DIVERSITY OF *Striga gesnerioides* (L.) Walp ON COWPEA IN GHANA

FREDERICK JUSTICE AWUKU

(10277011)

THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MPHIL CROP SCIENCE DEGREE

UNIVERSITY OF GHANA

COLLEGE OF BASIC AND APPLIED SCIENCES

DEPARTMENT OF CROP SCIENCE

JULY 2017
DECLARATION

I hereby declare that except for references to works of other researchers, which have duly been cited, this work is my original research and that neither part nor whole has been presented elsewhere for the award of a degree.

Frederick Justice Awuku
(Student)

Prof. Pangirayi Tongoona
(Supervisor)

Dr Agyemang Danquah
(Supervisor)

Dr Francis Kusi
(Supervisor)
ABSTRACT

Striga gesnerioides is a devastating parasitic weed of cowpea, especially in Ghana and the rest of West Africa. It is the major cause of cowpea yield reduction in Ghana. Despite seven different races being known across West Africa, the races of the parasite present in Ghana and their diversity have not been studied. This study investigated the distribution and diversity of *Striga gesnerioides* on cowpea in Ghana. The study revealed widespread distribution of the parasite within the Northern, Upper East and Upper West regions of the northern sector of the country. Morphological variation within the parasite showed two flower colour types: purple and white, with a ratio of purple to white being 3:1. The parasite was also found parasitizing two weeds: *Tephrosia pedicellata*, a leguminous weed, and *Ipomoea tribola* a non-leguminous weed. The reaction of 29 cowpea genotypes to eight *Striga* populations from endemic zones revealed that some cowpea genotypes were resistant to all *Striga* populations, some susceptible to all *Striga* populations and others showed differential response. The genotypes which showed differential responses probably indicated the presence of more than one race of *Striga gesnerioides* in Ghana. Molecular studies on 35 *Striga gesnerioides* collections using 73 markers designed using *Striga gesnerioides* sequences retrieved from the National Centre of Biotechnology Information (NCBI) database revealed two main clusters. This shows the probable existence of multiple strain of *Striga gesnerioides* in Ghana. The combined results of response of differential cultivars and the molecular study revealed the probable races of *Striga gesnerioides* in Ghana from this study are SG3, SG2 and SG5. More studies however are needed to positively confirm the presence of these races in the country.
DEDICATION

I dedicate this work to my entire family. My dear wife, Sandra Awuku and lovely daughter Sigrid Anyamah Awuku, My dad Simon Tonnah, my mum, Dora Awuku and all my siblings, Derrick, Cecilia, Eunice and Joyce.
ACKNOWLEDGEMENT

I thank the Almighty God for giving me the strength and good health throughout the period of this studies. I thank my family for being by my side throughout the period, especially my wife for the long period of absence. May God, bless you all. I will extent my profound gratitude to Kirkhouse Trust for the funding of my MPhil studies and my research work. I really appreciate the honour done me.

My next thanks to my team of supervisors: Prof. P. Tongoona, Dr Agyemang Danquah and Dr Francis Kusi. I am very pleased with the advice, motivation, encouragement and the several critics and inputs made into this work. May the Almighty God richly bless you all. My special thanks to Dr Francis Kusi, my in-house supervisor for his fatherly advice and mentorship. I thank you for everything, the upliftment you gave me when I was down, the words of encouragement, the endurance spirit you taught me throughout my field work and above all the time spent correcting my mistakes and guiding me this far. May Almighty God bless you so much Dr kusi.

I express gratitude to the students and staff at the CSIR-SARI manga station: Nelson, Gloria Kubi, Tabsoba, Abbey, Collins, Jamal and Peter. My special thanks to Mr. Awudu and all staff who in one way or another helped in the realisation of my dream within this period. My thanks also to the staff of SARI Biotechnology laboratory, Nyankpala: Gloria Mensah, Amenyo and Rejoice for the great help during my molecular work. I thank Dr Joseph Adjabeng-Danquah and Mr. Michael Barnor for the help in analysis of my data and spending nights with me just learn to use different analytical tools and packages, God bless you.
Finally, I will thank the entire faculty at crop science for instilling in me all this knowledge. I thank West Africa Centre for Crop Improvement (WACCI) and its management for the wonderful and beneficial programme mounted, for which I am a beneficiary. A big thank you to all my colleagues.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td>1</td>
</tr>
<tr>
<td>1.1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td>5</td>
</tr>
<tr>
<td>2.1 LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Parasitic plants</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Striga gesnerioides</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3 Origin and Taxonomy of S. gesnerioides</td>
<td>6</td>
</tr>
<tr>
<td>2.1.4 Life cycle of S. gesnerioides</td>
<td>8</td>
</tr>
</tbody>
</table>
2.1.5 Distribution of *Striga gesnerioides* ...9
2.1.6 Importance of *S. gesnerioides* ...10
2.1.7 Host range of *Striga* ..11
2.1.8 *Striga* control measures ..12
2.1.9 Diversity of parasitic weeds ...14
2.1.10 Molecular techniques in diversity studies ...19
2.1.11 Differential cultivars in race identification of parasitic weeds23

CHAPTER THREE ...26

3.1 MATERIALS AND METHODS ..26

3.1.1 Experimental location ...26
3.1.2 Screen house experiment ...26
3.1.3 Laboratory Experiment ...32

CHAPTER FOUR ..40

4.1 RESULTS ...40

4.1.1 Morphological variation in *Striga gesnerioides* ..40
4.1.2 *Striga gesnerioides* on other weeds ...41
4.1.3 *Striga gesnerioides* hot spots in Ghana ...43
4.1.4 Virulence of different *Striga gesnerioides* population on selected cowpea cultivars 45
4.1.5 Cluster analysis of cowpea genotypes based on their reaction to Striga population... 47
4.1.6 Cluster analysis of Striga gesnerioides population based on their virulence ... 49
4.1.7 Diversity assessment of Striga gesnerioides using SSR markers.................. 51
4.1.8 Deducing the race of S. gesnerioides.. 57

CHAPTER FIVE .. 59

5.1 DISCUSSION ... 59
5.2 Striga Hot spots in Ghana .. 59
5.3 Morphological variation and host range of Striga gesnerioides......................... 60
5.4 Response of cowpea cultivars on different populations of Striga gesnerioides 61
5.5 Genetic diversity in Striga gesnerioides .. 62

CHAPTER SIX ... 64

6.1 CONCLUSION AND RECOMMENDATION .. 64
6.1.1 CONCLUSION ... 64
6.1.2 RECOMMENDATION ... 65

REFERENCES ... 66

APPENDIX ... 77

APPENDIX A ... 77

A1: List of cowpea genotypes used in this studies.. 77

A2: Striga gesnerioides endemic zones in Ghana... 78
A3: Drum method of soil sterilisation..78

A4: List of locations for *Striga gesnerioides* sample collection.........................79

A5: Gene sequences used for the primer design and their corresponding GenBank ID .80

A6: List of SSR primers ..81

APPENDIX B .. 83

B1: Map showing *Striga gesnerioides* hot spots in Ghana83

B2: Flower colour variation of *Striga gesnerioides* in Ghana84

B3: *Striga gesnerioides* on *Tephrosia pedicellata* ...84

B5: Response of selected cowpea genotypes on different population of *Striga* in Ghana. 86

B6: Cluster analysis of *Striga* population based on virulence87

B7: Cluster analysis of cowpea genotypes based on their response88

B8: Molecular Cluster analysis of *Striga gesnerioides*, dendogram89

B9: Banding pattern of some polymorphic markers used91

B12: Genetic differentiation parameters of *Striga gesnerioides* populations92

B13. Randomisation and layout of screen house experiment94
LIST OF FIGURES

Figure 2:1 General life cycle of Striga source... 8

Figure 2:2 Distribution of Striga gesnerioides worldwide. Points indicate areas of reported infestation... 1

Figure 2:3 Races of Striga across West Africa ... 18

Figure 4:1 Percentage representation of purple and white flowered Striga gesnerioides among samples collected .. 40

Figure 4:2 Striga gesnerioides hot spots in Ghana... 44

Figure 4:3 A dendogram of similarities among twenty-seven cowpea genotypes based on their reaction towards eight Striga gesnerioides population (N1-N8) .. 48

Figure 4:4 An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis of eight Striga gesnerioides population from eight endemic zones based on their virulence on twenty-seven (27) cowpea varieties .. 50

Figure 4:5 Cluster analysis of Striga gesnerioides strains based on 54 SSR markers 55

Figure 4:6 Clustering Striga gesnerioides strains depicted by PCA .. 56
LIST OF TABLES

Table 2:1 Host range of some selected Striga species of economic importance ---------------11
Table 2:2 Summary of techniques used in diversity study and their associated molecular markers --20
Table 2:3 Advantages and disadvantages of common markers used in diversity studies -----------21
Table 3:1 Striga gesnerioides race specific resistant cowpea genotypes----------------------27
Table 3:2 Striga gesnerioides endemic zones in Ghana from which samples were collected -------28
Table 3:3 Districts and regions of Striga gesnerioides sample collection for laboratory experiment 33
Table 3:4 SSR primers used for diversity studies and their expected product size ---------------34
Table 4:1 Response of cowpea genotypes to different Striga gesnerioides populations----------46
Table 4:2 Summary of genetic differentiation parameters generated by 54 polymorphic SSR markers on 27 Striga gesnerioides strains in Ghana ---53
Table 4:3 Differential cowpea cultivars and their responses to different Striga populations ---------58
LIST OF PLATES

Plate 2:1 Striga gesnerioides seed capsules (A), microscopic view of Striga seeds stained with 1% Iodine potassium iodide at x400 (Photo by Frederick J. Awuku) ... 6
Plate 3:2 Photograph of the drum approach ... 29
Plate 3:3 Air dried Striga samples .. 36
Plate 4:1 Variations in flower colour of Striga gesnerioides .. 41
Plate 4:2 Striga gesnerioides on the weed Tephrosia pedicellata ... 42
Plate 4:3 Striga gesnerioides on Ipomoea tribola .. 42
Plate 4:5 Banding pattern for primer FA49/48 and FA3/4 on Striga gesnerioides sample numbered 1-35 .. 51
Plate 4:6 Banding pattern for primer FA63/64 and FA51/56 on Striga gesnerioides sample numbered 1-35 .. 52
LIST OF ABBREVIATION

µl

Micro liter... 38

2.4-D

2,4-Dichlorophenoxyacetic acid................................. 13

AFLP

Amplified Fragment Length Polymorphism..................... 20

AP-PCR

Arbitrarily Primed Polymerase Chain Reaction............... 20

ASLP

Amplified Sequence Length Polymorphism..................... 19

CAPS

Cleaved Amplified Polymorphic Sequence...................... 19

cm

Centimetre.. 31

CSIR

Council for scientific and industrial research................ 29
CTAB

Cetyl trimethylammonium bromide ... 33

DAF

DNA Amplification Fingerprinting ... 20

DAMD

Directed Amplification of Minisatellites DNA .. 20

DGGE

Denaturing Gradient Gel Electrophoresis ... 19

DHPLC

Denaturing High Performance Liquid Chromatograph 19

DNA

Deoxyribonucleic acid ... 19

DTSE

Days to Striga emergence .. 32

EDTA

Ethylenediaminetetraacetic acid .. 38

GC%

Guanine-Cytosine percentage ... 36
GPS
Global Positioning System

HDA
Heteroduplex Analysis

IITA
International Institute of Tropical Agriculture

ISSR
Inter-Simple Sequence Repeat

ITS
Internal Transcribed Spacer

LG
Linkage group

mM
Milli Molar

NCBI
National Centre on Bioinformatics Information

PCR
Polymerase chain reaction
PVP
polyvinyl pyrrolidone...37

RAPD
Random Amplified Polymorphic DNA...20

RFLP
Restriction Fragment Length Polymorphisms...19

RNA
Ribonucleic acid..38

SARI
Savannah Agricultural Research Institute...26

SAS
Striga attachment score..32

SCAR
Sequence Characterized Amplified Region.......................................19

SES
Striga emergence score..32

SG
Striga gesnerioides..2
SPAR

Single Primer Amplification Reaction .. 20

SSA

Sub Saharan Africa ... 2

SSCP

Single-Strand Conformation Polymorphism .. 19

SSLP

Simple Sequence Length Polymorphism .. 19

SSR

Simple Sequence Repeats ... 3

STMS

Sequence Tagged Microsatellite ... 19

STR

Short Tandem Repeat .. 19

TAE

Tris acetate EDTA ... 39

TGGE

Thermal Gradient Gel Electrophoresis ... 19
Tm

Melting Temperature .. 36

UAM

University of Agriculture, Makurdi ... 26

UPGMA

Unweighted Pair Group Method with Arithmetic Mean ... 40

USA

United States of America ... 9

UV

Ultraviolet ... 39

VNTR

Minisatellites or Variable Number of Tandem Repeats ... 19
CHAPTER ONE

1.1 INTRODUCTION

Cowpea is an important grain legume in Ghana and West Africa (Anele et al., 2011). Its importance is well documented as a protein rich source, soil fertility improvement crop and fodder for animals (Boukar et al., 2011). Cowpea though very important, is faced with several biotic and abiotic production constraints. An important biotic constraint is *Striga gesnerioides* infestation (Asare et al., 2013).

