Prevalence of agenesis of palmaris longus muscle and its association with gender, body side, handedness and other anomalies of the forearm in a student population in Ghana

Article in Rawal Medical Journal · January 2014

CITATIONS
5

READS
83

2 authors:

Jubilant K Ablawi
University of Ghana
14 PUBLICATIONS 82 CITATIONS

Eric Bekoe Offei
University of Ghana
9 PUBLICATIONS 50 CITATIONS
Prevalence of agenesis of palmaris longus and its association with gender, body side, handedness and other anomalies of the forearm in a student population in Ghana.

J.K. Abledu, E.B. Offei

School of Veterinary Medicine, University of Ghana, Legon, Accra, Ghana.

Objective: To determine the prevalence of congenital absence of palmaris longus (PL) muscle and its association with gender, handedness, body side and other neighboring anomalies in a Ghanaian population.

Methodology: The presence of PL was determined in 210 subjects using the standard technique; in subjects with an absent PL, four other tests were done to confirm the absence. All subjects were examined for completeness of the palmar arches (Allen’s test) and for the presence of flexor digitorum superficialis (FDS) to the little finger using the standard technique.

Results: The estimated prevalence of agenesis of PL was 3.8% with no significant differences in terms of gender, body side and handedness (p>0.05). However, unilateral absence on the right side was more common in females (p=0.0302). None of the subjects with absent PL had a concomitant absence of FDS to the little finger or anomalous superficial palmer arch or both.

Conclusion: The prevalence of congenital absence of PL in this Ghanaian population is much lower than values coated in standard textbooks of surgery, and is independent of gender, body side, handedness and neighbouring anomalies like functional loss of FDS to the little finger and anomalous SPA. (Rawal Med J 2014;39:203-207).

Keywords: Agenesis, palmaris longus, FDS to the little finger, anomalous SPA.

INTRODUCTION

Palmaris longus (PL) is a slender, superficial flexor muscle of the forearm whose attachments (origin and insertion) are anatomically highly variable and is classified phylogetically as a degenerating muscle. Its main function is to weakly flex the wrist and tense the palmar aponeurosis, synergized by flexor carpi radialis, flexor carpi ulnaris and flexor digitorum superficialis muscles. It is innervated by the median nerve (C6,C7).

Palmaris longus is one of the most variable anatomical entities in the human body. Some of the variations include classical, double, reversed, central, bifid, multiple headed; and in many cases, the muscle may be completely absent (agenesis), either unilaterally or bilaterally. It is functionally negligible and often used as graft tendon in a variety of surgical procedures such as correction of ptosis, management of facial paralysis and lip augmentation.

Congenital agenesis of PL has been studied extensively following the first report of its absence. The prevalence of agenesis of PL varies in different populations. For instance, it is 4.5% in African Americans, 2.9% in Asians and 13.1-14.9% in Caucasians. The highest prevalence of agenesis of PL reported in the literature was 63.91% in a Turkish population.

To date, only one report has documented exclusively the prevalence of agenesis of PL in Ghanaian subjects. Whether the agenesis of PL has a significant association with the gender or handedness of an individual or other anomalies such as functional loss of flexor digitorum superficialis (FDS) to the little finger or anomalous superficial palmar arch (SPA) is a subject of controversy. The aim of this study, therefore, was to determine the prevalence of congenital absence of PL and to verify its association with gender, handedness, body side and other neighbouring anomalies in a Ghanaian population.
METHODOLOGY
This cross study included a random sample of 210 individuals of Ghanaian descent (146 males and 64 females) aged 17-28 years (mean age: 22.7 ± 2.1 years) attending school at Koforidua Polytechnic in Ghana. Students were chosen for the study because of higher tendency to cover various ethnic groups. Participation in the study was voluntary and informed consent was obtained from each participant. The inclusion criteria were as follows: being a Ghanaian and having no history of injury, disease or surgery of the upper limb. Each participant completed a questionnaire (that included age, sex, ethnicity and dominant hand) and was examined for the presence or absence of PL tendon, FDS tendon to the little finger and anomalous SPA for both upper limbs.

Assessment of the presence of PL tendon was initially done by the Standard test (Schaeffer’s test): The subject was asked to oppose the thumb to the little finger and then flex the wrist. If the tendon was not visualized or palpable, 4 additional tests were done to confirm the absence which included Thompson’s test, Mishra’s test I, Mishra’s test II and Pushpakumar’s “two-finger sign” method.

Assessment of FDS tendon to the little finger was done by first, confirming full and free range of motion of the proximal interphalangeal joint (PIPJ) of both fingers. Independent function was defined as the ability to flex the PIPJ of the little finger >90° with the PIPJ of the other fingers extended, while common function was defined as the ability to flex the PIPJ of the little finger >90° only when the ring finger PIPJ was also allowed to flex simultaneously. Absent function was the inability to flex the PIPJ >90° even when flexion of the ring finger PIPJ was allowed.

