in Northern Ghana. We
These measures has been constrained by the lack of financial resources [2]. Farmers are vulnerable to unexpected events, such as flooding from extreme weather; seasonal variations, particularly in the timing and amount of rainfall; and long term trends, such as an increased mean temperature. Coping strategies are commonly in place to reduce vulnerabilities to seasonal variation. Such coping strategies include planting a mixture of crops and cultivars adapted to different moister conditions, using landraces resistant to climate stresses, and conserving water [30, 31].

Not much coordinated and planned community adaptation strategy has been observed. Major adaptation strategies taken by the communities, which are basically reactive rather than proactive, have included migration, charcoal production, livestock selling, and risky riverside farming. The communities have mentioned that they intended to adopt innovative preventive measures but were unable to implement them because they lacked the requisite knowledge and financial resources. The most preferred adaptation strategies are irrigation facilities, boreholes for potable water, seasonal forecasting systems, and crop varieties. People also prefer rainwater harvesting as a potential mechanism for reducing drinking water risks, but it is not considered to be feasible or affordable because of large household sizes and tank construction costs. Communities have identified that the diffusion of innovative preventive measures to fight drought and flooding can be possible because all communities are endowed with many resources, including manpower, land, timber, stone, and sand. Some critical measures identified in this study are rainwater harvesting, water shed management, a seasonal weather forecast system, and drought preventive household actions. Improving communities’ intentions and capacities to implement risk preventive measures in combination with the mobilization of local resources are imminent challenges for planners and researchers to reduce the climate change risks in the region.

References:
Name: Togbga Dzivenu

Affiliation: Centre for Disaster Research and Education, University for Development Studies (UDS)

Address: University for Development Studies, Wa, Upper West Region, Ghana

Brief Career: 1997-2007 Lecturer, UDS Wa campus
2007- Executive Director, Centre for Disaster Research and Education, UDS Wa campus

Name: Martin Oteng-Ababio

Affiliation: Coordinator, Urban Disaster Risk Reduction Programme, University of Ghana

Address: P. O Box LG 59, Accra, Ghana

Brief Career: 2009 Visiting Scholar, University of Miami, USA
2012-2013 M. Phil. (Development Management) Degree Candidate, University for Development Studies, (UDS) Ghana

Selected Publications:

Academic Societies & Scientific Organizations:
• Ghana Geographical Association (GGA)
• Association of America Geographers (AAG)
• Africa Urban Risk Analysis Network (AURAN)
• Sustainable Development Solutions Network (SDSN)
• Urban Climate Change Research Network (UCCRN)

Name: Mujeeb Rahaman Adams

Affiliation: Researcher, Centre for Society and Climate Change Affairs

Address: P.O.Box UPW7 University Post Office, Wa, Ghana

Brief Career: 2010-2013 M. Phil. (Development Management) Degree Candidate, University for Development Studies, (UDS) Ghana
2012- Researcher, Centre for Society and Climate Change Affairs
2012- Part time Tutor, Institute of Continuing and Distance Education, University of Ghana, Wa Centre

Selected Publications:
• “The Impact of the University for Development Studies Campus on Sustainable Livelihoods in Bamahu Community,” Master’s Degree Thesis (submitted to the University for Development Studies).

Academic Societies & Scientific Organizations:
• Institute of Certified Economists of Ghana (ICEG)

Name: Frederick Dayour

Affiliation: Lecturer, MPhil, Department of Community Development, University for Development Studies

Address: Wa, Upper West Region, Ghana

Brief Career: 2009-2010 Teaching Assistant, University of Cape Coast, Ghana
2013- Joined University for Development Studies, Ghana

Selected Publications:

Academic Societies & Scientific Organizations:
• University Teachers Association of Ghana (UTAG)
• Ghana Geographical Association (GGA)
• Association of American Geographers (AAG)
• Green Life (US Based)

Name: Hirohiko Ishikawa

Affiliation: Disaster Prevention Research Institute, Kyoto University

Address: Gokasho Uji, Kyoto 611-0011, Japan

Brief Career: 1981-1994 Research Scientist at Japan Atomic Energy Research Institute
1994-2005 Associate Professor at Disaster Prevention Research Institute, Kyoto University
2005- Professor at Disaster Prevention Research Institute, Kyoto University

Selected Publications:

Academic Societies & Scientific Organizations:
• Meteorological Society of Japan (MSJ)
• Atomic Energy Society of Japan (AESJ)
• Japan Society for Natural Disaster Sciences (JSNDS)
• American Geophysical Union (AGU)