Striga gesnerioides is amongst the world’s worst obligate parasitic weeds, reducing the yield and quality of legumes especially in semi-arid regions of the world (Botanga et al., 2002; Ramesh et al., 2006). *S. gesnerioides* is the only species of the genus *Striga* that is virulent on dicots (Mohamed et al., 2007; Ramesh et al., 2006; Welsh & Mohamed, 2011). A major host of *S. gesnerioides* is cowpea, a widely cultivated legume in Ghana and West Africa. *S. gesnerioides* also parasitizes other legumes such as Bambara groundnut, common bean, mung bean, and many legume fodder crops, including Hyacinth bean, Siratro and Velvet bean (Langyintuo et al., 2003; Rubiales et al., 2006; Timko et al., 2007).

Yield losses ranging from 36.5 – 44.2 % have been reported on farmers’ fields due to infestation by *S. gesnerioides* (Berner et al., 1994). Hearne (2009) reported that 40 % of losses in crop production in Africa is due to *Striga spp*. This represents an annual value loss of agricultural revenue of about 7 billion dollars (Hearne, 2009). Due to severe loss from *S. gesnerioides* infestation, supply of cowpea does not meet demand in Ghana. This has contributed partly to the high import of 3,380 metric tonnes of cowpea grains to supplement the country’s production of 219,300 tonnes as at 2010 (Egbadzor et al., 2013).
One major cause of food insecurity in the world is *Striga* as it affects food crops that constitute about 70% of diet in semi-arid sub-Saharan Africa (SSA) with cowpea forming about half the total protein present in the same diet (Lane & Bailey, 1992). Several control measures have been suggested, which include; cultural practices, chemical control, biological control and host plant resistance (Boukar *et al*., 2004; Raj 1949). No single method has completely and effectively controlled the infestation (Dubé & Olivier, 2001; Parker, 2012). The difficulty in controlling this parasite and development of stable resistant cultivars is partly due to its differential virulence (Botanga & Timko, 2006).

Striga gesnerioides exhibits differential virulence across the West Africa sub-region with some countries having more than one race (Lane & Bailey, 1992). At least seven distinct races of *S. gesnerioides* have been identified throughout West Africa, designated SG1 through to SG7. There are two different races reported in Benin designated SG4 and SG4z which are the most virulent so far. Some of these races are related, such as SG1 and SG5; SG4 and SG6; whilst SG4 and SG3 are divergent (Botanga & Timko, 2006; Li *et al*., 2009; Omoigui *et al*., 2012; Toure *et al*., 1998). Studies have shown that the genetics of cowpea *Striga*-resistance varies according to the biotype of the parasite (Karanja *et al*., 2013; Toure *et al*., 1998). Dubé & Olivier (2001) pointed out that Cowpea *S. gesnerioides* resistance is conferred by oligogenic independent dominant genes. Other studies pointed out that resistance is conferred by monogenic recessive genes and others reported monogenic dominant genes (Huang *et al*., 2012; Moore *et al*., 1995; Singh *et al*., 1993; Toure *et al*., 1998).

Crop production in the savannah ecological zone of Ghana is characterized by a prolonged dry season, an erratic rainfall period as well as low soil fertility with low levels of external
inputs. These climatic and soil conditions support the growth of *S. gesnerioides* resulting in high yield losses in cowpea production by farmers who have very little idea on its management. The growth of *S. gesnerioides* is stimulated by strigolactone, which is in the root exudates of the cowpea (Fernandez-Aparicio *et al*., 2011). Studies have shown that under stress conditions such as poor soil fertility and water deficit the cowpea plant strives to support itself by producing strigolactone, resulting in high levels of *Striga* germination (Lane *et al*., 1996).

A major concern with this weed is its differential virulence. Knowing the different races of *S. gesnerioides* within the country will bring to bear important information on the race of the parasite present in the country and form the basis for the cowpea breeding programme for further breeding activities. However, there is currently no published information or report on the diversity nor the race(s) of *S. gesnerioides* in Ghana.

Few molecular diversity studies have been conducted on *Striga gesnerioides*. The few studies reported have used Amplified Fragment Length Polymorphic (AFLP) markers. Botanga & Timko, (2006) and Dube & Belzile (2010) examined genetic diversity in *Striga gesnerioides* using AFLPs. Dube & Belzile (2010) concluded that, there was a low number of polymorphic bands of 6% from a total of 1200 bands. Simple Sequence Repeats (SSR) markers are highly polymorphic as compared to AFLPs and give a better degree of variability within populations as has been observed from several crop diversity studies (Teka, 2014). There are no developed SSR markers for *Striga gesnerioides* diversity studies. It will thus be very good to develop SSRs to examine the diversity of this parasite due to their advantages over AFLPs.
The objective of this study was to determine the diversity of *S. gesnerioides* collections from different endemic regions in northern Ghana.

The specific objectives were to:

- determine existence of genetic diversity among *S. gesnerioides* populations from cowpea fields in Northern Ghana, and
- evaluate the response of differential cowpea cultivars to *S. gesnerioides* and determine the races of *Striga* in Ghana.
CHAPTER TWO

2.1 LITERATURE REVIEW

2.1.1 Parasitic plants

A parasitic plant is a plant that derives some or all of its nutritional requirements from another living plant. They make up about 1% of angiosperms and are in almost every biome in the world (Westwood et al., 2012). All parasitic plants have modified roots, named haustoria (singular haustorium), which penetrate the host’s vascular system. The haustoria provide them with the ability to extract water and nutrients from the host (Estep et al., 2012).

About 4000 flowering plant species have adapted to parasitize other plants. Unfortunately for farmers, a small number of these species have become weeds, posing severe constraints to major crops including grain and forage legumes (Rubiales & Mónica, 2012). Most of these parasitic plants are able to detect their host by chemical exudates or certain signalling processes from the host which facilitate germination and attachment to the host and derive benefits for their growth and development (Musselman, 1980).

Species within the Orobanchaceae are some of the most economically destructive of which Striga is a part. Legumes are major food crops in West Africa under severe parasitic weed infestation. Major parasitic weeds that affect legume production are broomstrapes, Alectra vogelii, Dodder, Striga gesnerioides (Parker, 2012). Striga gesnerioides is a major problem to farmers in West Africa (Ghana, Mali, Burkina Faso, Niger, Nigeria, Senegal, Togo and Benin) and tobacco production in Zimbabwe (Timko et al., 2007). Grain yield
of cowpea is reduced drastically following infestation by *Striga gesnerioides* (Aggarwal *et al.*, 1988).

2.1.2 *Striga gesnerioides*

S. gesnerioides is one of about 30 species of the genus *Striga* and the only spp. of the genus parasitizing dicots (Spallek *et al.*, 2013). Seeds of *S. gesnerioides* are found in capsules of approximate diameter 2.40 mm and length 5.96 mm with each capsule containing approximately 800 seeds of approximate weight 2.0 mg/capsule (Ayensu *et al.*, 1984) (Plate 2:1).

![Plate 2:1 Striga gesnerioides seed capsules (A), microscopic view of Striga seeds stained with 1% Iodine potassium iodide at x400 (photo by Frederick J. Awuku)](image)

2.1.3 Origin and Taxonomy of *S. gesnerioides*

The origin of *Striga gesnerioides* is not different from that of the genus *Striga*. Its origin has not been pin pointed to a location as has been for most domesticated crops. According to Atera & Itoh (2011) the origin of *Striga* is believed to be the same as that of domesticated sorghum to be between the mountains of Ethiopia and the Nubian hills of
Sudan. It is also believed that monocot parasitizing *Striga* evolved from those *Striga* on Sorghum (Westwood *et al*., 2012). *Striga gesnerioides* as it is currently known scientifically belongs to the following taxonomic tree:

Domain: Eukaryota

Kingdom: Plantae

Phylum: Spermatophyta

Subphylum: Angiospermae

Class: Dicotyledonae

Order: Scrophulariales

Family: Scrophulariaceae

Genus: Striga

Species: Striga gesnerioides

Striga gesnerioides was originally described as Buchnera gesnerioides in 1801 by Wildenow (Oxelman *et al*., 2005), Buchnera orobanchoides by R. Brown in 1814, *Striga* orobanchoides in 1836 by Bentham. In Ghana, several local names are given to *Striga gesnerioides* due to the devastating effect it has on cowpea. Among the people of the Upper East region it is called ‘Wang’ meaning rival, among the people of the Northern region ‘Wubulim’ meaning destroyer and ‘Dochaa’ meaning cowpea cannot survive and among the people of the Upper West region ‘Saka’ meaning locust and ‘Wonbile’ meaning destroyer (Personal communication, 2016), these names translate into the devastating effect of the parasite on its host and nature of fields under infestation.
2.1.4 Life cycle of *S. gesnerioides*

The life cycle of *S. gesnerioides* is not completely different from the general life cycle of the genus *Striga* (Figure 2:1). *S. gesnerioides* life cycle takes an alternating wet and dry season in the tropics. The seeds of *Striga* remain viable in the soil for almost 20 years (Ayensu *et al.*, 1984). Germination of *Striga* seeds requires pre-treatment and a stimulant ‘strigol’ or strigolactone produced by the host root exudate (Botanga & Timko, 2006). Pre-treatment is provided by rains at the beginning of the rainy season before planting and establishment of host root system. *Striga* seeds within 2 mm of the host root zone will germinate in response to the stimulant produced by its host (Hearne, 2009).

![Diagram of the life cycle of Striga](http://ugspace.ug.edu.gh)

Figure 2:1 General life cycle of Striga source: (Aggarwal *et al.*, 1988)
The growing radicle of the Striga seed forms a haustorium that attaches and links to the vascular system of its host. The parasite develops rapidly at this stage but remains underground for some weeks till it is well established and has colonized the root zone of its host. On emerging above the ground, it flowers and releases hundreds of seeds in each seed pod. Though the aerial part possesses normal chlorophyll, the parasite largely depends on its host. The seeds are light and tiny and mostly dispersed by wind. Dispersed seed remains dormant in the soil until it receives a stimulant from an appropriate host when it germinates (Cook et al., 1966).

2.1.5 Distribution of *Striga gesnerioides*

Striga is widespread all over Africa, India and tropical Asia (Figure 2:2) (Jansen & Cardon, 2005). Botanga & Timko (2006), mentioned its presence in Florida in the United States of America (USA). Its introduction in the USA might probably be through exchange of contaminated seed from infested regions around the world. It is also recorded in Australia (Barkley et al., 1980). *Striga gesnerioides* is widely spread throughout West Africa probably due to it being a major centre of cowpea production (Lane et al., 1996). Although *Striga gesnerioides* infestation is of serious concern to cowpea production in Ghana, its distribution has not been documented.
2.1.6 Importance of *S. gesnerioides*

Striga gesnerioides is of no use to the farmer, not even as fodder for his animals. The sap contains a dye which is purple or blue black in colour and manifests itself in the deep black appearance of the dry weed (Jansen & Cardon, 2005). The dye in the sap has found importance among Malians, where it is used to dye their skin. In Kenya, the root sap is used to colour fingers indigo blue (Jansen & Cardon, 2005). The flower is known to give a pink coloured dye which can be used in painting. The dried powdered plant is also known to have some medicinal properties of healing injuries and an anti-inflammatory effect when mixed with some fat (Jansen & Cardon, 2005). Other species of the genus *Striga*, such as *hermonthica*, *asiatica*, and *aspera* are also known for their dye and medicinal properties (Javadi et al., 2011).
2.1.7 Host range of *Striga*

The genus *Striga* is known for its devastating effect on its host. This genus has quite a wide range of hosts from wild to domesticated crops. Most hosts of the genus are cereals, with sorghum being a major host. Millet and rice are other cereals that are hosts to *Striga*. The species that attack cereals are *S. hermonthica*, *S. asiatica* and *S. forbesii*. Legumes are another group of crops that are hosts to *Striga*, with the majority within this group being cowpea. *Striga* is a major constraint to production of the above-mentioned cereals and legumes on the Africa continent. Table 2:1 summarises the host range of some selected species of the genus that are of economic importance.