Assessment of the completeness of the palmar arches was done using the Modified Allen’s test. The data was analysed using Graphpad Prism Software for Window version 6.0 (Graph Pad Software, San Diego, USA; www. Graphpad.com). The association between PL agenesis and body side, gender, FDS to the little finger and anomalous superficial palmer arch was assessed using Chi-square or Fisher’s exact tests where possible. A value of p<0.05 was considered statistically significant.

RESULTS.
Out of the 210 subjects, 13 (6.2%) were left-handed and 197 (93.8%) were right-handed. The average age of the males was 22.8±2.1 years and that of the females was 22.6±2.1 years (Table 1). Of the 210 subjects, 208 (99%) had PL tendon in at least one of the forearms while 202 (96.2%) had PL tendon in both hands. Congenital agenesis of PL tendon was observed in 8(3.8%) subjects out of the total population, unilateral agenesis was observed in 2.8% (1.4% on each side) of the cases and bilateral agenesis, in 2 (1%) of the cases (Table 1). Gender differences in terms of agenesis of PL tendon was statistically significant only in the right forearm (male = 4.7%; female = 0%; p=0.0302), but not in the left forearm (male = 2.1%; female = 0%; p=0.5556), both forearms (male=0.7%; female=1.6%; p=0.5202) and the overall agenesis (male=2.7%; female=6.3%; p=02600). None of these individuals had a concomitant absence of FDS to the little or anomalous superficial palmer arch or both. The results of the Allen’s test (Table 1) show that a total of 4(1.9%) individuals had anomalous superficial palmer arch with 3 (1.5%) of the cases presenting the condition unilaterally and 1(0.5%) bilaterally (Table 1). In all of these cases, gender differences in the prevalence of anomalous SPA was statistically insignificant (p>0.05). Of the individuals with anomalous SPA, 2 (1%) and 1 (0.5%) respectively had independent and common functions of FDS bilaterally. There was no statistically significant association between FDS to little finger and anomalous palmer arch. Out of the 210 forearms examined for the presence of FDS to the little finger, 5(2.4%) had functional loss, 106(49.4%) had common function and 99 (47.1%) had independent function (Table 1). These prevalence rates in terms of body side (unilateral or bilateral) and gender was not statistically significant. Prevalence of common function of FDS to little finger in left-handed individuals (61.5%) was significantly (p=0.0002) higher than in right-handed individuals (7.6%) (Figure 1A). We did not find any statistically significant association between
independent function (left-handed=15.4%; right-handed=11.2%; p=0.6566) or absence of FDS to the little finger (left-handed 7.7%; right-handed=0%; p=0.0664) and dominant hand.

Table 1. Characteristics of the study subjects and the prevalence of various anomalies of the forearm stratified by sex and body side.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (n=210)</th>
<th>Male (n=146)</th>
<th>Female (n=64)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>22.7±2.1</td>
<td>22.8±2.1</td>
<td>22.6±2.1</td>
<td>0.6136</td>
</tr>
<tr>
<td>Dominant hand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>13(6.2)</td>
<td>9(6.2)</td>
<td>4(6.3)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Right</td>
<td>197(93.8)</td>
<td>146(93.8)</td>
<td>60(93.8)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Absence of PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral left</td>
<td>3(1.4)</td>
<td>3(2.1)</td>
<td>0(0)</td>
<td>0.5556</td>
</tr>
<tr>
<td>Unilateral right</td>
<td>3(1.4)</td>
<td>0(0)</td>
<td>3(4.7)</td>
<td>0.0302</td>
</tr>
<tr>
<td>Bilateral</td>
<td>2(1.0)</td>
<td>1(0.7)</td>
<td>1(1.6)</td>
<td>0.5202</td>
</tr>
<tr>
<td>Overall</td>
<td>8(3.8)</td>
<td>4(2.7)</td>
<td>4(6.3)</td>
<td>0.2600</td>
</tr>
<tr>
<td>Positive Allen’s test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(anomalous SPA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilateral left</td>
<td>1(0.5)</td>
<td>0(0)</td>
<td>1(1.6)</td>
<td>0.3081</td>
</tr>
<tr>
<td>Unilateral right</td>
<td>2(1.0)</td>
<td>2(1.4)</td>
<td>0(0)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Bilateral</td>
<td>1(0.5)</td>
<td>1(0.7)</td>
<td>0(0)</td>
<td>1.0000</td>
</tr>
<tr>
<td>Overall</td>
<td>4(1.9)</td>
<td>3(2.1)</td>
<td>1(1.6)</td>
<td>1.0000</td>
</tr>
<tr>
<td>FDS to little finger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>5(2.4)</td>
<td>106(50.5)</td>
<td>99(47.1)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Common</td>
<td>0(0)</td>
<td>17(7.9)</td>
<td>36(18.3)</td>
<td>0.7257</td>
</tr>
<tr>
<td>Independent</td>
<td>4(1.9)</td>
<td>3(2.1)</td>
<td>1(1.6)</td>
<td>0.9665</td>
</tr>
<tr>
<td>Male(n=146)</td>
<td>4(2.7)</td>
<td>83(56.8)</td>
<td>56(38.6)</td>
<td>0.9658</td>
</tr>
<tr>
<td>Female(n=64)</td>
<td>1(1.6)</td>
<td>41(64.1)</td>
<td>47(72.6)</td>
<td>0.8980</td>
</tr>
</tbody>
</table>