Table 2:1 Host range of some selected *Striga* species of economic importance

<table>
<thead>
<tr>
<th>Striga species</th>
<th>Host range</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. hermonthica (Del.) Beth</td>
<td>Sorghum, pearl millet, maize, rice, wild grasses</td>
</tr>
<tr>
<td>S. asiatica (L.) Kuntze</td>
<td>Sorghum, pearl millet, finger millet, maize, upland rice, sugar cane, wild grasses</td>
</tr>
<tr>
<td>S. gesnerioides (Willd.) Vatke</td>
<td>Cowpea, tobacco, sweet potato, convolvulaceae and fabaceaeae</td>
</tr>
<tr>
<td>S. aspera (Willd) Benth</td>
<td>Rice, Wild grasses, Maize, Sorghum, Sugar cane</td>
</tr>
<tr>
<td>S. euphrasioides Benth</td>
<td>sorghum, maize, sugarcane, upland rice, wild grasses</td>
</tr>
<tr>
<td>S. forbesii Benth</td>
<td>sorghum, maize, rice</td>
</tr>
<tr>
<td>S. bilabiata (Thunb.) kuntza</td>
<td>wild grasses</td>
</tr>
<tr>
<td>S. elegans Benth</td>
<td>wild grasses</td>
</tr>
<tr>
<td>S. macrantha Benth</td>
<td>wild grasses</td>
</tr>
<tr>
<td>S. aequinoctialis Chev. Ex hutch, and Dalz</td>
<td>wild grasses</td>
</tr>
<tr>
<td>S. klingii (Skann)</td>
<td>sorghum, millet, wild grasses</td>
</tr>
</tbody>
</table>
2.1.8 Striga control measures

There have been several efforts by researchers and farmers to eradicate the problem of *Striga* infestations on legume and cereal crops with a major focus on *Striga gesnerioides* and *hermonthica*, but these have yielded very little impact. The various methods used for *Striga* control can be grouped into; cultural practices, biological control, herbicides and resistance breeding. Most of these have been used in the control of *Striga hermonthica* on cereals.

2.1.8.1 Cultural control of Striga

Cultural control of *Striga* is one of the oldest control measures. Cultural control includes but not limited to the use of expensive farm inputs, labour intensive approaches such as hand weeding and changes in cropping systems (Berner *et al.*, 1997; Berner *et al.*, 1994).

Hand weeding is often resorted to by the rural poor farmers, whom mostly are in developing countries. The approach is not helpful in preventing the damage caused by the attachment of the parasite to its host nor prevents it from attaching. Weeding is usually done after emergence of the *Striga* and by which time the damage has been done while the *Striga* was beneath the soil surface. This method though not helpful immediately, helps in

<table>
<thead>
<tr>
<th>S. elegans Benth</th>
<th>cereals, wild grasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. brachychalyx Skan</td>
<td>cereals, wild grasses</td>
</tr>
<tr>
<td>S. latericea Vatke</td>
<td>sugarcane, cereals</td>
</tr>
</tbody>
</table>

Sources: (Atera & Itoh, 2011; Musselman, 1980; Sibhatu, 2016; Spallek *et al.*, 2013)
the long run by reducing the *Striga* population and a build-up of *Striga* seed in the soil (Obilana & Ramaiah, 1992).

Striga is known to thrive well in very poor soils, the use of farm inputs such as fertilizers; organic or inorganic fertilizers to increase the soil fertility in *Striga* endemic zones reduces *Striga* infestation. These methods have not been helpful as they are expensive to practise by the rural poor farmers and also result in an accumulation of residues and usually acidifies the soil because of the poor rainfall in the regions (Teka, 2014).

Changes in cropping systems has been reported to help in the control of *Striga* on crops. Rotating between crops such as host and non-host crops helps fallow the farm land for a while before returning to planting host plants which helps reduce the seed bank of the parasite. This practise could be combined with mixed cropping of the host plant with trap crops that favour the suicidal germination of *Striga* seeds (Obilana & Ramaiah, 1992; Teka, 2014).

2.1.8.2 Chemical control of Striga

Chemical control though expensive has proved useful in the control of *Striga*. Pre- and post-emergence *Striga* herbicides have been successfully used to control *Striga* on cereals. This includes Goal as pre-emergence herbicide and 2.4-D, dicamba, dicamba in combination with urea or chlorsulfuron, Glufosinate and Oxyfluorfen as post emergence herbicides (Dugje *et al*., 2006; Obilana & Ramaiah, 1992; Spallek *et al*., 2013; Teka, 2014). These herbicides do not prevent the damage of *Striga* to the crop prior to emergence, thus still not reliable in the short term. Germination stimulants such as
Ethylene, ethephon, strigol, strigolactone in dicots results in the suicidal germination of *Striga* seeds in the absence of its host, hence reduces the seed build up drastically (Cook *et al.*, 1966; Pescott, 2013; Steinkellner *et al.*, 2007; Teka, 2014).

2.1.8.3 Host resistance control of *Striga*

Host resistance control to *Striga* seems to be the most lasting solution to the *Striga* infestation problem and other parasitic weeds. Host resistance is the introduction of host plants that will prevent the attachment and subsequent emergence of the parasite or induce a hypersensitive reaction to kill attached parasite. Host plant resistance is the most affordable and durable way of curbing the *Striga* problem. Several maize varieties have been developed with resistance to *Striga hermonthica* (Pescott, 2013) across west Africa. Other crops (host) have been developed to have resistance to parasitic weed infesting them. Toure *et al.* (1998), identified cowpea with resistance to *Striga gesnerioides* infestation. Omoigui *et al.* (2015) also identified sources of resistance in cowpea to *Striga gesnerioides* infestation. The genotype IT97K-499-35 (Songotra) and B301 have been used for over a decade now as resistant sources to *Striga gesnerioides* over the west African sub region (Singh *et al.*, 1993).

2.1.9 Diversity of parasitic weeds

Parasitic weeds are a severe constraint to cowpea production in sub Saharan Africa, therefore an understanding of their diversity will lead to the identification of races or biotypes and hence improve the chance of breeding success. *Striga hermonthica, Striga asiatica, Striga gesnerioides, Striga aspera* and *Striga forbesii* are the most harmful of the *Striga* genus. Presence of biotypes of *Striga* has long been thought to be responsible for
the breakdown of resistance in crops (Joel, 2014). Gethi et al. (2005) and Dawud (2017) made similar observation in Tanzania and West Africa respectively on sorghum. There has also been reports of the breakdown of resistance of cowpea variety B301 to Striga gesnerioides race 4z in Benin. The wide geographical distribution set conditions for genetically structured populations. The genetic variations among the weed populations allow for quick breakdown of resistance in crops hence making control of the weed difficult (Gethi et al., 2005). Information on the diversity within the parasite is needed to effectively control them.

Diversity studies in *Striga* have been performed using several approaches including; morphological, physiological and genetic traits analysis. The advent of techniques to estimate genetic diversity has enabled scientists to focus their work on describing hybrids, local races and general genetic diversity inherent in plant parasites. Much work has been done on genetic diversity of *Striga* spp. such as *S. asiatica*, *S. aspera* and *S. hermonthica* (Estep et al., 2011) but very little on *Striga gesnerioides*.

Navajas & Fenton (2001), combined allozyme electrophoresis and Random Amplified Polymorphic DNA (RAPD) markers to investigate genetic diversity in *S. hermonthica* populations from Nigeria and Kenya. Using cluster analyses, both methods showed high levels of genetic diversity existing between and within the *Striga* populations (Joel, 2014). Gethi et al. (2005) studied the genetic diversity of 24 *S. hermonthica* populations from Kenya using AFLPs. He reported very low genetic diversity (at 90 % similarity) between and within the populations studied. This was attributed to the homogeneity of the Kenyan populations of *S. hermonthica* due to substantial gene flow between the populations and noted that seed dispersal basically could have been through contaminated seeds. This
agreed with studies on *S. asiatica* and *S. gesnerioides* colonization events in the United States where both showed genetic uniformity in introduced populations suggesting a single successful colonization event (Welsh & Mohamed, 2011).

Musimwa (2005), worked on the genetic variability, host specificity and resistance in *Striga asiatica*-host plant interactions and concluded that there were physiological strains of the parasitic weed *S. asiatica*, which were adapted to specific hosts within and between species. Another observation he made was that, molecular techniques such as RAPDs and isozymes can be effectively used to differentiate strains of parasitic weed; *S. asiatica* however there is a need to determine the relationship between molecular differences and differential virulence (Musimwa, 2005).

Diversity study among 12 *Striga hermonthica* population from four regions Mali using 12 microsatellite markers revealed, extensive diversity among them with most being heterozygous for most markers. Large amount of gene flow was observed with broad distribution of allelic diversity across the populations but the genetic differentiation observed was very (Estep *et al.*, 2011).

Striga gesnerioides being a species of *Striga* has a history of low genetic variability (Musselman, 1980). A study made on the genetic variability within and between 43 populations of five of the previously recognized races of the parasite present in West Africa using Amplified Fragment Length Polymorphism (AFLP) markers showed almost no genetic variability within and between the populations. This study showed no race differentiation for the populations used but observed geographical groupings of the populations. AFLP markers previously identified to discriminate between races of *Striga*
failed for their collection of *Striga* populations (Dubé & Olivier, 2001). SSR markers will probably be more useful in discriminating between *Striga gesnerioiides* populations than AFLPs due to their numerous advantages over AFLPs.

There is very little information on the diversity of parasitic weeds on domesticated crops. Studies by some researchers show that there exists some diversity among these parasitic weeds which is mostly attributed to the geographical location of the parasite, origin and host specificity (Welsh & Mohamed, 2011). Diversity studies on *Striga* are limited to the species *hermonthica, asiatica* and *gesnerioiides* (Dubé & Olivier, 2001). Most work on *Striga hermonthica* diversity studies reveals great diversity of the species between geographical locations than host specificity (Estep et al., 2011; Joel, 2014; Welsh & Mohamed, 2011). This is probably due to the wide adaptation of the parasite to different ecologies.

There has been an increase in different strains of *Striga gesnerioiides* in the West Africa sub region (Timko, 2016). This is due to the parasite overcoming resistances in resistant cultivars hence seven (7) races of the parasite are known in the sub region (Figure 2:3). These races are different with respect to their degree of virulence. It will be good to be able to know the differences between the races of *Striga gesnerioiides* using molecular markers such that a race is identifiable by one or two markers. This will help in the linking of molecular markers to the virulence differentiation of races of *Striga gesnerioiides*.

Genetic diversity studies on *Striga gesnerioides* by Botanga & Timko (2005), revealed genetic differences based on host specificity in populations of *S. gesnerioides* parasitizing *Indigofera hirsuta* in central Florida and populations parasitizing *I. hirsuta* and cowpea from West Africa. The Florida strain and the West African strain parasitizing *I. hirsuta* were more closely related compared to the Florida strain and the West African strain parasitic on cowpea. This they did using AFLPs markers. There have been very few studies on the diversity of *Striga gesnerioides* within countries under heavy infestation and on the continent of Africa.

This study will design SSR markers to assess the diversity in *Striga gesnerioides* on cowpea in Ghana.
2.1.10 Molecular techniques in diversity studies

Molecular techniques are the modern tools used in diversity studies, usually involving the use of molecular markers. Molecular markers are short DNA sequences with a known physical location on a large sequence, chromosome or genome. Markers used in diversity studies are usually grouped into Morphological markers, Biochemical markers and Molecular markers (Duminil & Michele, 2009).

It is of importance that diversity study should not be based solely on morphological markers but should be combined with molecular markers (Navajas & Fenton, 2001). Molecular markers are more readily available and reliable than morphological markers (Kumar et al., 2009). The types, advantages and disadvantages of different molecular markers is summarised in Table 2:2 and Table 2:3. The molecular markers that have been extensively used in diversity studies of parasitic weed are AFLPs (Cortese et al., 2010; Estep et al., 2011; Pineda-Martos et al., 2014; Welsh & Mohamed, 2011). SSRs are better in diversity studies than AFLPs in that they have high genomic abundance, highly reproducible and cover very well the entire genome and produce high polymorphism with multiple alleles (Kumar et al., 2009). The technique involving the use of SSRs is also easy to automate, hence is preferred to AFLPs (Kumar et al., 2009).
Table 2:2 Summary of techniques used in diversity study and their associated molecular markers

<table>
<thead>
<tr>
<th>Name of Technique</th>
<th>Markers used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemical markers</td>
<td>Allozymes</td>
</tr>
<tr>
<td>Molecular markers</td>
<td></td>
</tr>
<tr>
<td>Non-PCR based techniques</td>
<td>Restriction Fragment Length Polymorphisms (RFLP)</td>
</tr>
<tr>
<td></td>
<td>Minisatellites or Variable Number of Tandem Repeats (VNTR)</td>
</tr>
<tr>
<td>PCR-based techniques</td>
<td></td>
</tr>
<tr>
<td>DNA sequencing</td>
<td>Multi-copy DNA, Internal Transcribed Spacer regions of nuclear ribosomal genes (ITS)</td>
</tr>
<tr>
<td></td>
<td>Single-copy DNA, including both introns and exons</td>
</tr>
<tr>
<td>Sequence-Tagged Sites (STS)</td>
<td>Microsatellites, Simple Sequence Repeat (SSR),</td>
</tr>
<tr>
<td></td>
<td>Short Tandem Repeat (STR),</td>
</tr>
<tr>
<td></td>
<td>Sequence Tagged Microsatellite (STMS) or Simple Sequence Length Polymorphism (SSLP)</td>
</tr>
<tr>
<td></td>
<td>Amplified Sequence Length Polymorphism (ASLP)</td>
</tr>
<tr>
<td></td>
<td>Sequence Characterized Amplified Region (SCAR)</td>
</tr>
<tr>
<td></td>
<td>Cleaved Amplified Polymorphic Sequence (CAPS)</td>
</tr>
<tr>
<td></td>
<td>Single-Strand Conformation Polymorphism (SSCP)</td>
</tr>
<tr>
<td></td>
<td>Denaturing Gradient Gel Electrophoresis (DGGE)</td>
</tr>
<tr>
<td></td>
<td>Thermal Gradient Gel Electrophoresis (TGGE)</td>
</tr>
<tr>
<td></td>
<td>Heteroduplex Analysis (HDA)</td>
</tr>
<tr>
<td></td>
<td>Denaturing High Performance Liquid Chromatography (DHPLC)</td>
</tr>
<tr>
<td>Multiple Arbitrary Amplicon Profiling (MAAP)</td>
<td>Random Amplified Polymorphic DNA (RAPD)</td>
</tr>
<tr>
<td></td>
<td>DNA Amplification Fingerprinting (DAF)</td>
</tr>
<tr>
<td></td>
<td>Arbitrarily Primed Polymerase Chain Reaction (AP-PCR)</td>
</tr>
<tr>
<td></td>
<td>Inter-Simple Sequence Repeat (ISSR)</td>
</tr>
<tr>
<td></td>
<td>Single Primer Amplification Reaction (SPAR)</td>
</tr>
<tr>
<td></td>
<td>Directed Amplification of Minisatellites DNA (DAMD)</td>
</tr>
<tr>
<td></td>
<td>Amplified Fragment Length Polymorphism (AFLP)</td>
</tr>
<tr>
<td></td>
<td>Amplified Fragment Length Polymorphism (AFLP)</td>
</tr>
</tbody>
</table>

Source: (Cortese et al., 2010; Kumar et al., 2009; Navajas & Fenton, 2001)
Table 2: Advantages and disadvantages of common markers used in diversity studies

<table>
<thead>
<tr>
<th>Type of Marker</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriction Fragment Length Polymorphism (RFLP)</td>
<td>High genomic abundance</td>
<td>Need large amount of good quality DNA</td>
</tr>
<tr>
<td></td>
<td>Co-dominant markers</td>
<td>Laborious (compared to RAPD)</td>
</tr>
<tr>
<td></td>
<td>Highly reproducible</td>
<td>Difficult to automate</td>
</tr>
<tr>
<td></td>
<td>Can use filters many times</td>
<td>Need radioactive labelling</td>
</tr>
<tr>
<td></td>
<td>Good genome coverage</td>
<td>Cloning and characterization of probe are required</td>
</tr>
<tr>
<td></td>
<td>Can be used across species</td>
<td>Ideal for automation</td>
</tr>
<tr>
<td></td>
<td>No sequence information</td>
<td>Less amount of DNA (poor DNA acceptable)</td>
</tr>
<tr>
<td></td>
<td>Can be used in plants reliably (well-tested)</td>
<td>Not reproducible</td>
</tr>
<tr>
<td></td>
<td>Needed for map based cloning</td>
<td>Cannot be used across species</td>
</tr>
<tr>
<td>Randomly Amplified Polymorphic DNA (RAPD)</td>
<td>High genomic abundance</td>
<td>No probe or primer</td>
</tr>
<tr>
<td></td>
<td>Good genome coverage</td>
<td>Dominant markers</td>
</tr>
<tr>
<td></td>
<td>No sequence information</td>
<td>Not very well-tested</td>
</tr>
<tr>
<td></td>
<td>Ideal for automation</td>
<td>Relatively faster</td>
</tr>
<tr>
<td></td>
<td>Less amount of DNA (poor DNA acceptable)</td>
<td>Multiple alleles</td>
</tr>
<tr>
<td>Simple Sequence Repeat (SSR)</td>
<td>High genomic abundance</td>
<td>Cannot be used across species</td>
</tr>
<tr>
<td></td>
<td>Highly reproducible</td>
<td>species</td>
</tr>
<tr>
<td></td>
<td>Fairly good genome coverage</td>
<td>Need sequence</td>
</tr>
<tr>
<td></td>
<td>High polymorphism</td>
<td>Information</td>
</tr>
<tr>
<td></td>
<td>No radioactive labelling</td>
<td>Not well-tested</td>
</tr>
<tr>
<td></td>
<td>Easy to automate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiple alleles</td>
<td></td>
</tr>
<tr>
<td>Amplified Fragment Length Polymorphism (AFLP)</td>
<td>High genomic abundance</td>
<td>Very tricky due to changes in patterns with respect to materials used</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>No need for sequence information</td>
<td></td>
<td>Cannot get consistent map (not reproducible)</td>
</tr>
<tr>
<td>Can be used across species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work with smaller RFLP fragments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Useful in preparing contig maps</td>
<td></td>
<td>Need to have very good primers</td>
</tr>
<tr>
<td>Sequence-Tagged Site (STS)</td>
<td>Useful in preparing contig maps</td>
<td>Laborious</td>
</tr>
<tr>
<td>No radioactive labelling</td>
<td></td>
<td>Cannot detect mutations out of the target sites</td>
</tr>
<tr>
<td>Fairly good genome coverage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly reproducible</td>
<td></td>
<td>Need sequence information</td>
</tr>
<tr>
<td>Can use filters many times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISOZYMES</td>
<td>Useful for evolutionary studies</td>
<td>Laborious</td>
</tr>
<tr>
<td>Isolation lot easier than that of DNA</td>
<td></td>
<td>Limited in polymorphism</td>
</tr>
<tr>
<td>Can be used across species</td>
<td></td>
<td>Expensive (each system is unique)</td>
</tr>
<tr>
<td>No radioactive labelling</td>
<td></td>
<td>Have to</td>
</tr>
<tr>
<td>No need for sequence information</td>
<td></td>
<td>Know the location of the tissue</td>
</tr>
<tr>
<td>Cloning and characterization of probe are required</td>
<td></td>
<td>Not easily automated</td>
</tr>
</tbody>
</table>

Source: (Appiah *et al*., 2011; Kumar *et al*., 2009; Navajas & Fenton, 2001)
2.1.11 Differential cultivars in race identification of parasitic weeds

Differential cultivars are different varieties of a crop that respond differently to the same crop parasitic host (Rispail et al., 2007). This is usually due the presence of different set(s) of resistance genes present in the host plant. These differences in genes usually arise as a result of emergence of different strains of the parasites (Goldwasser et al., 2000). Emergence of different strains of these parasite brings about differential virulence in the parasite (Thorogood et al., 2009). Hence, some cultivars may have resistance to certain strains and not to others due presence or absence of specific resistance genes. This results in the parasite being virulent on other cultivars and non-virulent on others. These phenomena of absence and presence of resistance genes within a crop host to a particular strain of parasite has been used to classify parasites of crops based on their virulence on the crop and subsequently identification of different strains or race(s) of the parasite (Lane & Bailey, 1992; Li et al., 2009). This concept of differential virulence is not different from that of the gene for gene action in that, for each virulent gene in the parasite there needs to be an avirulent in the host to neutralise its effect. This means that for each cultivar that lack this avirulent gene, will be susceptible to parasite. Hence within an accession of cultivars, a particular parasite would exhibit differential virulence by being virulent on cultivars that lacks such counter genes and not virulent on other which do not. In this same vein, if the parasite evolves with a virulent gene which the cultivar does not have a counter gene to then the resistance in that cultivar will be broken. Hence depending on the situation prevailing at the geographical location of a parasite, it can have several virulent genes. Therefore, the geographical location of a parasite plays a major role in its virulence. Different strains of the same parasite will exhibit differential virulence if the host cultivars do not all have all set of counter genes to neutralise the effect of the several virulent genes within the parasite.
In cultivated rice, differential cultivars have been identified with different response to *S. hermonthica*, *S. asiatica*, and *S. aspera*, with very limited number of resistant and tolerant cultivars identified (Timko *et al.*, 2012). Over the past two or three decades of concerted efforts by researchers/scientist to solve the problem of *Striga gesnerioides* infestation on cowpea, several cowpea cultivars have been identified to possess some resistance to different races. The first of *S. gesnerioides* resistance in cowpea was made in Burkina Faso, which were cultivars 58-57 and Suvita2. These cultivars were only resistant in Burkina Faso but not in other West African countries. Hence the existence of different strains of *Striga gesnerioides* was conceived. Suvita2 was resistant to *Striga* strains from Mali but susceptible to strains from Niger (Toure *et al*., 1998). The search for resistant cultivars for different strains of *Striga gesnerioides* resulted in the identification of cultivars B301 and IT82D-849 which were resistant across Mali, Niger and Nigeria (Aggarwal *et al*., 1988). B301 was later found to be susceptible to a strain of *Striga* localised to the region of Zakpota in Benin (Lane *et al*., 1996). As a result of these differences in virulence of the *Striga* strains from different locations and the differential response of cowpea cultivars to these strains, a study was conducted with the aim of evaluating the differential host resistance responses using differential cowpea cultivars. From that study, the response of the cultivars was used to group the *Striga* strains into five proposed distinct races in West and central Africa (Lane *et al*., 1996). Botanga and Timko (2006), using differential cultivar response and AFLPs markers in a genetic study of collections of *Striga* isolates re-classified the races of *Striga gesnerioides* in West Africa to be at least seven (7), making two additions to that of Lane *et al.* (1996). They designated these races SG1 to SG6; SG1 (Burkina Faso), SG2 from Mali, SG3 from Niger and Nigeria, SG4 from Benin, SG4z from a localised region Zakpota in Benin, SG5 from Cameroon and SG6 from Senegal. They also identified molecular relatedness between
these races, SG1 was closely related to SG5, SG4 and SG5 being distantly related but SG4 and SG4z shared almost the same molecular profile as revealed by the AFLPs used. Hence differences in virulence separated the two Strains SG4 and SG4z into two races. There has been reports of an additional race SG7 in Togo (Timko, 2016).