Continuous data is presented as mean ± standard deviation. Categorical data is presented as frequencies and percentages (in parenthesis). *p=1.0000; †p=0.6277; ‡p=0.8062 when male and female are compared.

In Figure 1B, the prevalence of PL in left-handed individuals (7.7%) was higher than in right-handed individuals (1%) but the difference is not statistically significant (p=0.1853). Similarly, the association between dominant hand and anomalous superficial palmer arch did not yield statistically significant results (left-hand=0%; right-handed=1%; p=1.0000) (Figure 1B). In both right- and left-handed individuals, the prevalence of agenesis of PL was higher in the non dominant hand, but this was not statistically significant (p=1.000 and p=0.2882 respectively) (Figure 1C).

DISCUSSION

Functionally negligible, the palmaris longus muscle has been of morphological interest to Anatomists worldwide. The prevalence of congenital agenesis of PL has been studied extensively with reports varying in different populations. Some authors have also attempted to correlate the agenesis of PL with other anatomical anomalies of the hand. However, most of these studies were carried out in Caucasians and only one report has documented the prevalence of agenesis of this muscle exclusively in Ghanaian subjects. To the best of our knowledge, no research has explored the agenesis of PL, functional loss of FDS to the little finger and anomalous SPA as a triadic entity in the
The prevalence of palmaris longus agenesis in the Ghanaian population is lower compared to what is reported in most Caucasian populations and lower than in Indians but higher than in Chinese in the Indian study. In our study, none of the 210 subjects had absolute deficiency of the FDS to the little finger and an absent PL tendon. In the Chinese study, only one subject out of a total of 329 had an absolute deficiency of the FDS to the little finger and an absent PL tendon; statistical analysis however, confirmed no correlation between the two. Another study involving 300 patients found only one patient with concomitant absence of the PL tendon and FDS to the little finger. An Indian study of 400 subjects found only one subject with absence of PL and concomitant absence of FDS to the little finger. Our finding agrees perfectly, and like the previous studies, we conclude that there is no relationship between the functional absence of the FDS to the little finger and the agenesis of PL.

The prevalence of absence of the FDS to the little finger in our study was 2.4%. This value is comparable to 6.4% reported among Chinese and 0.25% in Indians but lower than 15%-21% reported in most Caucasian populations. In our study, none of the 210 subjects had absolute deficiency of the FDS to the little finger and an absent PL tendon. In the Chinese study, only one subject out of a total of 329 had an absolute deficiency of the FDS to the little finger and an absent PL tendon; statistical analysis however, confirmed no correlation between the two. Another study involving 300 patients found only two patients with concomitant absence of the PL tendon and FDS to the little finger. An Indian study of 400 subjects found only one subject with absence of PL and concomitant absence of FDS to the little finger. Our finding agrees perfectly, and like the previous studies, we conclude that there is no relationship between the functional absence of the FDS to the little finger and the agenesis of PL.

Nevertheless, our study also found that the prevalence of common function of FDS to the little finger and the agenesis of PL tendon and FDS to the little finger. A cadaveric study suggested that there was an association between the agenesis of PL and anomalous SPA and out of the 47 cadaveric hands examined, the PL tendon was absent in 25 hands of which 22 had anomalous SPA. However, in our study, four (1.9%) individuals had anomalous SPA and none of them had an absent PL. This compares favorably with the Indian study. In a related study, only one out of the 15 subjects with an absent PL tendon showed a positive Allen’s test suggestive of anomalous SPA. We, therefore, believe that there is no association between the agenesis of the PL tendon and anomalous superficial palmer arch.

CONCLUSION
The prevalence of palmaris longus agenesis in the Ghanaian population is lower compared to what is quoted in standard textbooks. Unilateral agenesis
of PL in the right forearm was more common in females. There is no correlation between agenesis of PL and gender, handedness or body side. There seems to be no relationship between the agenesis of PL and neighboring such as functional loss of FDS the little finger and anomalous SPA.

REFERENCES