Since the identification of different races of *Striga gesnerioides* study has been conducted using segregating F2 populations to map various genes controlling resistance to some of the races in certain cowpea cultivars using molecular techniques such as AFLPs, RAPDs and SSRs (Ouédraogo *et al*., 2002; Timko *et al*., 2007). Resistance to *Striga* races SG1, SG2, SG3, and SG5 in the cowpea cultivars B301, Tvu14676, IT82D-849, and Tvu14676, respectively has been mapped to Linkage Group 1 (LG1), whereas resistance to SG1 and SG4z in cowpea cultivars Suvita-2 and IT81D-994 map to LG6 (Timko *et al*., 2007). Ever since, several researchers have developed resistant cowpea cultivars to different races (Li *et al*., 2009; Omoigui *et al*., 2012; Tignegre, 2010; Toure *et al*., 1998).
CHAPTER THREE

3.1 MATERIALS AND METHODS

3.1.1 Experimental location

Two separate experiments were carried out in this study, a screen house pot experiment and a laboratory experiment. The screen house experiment was conducted at Manga Station (11°00.977 N, 000°15.912 W) of the Savannah Agricultural Research Institute (SARI) in the Upper East Region of Ghana. This region falls within the Sudan Savannah agro-ecological zone of Ghana. The laboratory work was conducted at the Kirkhouse Trust funded molecular and biotechnology lab at SARI Nyankpala.

3.1.2 Screen house experiment

The screen house experiment consisted of pot screening of Twenty-nine (29) differential cowpea cultivars of known responses to known races of S. gesnerioides with eight populations of Striga from the endemic zones in Ghana.

The cowpea genotypes were obtained from International Institute of Tropical Agriculture (IITA), Nigeria; University of Agriculture, Makurdi (UAM), Nigeria; and SARI, Ghana (Table 3.1). These were used for the screening experiment.
Table 3.1 *Striga gesnerioides* race specific resistant cowpea genotypes

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Genotype</th>
<th>Race Responds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IT84S-2049</td>
<td>susceptible check</td>
</tr>
<tr>
<td>2</td>
<td>B524</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>IT97K-461-4</td>
<td>susceptible check</td>
</tr>
<tr>
<td>4</td>
<td>IT98K-409-4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>IT93K-693-2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>IT98K-205-10</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>IT82D-849</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>8</td>
<td>IT99K-494-6</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>IT98K-1092-1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>IT00K-1263</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>IT97K-819-118</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>IT99K-7-21-2-2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>IT98K-615-6-1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>IT99K-573-2-1</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>SUVITA2</td>
<td>1, 2, 4, 5, 6</td>
</tr>
<tr>
<td>16</td>
<td>UAM09-1051-1</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>IT81D-994</td>
<td>1, 2, 5</td>
</tr>
<tr>
<td>18</td>
<td>IT97K-1042-3</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>IT93K-452-1</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>UAM09-1046-6-1</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>IT97K-499-35</td>
<td>Resistant check</td>
</tr>
<tr>
<td>22</td>
<td>IT00K-1217</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>UAM09-1046-6-2</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>IT98K-216-44</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>IT03K-338-1</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>UAM09-1055-6</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>IT99K-573-1-1</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>IT90K-205-8</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>TVX 3236</td>
<td>Susceptible check</td>
</tr>
</tbody>
</table>
"Striga" populations were collected from eight "Striga" endemic areas in the northern, upper east and upper west regions of Ghana. The specific location and the regions within which the "Striga" was collected are presented in Table 3:2. Matured "Striga" plants (plants with weathered flowers and not completely dried) were harvested from farmers’ fields at endemic zones to "Striga gesnerioides" into polythene/ rubber lined sacks and air dried. The capsules of dried "Striga" plants were then threshed and sieved through pore sizes of 250 µm, 200 µm, 180 µm and finally 150 µm to obtain pure "Striga" seeds. The pure "Striga" seeds were labelled per endemic zones and stored at room temperature. In all, eight populations of "Striga" were used in this study.

Table 3.2 "Striga gesnerioides" endemic zones in Ghana from which samples were collected

<table>
<thead>
<tr>
<th>Region</th>
<th>Endemic Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper East</td>
<td>Manga</td>
</tr>
<tr>
<td></td>
<td>Googo</td>
</tr>
<tr>
<td></td>
<td>Garu</td>
</tr>
<tr>
<td>Upper West</td>
<td>Lawra</td>
</tr>
<tr>
<td></td>
<td>Babilla</td>
</tr>
<tr>
<td>Northern</td>
<td>Gushiegu</td>
</tr>
<tr>
<td></td>
<td>Walewale</td>
</tr>
<tr>
<td></td>
<td>Gambaga</td>
</tr>
</tbody>
</table>

Soil used in this experiment was taken from the Manga Station of the CSIR-SARI. A mixture in the ratio of 70% loam to 30% sand, based on weight was used. The soil was steam sterilized to get rid of contamination from native "Striga" seeds within the soil. The drum method of sterilization was used (Plate 3:1). This consists of a metallic drum with an internal division at the one third length from the bottom. The division was made by welding a flat bar across the diameter of the drum at the position and a wire mesh/net was also welded on top of the bar. This marked the threshold level of water for sterilization.
Two jute sacks were then placed on the mesh or net to prevent the soil from entering the water. The drum was then filled with the soil mixture. The setup was covered again with two jute sacks and a metallic lid placed on it and secured. Fire was set under the drum with the soil and water. The steam from the boiling water, sterilized the soil as it moved from the bottom to the top of the drum through the soil. Once the steam was seen at the top, it was left for an hour for complete sterilization. After sterilization, the soil was scooped out and cooled.

Plate 3.1 Photograph of the drum approach, Drum filled with water to the mesh level (A), Drum with jute sack sealed/place on the mesh (B), Drum filled with soil mixture for initiation of sterilization (C)
3.1.2.1 Inoculation, preconditioning

Pots of diameter 35 cm and height 35 cm were filled with sterilized soil and inoculated with 20 mg of pure *S. gesnerioides* seeds (approximately 10,000 seeds) from each endemic zone. With this, about half the soil in each pot was poured into a wider pot. A unit of measure (spatula) was tested by measuring the seed weight it could contain. This was ascertained to be 20 mg of pure *Striga* seeds. A spatula full of pure *Striga* seed was then transferred into the wider pot with the soil mixture. The contents of this pot was then mixed thoroughly and transferred into the experimental pot. This was done for all pots constituting a strip. In-between strips the spatula was washed and rinsed off any residual *Striga* seed from the previous strip. For every strip, a different wider pot was used for mixing of soil mixture and pure *Striga* seed.

The pots were preconditioned by watering for three days before planting. Three cowpea seeds were planted in each pot and thinned to 2, two weeks after emergence.

3.1.2.2 Experimental setup

A split plot arrangement with three replications was used in this study. The varieties were assigned to the main plots and the *Striga* populations the sub plots. Each plot consisted of nine splits with each containing 29 pots for the differential cowpea genotypes used. Of the nine splits, eight were inoculated with the different *Striga* population. The ninth split was not inoculated to serve as the control and to check the success of the sterilization process.
3.1.2.3 Morphological Data Collection

Morphological data were taken on both the cowpea and its parasite, *S. gesnerioides*. The only data taken on the cowpea was its reaction to the *Striga* populations used. That is either susceptible or resistant.

The reaction of each cowpea genotype to each of the *Striga* populations used was taken. A Cowpea genotype that showed susceptibility to a *Striga* population was scored as ‘1’, a susceptible genotype is one that shows *Striga* emergence or attachment. A Cowpea genotype that showed resistance to any *Striga* population was scored as ‘0’, a resistant genotype is one that shows no emergence nor attachment of *S. gesnerioides*.

Data taken on *Striga gesnerioides* plants were days to emergence (DTSE), *Striga* emergence score (SES) and *Striga* attachment score (SAS). Days to the emergence of *Striga* was taken by counting the number of days from the time of planting of the cowpea to the time *Striga* plants emerged to the surface of the soil. *Striga* emergence scores were taken by scoring pots/cowpea genotype with emerged *Striga* plants as “1” and those with no emergence as “0”. This data was recorded throughout the development of the cowpea plants up to physiological maturity. The root zone of each plant in a pot was washed in a bigger basin and the root of each plant examined for attachment of *Striga* plants. Cowpea genotypes showing attachment were scored as ‘1’ and those without attachment as ‘0’.
3.1.2.4 Data Analysis

GPS coordinates was taken at all locations where *Striga* samples were taken using the Garmin etrex 30 GPS. The coordinates were plotted unto the Ghana map using the software AcrGIS (https://www.arcgis.com).

The reaction of the 29 cowpea varieties to the eight population of *Striga gesnerioides* collected from endemic zones were scored as ‘1’ for susceptible varieties and ‘0’ for resistant varieties. The virulence of the *Striga populations* on the cowpea varieties were also scored as ‘1’ for virulence and ‘0’ for non-virulence. The data was subjected to cluster analysis using the Jaccard similarity test and an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering method for both cowpea genotypes and the *Striga gesnerioides* populations (Abe et al., 2003). The software used for this was GenStat 12th edition and DARwin version 6 (Egbadzor et al., 2014).

3.1.3 Laboratory Experiment

The laboratory analysis was carried out at the biotechnology laboratory of the Savannah Agricultural Research Institute (SARI), Nyankpala. It consisted of molecular characterization of the *Striga* strain from different locations within endemic zones using simple sequence repeats (SSR) markers. DNA extraction was done using CTAB protocol as described in section 3.1.3.4 and gel electrophoresis and PCR were carried out as described in section 3.1.3.6.
3.1.3.1 Striga samples for laboratory experiment

Thirty-Five Striga samples were used in this laboratory work (Table 3:3). These samples were collected from different locations within endemic areas for S. gesnerioides on cowpea in Ghana.

Table 3.3 Districts and regions of Striga gesnerioides sample collection for laboratory experiment

<table>
<thead>
<tr>
<th>ID</th>
<th>Name of location</th>
<th>Number of samples</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buguya-kura</td>
<td>2</td>
<td>West Mamprusi</td>
<td>Northern</td>
</tr>
<tr>
<td>2</td>
<td>Norilogubi</td>
<td>2</td>
<td>East Mamprusi</td>
<td>Northern</td>
</tr>
<tr>
<td>3</td>
<td>Yankazia</td>
<td>3</td>
<td>East Mamprusi</td>
<td>Northern</td>
</tr>
<tr>
<td>4</td>
<td>Barinya</td>
<td>1</td>
<td>East Mamprusi</td>
<td>Northern</td>
</tr>
<tr>
<td>5</td>
<td>Misiga</td>
<td>2</td>
<td>Bawku Municipal</td>
<td>Upper East</td>
</tr>
<tr>
<td>6</td>
<td>Yaro yire</td>
<td>1</td>
<td>East Mamprusi</td>
<td>Northern</td>
</tr>
<tr>
<td>7</td>
<td>Jagbani</td>
<td>2</td>
<td>West Mamprusi</td>
<td>Northern</td>
</tr>
<tr>
<td>8</td>
<td>Tabier</td>
<td>2</td>
<td>Laura</td>
<td>Upper West</td>
</tr>
<tr>
<td>9</td>
<td>Babile</td>
<td>2</td>
<td>Laura</td>
<td>Upper West</td>
</tr>
<tr>
<td>10</td>
<td>Nahadague</td>
<td>1</td>
<td>Sisala East</td>
<td>Upper West</td>
</tr>
<tr>
<td>11</td>
<td>Manga</td>
<td>4</td>
<td>Binduri</td>
<td>Upper East</td>
</tr>
<tr>
<td>12</td>
<td>Googo</td>
<td>3</td>
<td>Bawku West</td>
<td>Upper East</td>
</tr>
<tr>
<td>13</td>
<td>Boko</td>
<td>3</td>
<td>Binduri</td>
<td>Upper East</td>
</tr>
<tr>
<td>14</td>
<td>Zuabuliga</td>
<td>2</td>
<td>Pusiga</td>
<td>Upper East</td>
</tr>
<tr>
<td>15</td>
<td>Nankpawei</td>
<td>2</td>
<td>Sisala East</td>
<td>Upper West</td>
</tr>
<tr>
<td>16</td>
<td>Dimajan</td>
<td>1</td>
<td>Sisala East</td>
<td>Upper West</td>
</tr>
<tr>
<td>17</td>
<td>Nyankpala-UDS</td>
<td>1</td>
<td>Tolon kunbumgu</td>
<td>Northern</td>
</tr>
<tr>
<td>18</td>
<td>Manga</td>
<td>1</td>
<td>Binduri</td>
<td>Upper East</td>
</tr>
</tbody>
</table>
3.1.3.2 SSR primers for PCR amplification

Seventy-three SSR primers (Table 3.4) were used in this work. The primers were designed using primer3 based on sixteen *S. gesnerioides* gene sequences retrieved from the National Centre on Bioinformatics Information (NCBI) data base.

Table 3.4 SSR primers used for diversity studies and their expected product size and annealing temperatures

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Forward</th>
<th>Reverse</th>
<th>Product size (bp)</th>
<th>Annealing Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA1/2</td>
<td>GCCGGAACAAAGACTCGATC</td>
<td>TCACCAGCCTCCAAGTTGAT</td>
<td>244</td>
<td>57</td>
</tr>
<tr>
<td>FA3/4</td>
<td>TAGGTTGGAACGGGACCCAC</td>
<td>TCTGTCAGGAGGAGGAGTGA</td>
<td>218</td>
<td>58</td>
</tr>
<tr>
<td>FA5/6</td>
<td>TGTCACCAGAGGGCCGAAT</td>
<td>TCACCAGCCTCCAAGTTGAT</td>
<td>193</td>
<td>56</td>
</tr>
<tr>
<td>FA7/8</td>
<td>GACCTCCCAAACACACCCAC</td>
<td>GTGGTCCAGTTCCAACAAC</td>
<td>231</td>
<td>58</td>
</tr>
<tr>
<td>FA9/10</td>
<td>TAGGTTGGAACGGGACCCAC</td>
<td>CTAACCCCGAGGACCGCAC</td>
<td>157</td>
<td>58</td>
</tr>
<tr>
<td>FA11/12</td>
<td>GCTTACCGCTGGAAGATCT</td>
<td>CAACCGCATAAATGCTGGGA</td>
<td>248</td>
<td>57</td>
</tr>
<tr>
<td>FA13/14</td>
<td>TAAAACCTTCTCAAGGCCGCG</td>
<td>CAACCGCATAAATGCTGGGA</td>
<td>207</td>
<td>56</td>
</tr>
<tr>
<td>FA15/16</td>
<td>TTTCGCGGTCTCAGCTTAT</td>
<td>ATTTCTTCGCACTGAACC</td>
<td>173</td>
<td>56</td>
</tr>
<tr>
<td>FA17/18</td>
<td>GCTTACGCTGGAAGATCT</td>
<td>AAATCTACGCTGGAACCGAG</td>
<td>203</td>
<td>57</td>
</tr>
<tr>
<td>FA19/20</td>
<td>TAAAACCTTCTCAAGGCCGCG</td>
<td>AAATCTACGCTGGAACCGAG</td>
<td>162</td>
<td>56</td>
</tr>
<tr>
<td>FA21/22</td>
<td>CTTGTCGGCTTCATGCTTAA</td>
<td>TCGAGCCAAAAGTTTCTAGCA</td>
<td>217</td>
<td>56</td>
</tr>
<tr>
<td>FA23/24</td>
<td>CTTGTCGGCTTCATGCTTAA</td>
<td>CCGAGCCAAAGTTTCTAGCA</td>
<td>216</td>
<td>57</td>
</tr>
<tr>
<td>FA25/26</td>
<td>TTTCCTCTGITTGCGGTCTTGTA</td>
<td>TCCGAGCCAAAGTTTCTAGCA</td>
<td>222</td>
<td>56</td>
</tr>
<tr>
<td>FA27/28</td>
<td>GCATCCCATATGTAAGGCCG</td>
<td>TCGAGCCAAAAGTTTCTAGCA</td>
<td>173</td>
<td>57</td>
</tr>
<tr>
<td>FA29/30</td>
<td>GCATCCCATATGTAAGGCCG</td>
<td>TCGAGCCAAAGTTTCTAGCA</td>
<td>174</td>
<td>57</td>
</tr>
<tr>
<td>FA31/32</td>
<td>CCTGTCGGTCTCGGTCTCGTA</td>
<td>CGACGTGAAATGCGGAACCC</td>
<td>194</td>
<td>58</td>
</tr>
<tr>
<td>FA31/34</td>
<td>CCTGTCGGTCTCGGTCTCGTA</td>
<td>CGACGTGAAATGCGGAACCC</td>
<td>195</td>
<td>58</td>
</tr>
<tr>
<td>FA35/36</td>
<td>GAGTGTGCGCATGGGACGAC</td>
<td>CAACCACACAGGACGTATA</td>
<td>242</td>
<td>58</td>
</tr>
<tr>
<td>FA37/38</td>
<td>GCAGCTACGCTGCTCAGTAAG</td>
<td>CTCCCACATGTCGTCTTTCAT</td>
<td>167</td>
<td>58</td>
</tr>
<tr>
<td>FA39/40</td>
<td>TTAGGGATGTCCTCCTGTTG</td>
<td>CGCCCTCACCACCTTAGAA</td>
<td>189</td>
<td>58</td>
</tr>
<tr>
<td>FA47/38</td>
<td>ACTTTCGAGCCTGTATAGCCT</td>
<td>CTCCCACATGTCGTCTTTCAT</td>
<td>212</td>
<td>57</td>
</tr>
<tr>
<td>FA49/38</td>
<td>TTCGAGCCTGTATAGCCT</td>
<td>CTCCCACATGTCGTCTTTCAT</td>
<td>210</td>
<td>57</td>
</tr>
<tr>
<td>FA51/52</td>
<td>CATCGCCGCAAGGAACAGAGA</td>
<td>GATGTTCACGGGATTTCTGC</td>
<td>184</td>
<td>57</td>
</tr>
<tr>
<td>FA53/54</td>
<td>GCAGAATCCCGTGAAACACATC</td>
<td>GGCTGTCGTTGAATACATT</td>
<td>194</td>
<td>57</td>
</tr>
<tr>
<td>FA51/56</td>
<td>CATCGCCGCAAGGAACAGAGA</td>
<td>AACTGATGTTCAAGGGATTGAT</td>
<td>188</td>
<td>56</td>
</tr>
<tr>
<td>FA57/54</td>
<td>AAATTCGCTCGACATCGGT</td>
<td>GGCTGTCGTTGAATACATT</td>
<td>190</td>
<td>56</td>
</tr>
<tr>
<td>FA59/52</td>
<td>ATGCGCCAGGGAAACAGAT</td>
<td>GATGTTCACGGGATTTCTGC</td>
<td>183</td>
<td>56</td>
</tr>
<tr>
<td>FA61/62</td>
<td>CGGCTGTTGGTGAAGAACAGA</td>
<td>AATCTGCAAGGTCAGGGTCA</td>
<td>192</td>
<td>56</td>
</tr>
<tr>
<td>FA63/64</td>
<td>CGGCGGATGTAGTAAACAGAT</td>
<td>CGGCCACAGATATGTTTGGCA</td>
<td>159</td>
<td>56</td>
</tr>
<tr>
<td>FA65/62</td>
<td>ACAAGGCGGGGAAAGCTAA</td>
<td>AATCTGCAAGGTCAGGGTCA</td>
<td>233</td>
<td>56</td>
</tr>
<tr>
<td>FA67/62</td>
<td>ACAAAGGGGCGGGAAGCTA</td>
<td>AATCTGCAAGGTCAGGGTCA</td>
<td>234</td>
<td>56</td>
</tr>
<tr>
<td>FA69/70</td>
<td>CGCGGGATGTTAAGGAATT</td>
<td>CGACGCGCGGTATATTCTTT</td>
<td>231</td>
<td>56</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>FA71/52</td>
<td>CGCCAAAGGAACGGATAGG</td>
<td>GATGGTTCACGGGATTCTGC</td>
<td>180</td>
<td>58</td>
</tr>
<tr>
<td>FA71/74</td>
<td>CGCCAAGGAAACCGGATAGG</td>
<td>ACTGATGTTTCCACGGGATT</td>
<td>184</td>
<td>57</td>
</tr>
<tr>
<td>FA71/76</td>
<td>CGCCAAGGAAACGGGATAGG</td>
<td>TCAGATGTTTCCACGGGATT</td>
<td>182</td>
<td>57</td>
</tr>
<tr>
<td>FA77/78</td>
<td>AGGAAAGGATAGGAGCGT</td>
<td>GATGGTTCACGGGATTCTGC</td>
<td>175</td>
<td>57</td>
</tr>
<tr>
<td>FA79/74</td>
<td>AGGAAAGGATAGGAGCGT</td>
<td>ACTGATGTTTCCACGGGATT</td>
<td>179</td>
<td>56</td>
</tr>
<tr>
<td>FA81/82</td>
<td>GTGTTGGAACGGATAGG</td>
<td>GATGGTTCACGGGATTCTGC</td>
<td>172</td>
<td>57</td>
</tr>
<tr>
<td>FA83/82</td>
<td>GTGTTGGAACGGATAGG</td>
<td>TCGATGTTTCCACGGGATT</td>
<td>170</td>
<td>57</td>
</tr>
<tr>
<td>FA85/82</td>
<td>GTGTTGGAACGGATAGG</td>
<td>ACTGATGTTTCCACGGGATT</td>
<td>178</td>
<td>57</td>
</tr>
<tr>
<td>FA87/82</td>
<td>GTGTTGGAACGGATAGG</td>
<td>TCGATGTTTCCACGGGATT</td>
<td>176</td>
<td>57</td>
</tr>
<tr>
<td>FA91/92</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>216</td>
<td>56</td>
</tr>
<tr>
<td>FA93/94</td>
<td>CTTGCGTGGGAAAATGGTA</td>
<td>GATGGTTCACGGGATTCTGC</td>
<td>172</td>
<td>57</td>
</tr>
<tr>
<td>FA97/92</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>221</td>
<td>54</td>
</tr>
<tr>
<td>FA101/102</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>226</td>
<td>58</td>
</tr>
<tr>
<td>FA105/106</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>227</td>
<td>57</td>
</tr>
<tr>
<td>FA107/106</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>228</td>
<td>57</td>
</tr>
<tr>
<td>FA109/102</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>229</td>
<td>57</td>
</tr>
<tr>
<td>FA113/118</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>230</td>
<td>57</td>
</tr>
<tr>
<td>FA117/116</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>231</td>
<td>57</td>
</tr>
<tr>
<td>FA123/122</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>232</td>
<td>57</td>
</tr>
<tr>
<td>FA125/126</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>233</td>
<td>57</td>
</tr>
<tr>
<td>FA127/128</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>234</td>
<td>57</td>
</tr>
<tr>
<td>FA129/128</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>235</td>
<td>57</td>
</tr>
<tr>
<td>FA131/132</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>236</td>
<td>57</td>
</tr>
<tr>
<td>FA133/134</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>237</td>
<td>57</td>
</tr>
<tr>
<td>FA135/136</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>238</td>
<td>57</td>
</tr>
<tr>
<td>FA137/138</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>239</td>
<td>57</td>
</tr>
<tr>
<td>FA139/140</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>240</td>
<td>57</td>
</tr>
<tr>
<td>FA141/142</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>241</td>
<td>57</td>
</tr>
<tr>
<td>FA143/144</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>242</td>
<td>57</td>
</tr>
<tr>
<td>FA145/146</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>243</td>
<td>57</td>
</tr>
<tr>
<td>FA147/148</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>244</td>
<td>57</td>
</tr>
<tr>
<td>FA149/142</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>245</td>
<td>57</td>
</tr>
<tr>
<td>FA151/152</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>246</td>
<td>57</td>
</tr>
<tr>
<td>FA153/154</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>247</td>
<td>57</td>
</tr>
<tr>
<td>FA155/156</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>248</td>
<td>57</td>
</tr>
<tr>
<td>FA157/158</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>249</td>
<td>57</td>
</tr>
<tr>
<td>FA159/158</td>
<td>TGATTTCCACAGCGCCCC</td>
<td>ACTCACATTTCCTCCACGCA</td>
<td>250</td>
<td>57</td>
</tr>
</tbody>
</table>
3.1.3.3 Preparation of samples for DNA extraction

S. gesnerioides samples collected from locations within endemic zones were brought to the laboratory in Ziploc bags on ice (Plate 3:2). The samples were then air dried overnight and placed in newly labelled Ziploc bags with 5 mini pack silica gels to dry the samples. The dried samples were ground using a mortar and pestle to fine powder with 0.02 g of polyvinyl pyrrolidone (PVP 40, 000) added. The ground samples were then put into labelled 2 ml Eppendorf tubes and preserved at room temperature for laboratory analysis.

Plate 3:2 Air dried *Striga* samples (A), *Striga* sample in Ziploc bag with mini pack silica gel (B)

3.1.3.4 DNA Extraction

Total genomic DNA was extracted using the CTAB protocol by Doyle and Doyle (1990). About 200 mg of ground dried samples were put into labelled separate 2 ml Eppendorf tubes containing 1 ml of Pre-warmed CTAB buffer 2% CTAB, 20 mM EDTA, 100 mM Tris-HCl and 1.4M NaCl with 0.2% mercapto-ethanol (2 µl/1 ml of CTAB buffer) added to each Eppendorf tube and placed in a water bath at 60 °C for 1 hour. During this time the content of the tubes were mixed gently by inverting for 6 -7 times. Two hundred micro litres (200 µl) of potassium acetate was added and put on ice for 20 minutes, 700 µl of chloroform: Isoamyl alcohol (24: 1) mixture was added to each tube and mixed gently by
inverting, this was left undisturbed for 5 minutes. The tubes were then centrifuged at 10000 rpm for 15 min and the middle aqueous layer transferred into labelled new 2 ml tube. The *Striga* exudes some dye which masks the clear separation of aqueous and organic layers, hence care was taken to avoid contamination. The same volume of chloroform: Isoamyl alcohol in new tube was added, mixed gently and left undisturbed for 5 min. This was centrifuge at 10 000 rpm for 10 min and the supernatant transferred into new labelled 1.5 ml tubes. Five hundred micro litres (500 µl) of ice cold isopropanol was added to get a white precipitate, for maximum precipitation of the DNA, the tubes were left over night at a temperature of - 20 °C. The tubes were centrifuged the next day for 5 min at 10 000 revolutions per minute (rpm) and the supernatant removed carefully leaving pellets of DNA. The pellets were washed twice with 300 ml of 75% ice cold ethanol depending on pellet size, each followed by centrifugation at 15000 rpm for 5 min and allowed to air dry. About 300 ml of x1 TE buffer was added to the dried pellet and kept at 4 °C for dissolution of the pellet. Two micro litres (2 µl) of RNAse A was added to each tube and incubated at 37 °C for an hour to get rid of RNA in the DNA.

3.1.3.5 DNA quality test

A 2% agarose gel (2 g agarose, 100 ml of x1 TAE buffer and 5 µl of ethidium bromide) was used in checking the quality of DNA obtained. Eight micro litres (8 µl) each of the purified DNA after RNAse treatment was pipetted into separate 0.2 µl PCR tubes and 2 µl of 10 % loading dye (0.025 g xylene, 0.025 g cyanol and 30 % glycerol) was added to each tube. Nine micro litres (9 µl) of each sample was loaded into the wells with 8 µl of 1 kb ladder loader into the first and last well. Electrophoresis was carried out in an x1 TAE buffer for 2 hours at 120 V and visualized on a UV trans-illuminator and photographed.
Extraction was repeated for samples with poor quality or no DNA bands. Good quality DNA samples were stored at -20 °C until needed for amplification.

3.1.3.6 PCR amplification and gel electrophoresis

Polymerase chain reaction (PCR) of the extracted DNAs were carried out using the following condition: denaturation at 94 °C for 30 seconds, annealing at X °C (depending on primer, (Table 3.4)) for 30 seconds and extension at 72 °C for 30 seconds for a cycle length of 35, in a reaction volume of 10µl (3 µl of ddH₂O, 1 µl of DNA, 1 µl of primer and 5 µl of premix). The premix used was the puReTaq Ready-To-Go PCR Beads. The beads were dissolved with 20 µl of nuclease free water and divided into two then 1 µl of DNA and 1 µl of primer (0.5 µl each of forward and reverse) was added to constitute a PCR reaction.

The PCR products were resolved on a 6% horizontal polyacrylamide gel at a voltage of 120, running time of two hours. The gel was stained with ethidium bromide and visualized under a trans-illuminator.

3.1.3.7 Molecular Data Collection

Product bands after gel electrophoresis were scored base on clear bands and using a standard 50 bp ladder run alongside the samples. Two clear bands for each sample were scored based on their weights as compared with the ladder as x/y, where x is the band size for the heavier weight and y for the lighter weight.
3.1.3.8 Data Analysis

Scoring for clear bands for each marker was done as ‘1’ for presence of allele and ‘0’ for absence of allele. Two clear bands were scored for each marker. The score for presence and absence of alleles were used in a cluster analysis based on the markers using the software GenStat 12th edition and DARwin version 6. This was also subjected to principal component analysis using the same software. The bands scored were analysed for summary genetic variation for gene diversity, allele number, heterozygosity, major allele frequency and polymorphic information content, using the software PowerMarker version 3.2.5 (Liu et al., 2003).
CHAPTER FOUR

4.1 RESULTS

4.1.1 Morphological variation in *Striga gesnerioides*

Morphological variations were observed in *Striga* populations during collection. The cowpea growers in these areas also confirmed the existence of morphological variations in the striga on their cowpea plants. Morphological variation observed was in the colour of the flower at maturity (Plate 4:1). A total of 35 *Striga* samples were collected. Seventy-eight (70) percent of the *Striga* samples collected had purple coloured flowers, with variations within the purple showing different expression levels ranging from dark to vary faint purple. The remaining 22 percent were white in colour (Figure 4:1). At some locations, the two flower colours were found on the same field, that is, patches of the field had white while most of the fields had *Striga* with purple flowers. A ratio of 3:1 (78:22) for purple to white flower was observed.

![Percentage representation of purple and white flowered *Striga gesnerioides* among samples collected](image)

Figure 4:1 Percentage representation of purple and white flowered *Striga gesnerioides* among samples collected
Plate 4:1 Variations in flower colour of *Striga gesnerioides*, A and B shows purple flowers, C and D shows white flowers. (Photo credit: Frederick J. Awuku)

4.1.2 *Striga gesnerioides* on other weeds

In this study, *Striga gesnerioides* was found on a leguminous weed, *Tephrosia pedicellata* and a non-leguminous weed *Ipomoea tribola* (Plate 4:2 and Plate 4:3). The parasitic plant on the weed *Tephrosia pedicellata* was in two colours: purple and green colour. The green coloured parasitic plant appeared the same as that on the cowpea plant. The parasitic plant on the weed *Ipomoea tribola* was green in colour as that on the cowpea plant.
Plate 4:2 Striga gesnerioides on the weed Tephrosia pedicellata. Arrow points to Striga gesnerioides

Plate 4:3 Striga gesnerioides on Ipomoea tribola, circles represents attachment of Striga gesnerioides to the roots of Ipomoea tribola, red circles shows attachment of Striga gesnerioides to Ipomoea tribola
4.1.3 *Striga gesnerioides* hot spots in Ghana

Striga gesnerioides is a major parasitic cowpea weed that is widely distributed in cowpea producing regions of Ghana. From the figure above, it is distributed in three regions: Upper East, Upper West and the Northern. The Upper East region registered the highest incidence of *Striga*, Upper West region equally has *Striga gesnerioides* widely distributed across, with most cowpea producing areas abandoned due to heavy infestation. Also, most areas under cultivation still suffer attacks from this parasitic weed. For the northern region, the weed is sparsely distributed, with the portions sharing boundaries with the Upper East and West regions being dense. The north eastern part of the region shows the most weed infestation (Figure 4.2).
Figure 4:2 *Striga gesnerioides* hot spots in Ghana
4.1.4 Virulence of different *Striga gesnerioides* population on selected cowpea cultivars

Striga gesnerioides exhibit differential virulence on cowpea varieties. In this study nine different *Striga gesnerioides* treatments (designated N1 – N9) were used as inoculum on twenty-nine cowpea varieties. Of the nine inoculum, N1 to N8 were pure *Striga gesnerioides* seeds from different locations, while N9 was a control (no inoculum). The inoculum grouped the cowpea varieties into three; the groups were based on inoculum virulence with respect to the cowpea varieties (Table 4:1).

The control treatment (N9) showed no virulence on any of the varieties. Varieties IT98K-205-10 and IT98K-618-6-1 had problems with germination and as such, no results were obtained. All eight inoculums were virulent on the following varieties: IT84S-2049, B524, IT97K-461-4, IT98K-409-4, IT93K-693-2, IT97K-1042-3, IT93K-452-1, IT98K-216-44 and TVX 3236. Of these, IT84S-2049, IT97K-461-4 and TVX 3236 were susceptible checks (Table 3:1) and hence, the expectation was that, all inoculum should be virulent on them. None of the inoculums were virulent on the following cowpea varieties: IT82D-849, IT98K-1092-1, IT99K-573-2-1, UAM09-1051-1, IT97K-499-35, IT00K-1217, UAM09-1046-6-2, IT99K-573-1-1, UAM09-1055-6 and IT90K-205-8. The variety IT97K-499-35 was the local resistant check. The eight inoculums showed differential virulence to the following cowpea genotypes: IT99K-494-6, IT00K-1263, IT97K-819-118, IT99K-7-21-2-2, Suvita2, IT81D-994, UAM09-1046-6-1 and IT03K-338-1. N4 and N8 were virulent on IT99K-494-6. Except for N4, all other inoculums were virulent on IT00K-1263. Inoculum N6 showed virulence on only genotype IT97K-819-118. N2, N4 and N5 were also virulent on genotype IT99K-7-21-2-2. Inoculum N2 and N3 were virulent on only Suvita2. Except for N3 and N6 all other inoculums were virulent on IT81D-994. Only
inoculum N5 showed virulence on UAM09-1046-6-1 and inoculum N1 showed virulence on IT03K-338-1.

Table 4:1 Response of cowpea genotypes to different *Striga gesnerioides* populations

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>Strains of Striga gesnerioides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
</tr>
<tr>
<td>IT84S-2049</td>
<td>1</td>
</tr>
<tr>
<td>B524</td>
<td>1</td>
</tr>
<tr>
<td>IT97K-461-4</td>
<td>1</td>
</tr>
<tr>
<td>IT98K-409-4</td>
<td>1</td>
</tr>
<tr>
<td>IT93K-693-2</td>
<td>1</td>
</tr>
<tr>
<td>IT82D-849</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-494-6</td>
<td>0</td>
</tr>
<tr>
<td>IT98K-1092-1</td>
<td>0</td>
</tr>
<tr>
<td>IT00K-1263</td>
<td>1</td>
</tr>
<tr>
<td>IT97K-819-118</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-7-21-2-2</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-573-2-1</td>
<td>0</td>
</tr>
<tr>
<td>SUDVITA2</td>
<td>0</td>
</tr>
<tr>
<td>UAM09-1051-1</td>
<td>0</td>
</tr>
<tr>
<td>IT81D-994</td>
<td>1</td>
</tr>
<tr>
<td>IT97K-1042-3</td>
<td>1</td>
</tr>
<tr>
<td>IT93K-452-1</td>
<td>1</td>
</tr>
<tr>
<td>UAM09-1046-6-1</td>
<td>0</td>
</tr>
<tr>
<td>IT97K-499-35</td>
<td>0</td>
</tr>
<tr>
<td>IT00K-1217</td>
<td>0</td>
</tr>
<tr>
<td>UAM09-1046-6-2</td>
<td>0</td>
</tr>
<tr>
<td>IT98K-216-44</td>
<td>1</td>
</tr>
<tr>
<td>IT03K-338-1</td>
<td>1</td>
</tr>
<tr>
<td>UAM09-1055-6</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-573-1-1</td>
<td>0</td>
</tr>
<tr>
<td>IT90K-205-8</td>
<td>0</td>
</tr>
<tr>
<td>TVX 3236</td>
<td>1</td>
</tr>
</tbody>
</table>

N1 – N8 represents *S. gesnerioides* populations from eight endemic zones and N9 is control. 1 = *Striga* population is virulent on cowpea variety, cowpea variety susceptible to *Striga* population. 0 = *Striga* population not virulent on cowpea variety, cowpea variety resistant to *Striga* population.
4.1.5 Cluster analysis of cowpea genotypes based on their reaction to *Striga* population

The twenty-seven accessions of cowpea used in this study were characterised based on their reaction to eight populations of *Striga gesnerioides*. An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis was carried out. This grouped the cowpea accessions into two accession clusters A and B at a similarity coefficient of about 0.15. Cluster A was sub clustered into A1 and A2 at a similarity coefficient of 0.78. The genotypes: IT84S-2049, B524, IT97K-461-4, IT98K-409-4, IT93K-693-2, IT97K-1042-3, IT93K-452-1, IT98K-216-44, TVX3236 and IT81D-994, were in cluster A1. Cluster A2 consisted of only the genotype IT00K-1263 (Figure 4:3).

Cluster B was sub clustered into two B1 and B2 at a similarity coefficient of 0.57. Cluster B2 consisted of Suvita2, UAM 09-1046-1 and IT99K-7-21-2-2. The remaining genotypes: IT82D-849, IT98K-1092-1, IT99K-573-2-1, UAM09-1051-1, IT97K-499-35, IT00K-1217, UAM09-1046-6-2, UAM09-1055-6, IT99K-573-1-1, IT90K-205-8, IT03K-338-1, IT97K-819-118 and IT99K-494-6, were clustered into B1.

At 1.00 similarity coefficient, the genotypes: IT84S-2049, B524, IT97K-461-4, IT98K-409-4, IT93K-693-2, IT97K-1042-3, IT93K-452-1, IT98K-216-44, and TVX3236, were unresolved and hence, classified as similar, based on their reaction to the populations of *Striga gesnerioides* used. The genotypes: IT82D-849, IT98K-1092-1, IT99K-573-2-1, UAM09-1051-1, IT97K-499-35, IT00K-1217, UAM09-1046-6-2, UAM09-1055-6, IT99K-573-1-1 and IT90K-205-8, were not resolved at similarity coefficient of 1.00 and clustered together as similar in terms of response to the *Striga populations*. Six genotypes were resolved at 1.00 similarity coefficient as different based of their reaction, these
genotypes included: Suvita2, UAM 09-1046-1, IT99K-7-21-2-2, IT03K-338-1, IT97K-819-118 and IT99K-494-6.

Figure 4.3 A dendogram of similarities among twenty-seven cowpea genotypes based on their reaction towards eight *Striga gesnerioides* population (N1-N8)
4.1.6 Cluster analysis of *Striga gesnerioides* population based on their virulence

The results for the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Cluster analysis of the eight *Striga gesnerioides* (N1-N8) populations based on their virulence towards twenty-seven cowpea genotypes are presented in Figure 4:4.

At 0.82 similarity coefficient, two *Striga population* (inoculum) clusters, A and B were formed. Cluster B consisted of N4 and N5, whilst cluster A sub clustered into A₁ and A₂ at similarity coefficient of 0.93. Sub cluster A₁ consisted of N1, N6, N7 and N8; sub cluster A₂ consisted of the inoculum N2 and N3. At 1.00 similarity coefficient, all the inoculums were resolved as distinct.
Figure 4.4: An Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis of eight *Striga gesnerioides* population from eight endemic zones based on their virulence on twenty-seven (27) cowpea genotypes. N1 from Bawku west, N2 from Garu, N3 from Babile, N4 from Gambaga, N5 from Manga, N6 from Lawra, N7 from Gusheigu and N8 from Walewale.
4.1.7 Diversity assessment of *Striga gesnerioides* using SSR markers

In all, seventy-three SSR markers were used in this study. All markers produced clear bands for determination of variability among the thirty-five (35) samples of *Striga gesnerioides*. Nineteen were monomorphic and were not informative for the current study, while the remaining 54 were polymorphic (Plate 4:4,5).

Plate 4:4 Banding pattern for primer FA49/48 and FA3/4 on *Striga gesnerioides* sample numbered 1-35

Plate 4:5 Banding pattern for primer FA63/64 and FA51/56 on Striga gesnerioides sample numbered 1-35

A total of 206 alleles with an average of 3.81 alleles per locus were obtained from the 54 polymorphic markers (Table 4:2). Allele number ranged from 1.00 - 10.00 per locus. The marker FA3/4 and FA37/38 had the highest number: 10 alleles. Allele frequency ranged from 0.26 – 1.00 with an average of 0.68. The highest polymorphic information content (PIC) (0.79) was obtained by the primer FA3/4 with a corresponding gene diversity of 0.82. The primer FA65/62 had the highest heterozygosity (1.00) (Table 4:2.)
Table 4.2 Summary of genetic differentiation parameters generated by 54 polymorphic SSR markers on 27 *Striga gesnerioides* strains in Ghana

<table>
<thead>
<tr>
<th>Marker</th>
<th>Major Allele Frequency</th>
<th>Allele Number</th>
<th>Gene Diversity</th>
<th>Heterozygosity</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA1/2</td>
<td>0.67</td>
<td>4.00</td>
<td>0.50</td>
<td>0.00</td>
<td>0.45</td>
</tr>
<tr>
<td>FA3/4</td>
<td>0.26</td>
<td>10.00</td>
<td>0.82</td>
<td>0.56</td>
<td>0.79</td>
</tr>
<tr>
<td>FA7/8</td>
<td>0.56</td>
<td>5.00</td>
<td>0.59</td>
<td>0.30</td>
<td>0.53</td>
</tr>
<tr>
<td>FA3/10</td>
<td>0.72</td>
<td>5.00</td>
<td>0.45</td>
<td>0.11</td>
<td>0.42</td>
</tr>
<tr>
<td>FA5/2</td>
<td>0.67</td>
<td>3.00</td>
<td>0.48</td>
<td>0.07</td>
<td>0.42</td>
</tr>
<tr>
<td>FA13/12</td>
<td>0.61</td>
<td>8.00</td>
<td>0.58</td>
<td>0.22</td>
<td>0.55</td>
</tr>
<tr>
<td>FA15/16</td>
<td>0.39</td>
<td>6.00</td>
<td>0.70</td>
<td>0.85</td>
<td>0.64</td>
</tr>
<tr>
<td>FA13/18</td>
<td>0.76</td>
<td>4.00</td>
<td>0.40</td>
<td>0.26</td>
<td>0.38</td>
</tr>
<tr>
<td>FA11/12</td>
<td>0.54</td>
<td>8.00</td>
<td>0.66</td>
<td>0.11</td>
<td>0.63</td>
</tr>
<tr>
<td>FA11/18</td>
<td>0.61</td>
<td>6.00</td>
<td>0.58</td>
<td>0.04</td>
<td>0.54</td>
</tr>
<tr>
<td>FA21/22</td>
<td>0.93</td>
<td>3.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.14</td>
</tr>
<tr>
<td>FA21/24</td>
<td>0.81</td>
<td>2.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>FA27/22</td>
<td>0.63</td>
<td>4.00</td>
<td>0.55</td>
<td>0.37</td>
<td>0.51</td>
</tr>
<tr>
<td>FA31/32</td>
<td>0.83</td>
<td>7.00</td>
<td>0.30</td>
<td>0.19</td>
<td>0.29</td>
</tr>
<tr>
<td>FA31/34</td>
<td>0.91</td>
<td>3.00</td>
<td>0.17</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>FA47/38</td>
<td>0.85</td>
<td>4.00</td>
<td>0.27</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>FA35/36</td>
<td>0.83</td>
<td>4.00</td>
<td>0.29</td>
<td>0.11</td>
<td>0.27</td>
</tr>
<tr>
<td>FA37/38</td>
<td>0.35</td>
<td>10.00</td>
<td>0.78</td>
<td>0.07</td>
<td>0.75</td>
</tr>
<tr>
<td>FA39/40</td>
<td>0.35</td>
<td>6.00</td>
<td>0.75</td>
<td>0.11</td>
<td>0.71</td>
</tr>
<tr>
<td>FA49/48</td>
<td>0.46</td>
<td>3.00</td>
<td>0.63</td>
<td>0.70</td>
<td>0.55</td>
</tr>
<tr>
<td>FA51/52</td>
<td>0.76</td>
<td>5.00</td>
<td>0.40</td>
<td>0.11</td>
<td>0.37</td>
</tr>
<tr>
<td>FA51/56</td>
<td>0.30</td>
<td>5.00</td>
<td>0.75</td>
<td>0.33</td>
<td>0.70</td>
</tr>
<tr>
<td>FA57/54</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FA59/52</td>
<td>0.85</td>
<td>3.00</td>
<td>0.26</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>FA51/62</td>
<td>0.48</td>
<td>4.00</td>
<td>0.55</td>
<td>0.96</td>
<td>0.45</td>
</tr>
<tr>
<td>FA63/64</td>
<td>0.52</td>
<td>4.00</td>
<td>0.62</td>
<td>0.93</td>
<td>0.56</td>
</tr>
<tr>
<td>FA65/62</td>
<td>0.50</td>
<td>4.00</td>
<td>0.55</td>
<td>1.00</td>
<td>0.45</td>
</tr>
<tr>
<td>FA67/62</td>
<td>0.44</td>
<td>4.00</td>
<td>0.62</td>
<td>0.89</td>
<td>0.55</td>
</tr>
<tr>
<td>FA81/76</td>
<td>0.52</td>
<td>3.00</td>
<td>0.60</td>
<td>0.00</td>
<td>0.52</td>
</tr>
<tr>
<td>FA79/74</td>
<td>0.74</td>
<td>2.00</td>
<td>0.38</td>
<td>0.00</td>
<td>0.31</td>
</tr>
<tr>
<td>FA91/92</td>
<td>0.67</td>
<td>3.00</td>
<td>0.48</td>
<td>0.15</td>
<td>0.42</td>
</tr>
<tr>
<td>FA83/76</td>
<td>0.63</td>
<td>3.00</td>
<td>0.53</td>
<td>0.00</td>
<td>0.47</td>
</tr>
<tr>
<td>FA101/102</td>
<td>0.59</td>
<td>3.00</td>
<td>0.51</td>
<td>0.00</td>
<td>0.41</td>
</tr>
<tr>
<td>FA93/94</td>
<td>0.63</td>
<td>5.00</td>
<td>0.53</td>
<td>0.04</td>
<td>0.47</td>
</tr>
<tr>
<td>FA105/116</td>
<td>0.94</td>
<td>2.00</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>FA101/104</td>
<td>0.56</td>
<td>2.00</td>
<td>0.49</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>FA107/106</td>
<td>0.96</td>
<td>2.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>FA131/132</td>
<td>0.94</td>
<td>3.00</td>
<td>0.11</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>FA121/122</td>
<td>0.91</td>
<td>3.00</td>
<td>0.17</td>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>FA125/126</td>
<td>0.48</td>
<td>3.00</td>
<td>0.58</td>
<td>0.04</td>
<td>0.49</td>
</tr>
<tr>
<td>FA127/128</td>
<td>0.87</td>
<td>3.00</td>
<td>0.23</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>Strain Code</td>
<td>PIC</td>
<td>Nei’s D</td>
<td>RST</td>
<td>Rogers’ D</td>
<td>CDG</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>FA129/128</td>
<td>0.89</td>
<td>3.00</td>
<td>0.20</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>FA131/138</td>
<td>0.74</td>
<td>3.00</td>
<td>0.40</td>
<td>0.44</td>
<td>0.34</td>
</tr>
<tr>
<td>FA123/122</td>
<td>0.28</td>
<td>6.00</td>
<td>0.78</td>
<td>0.52</td>
<td>0.75</td>
</tr>
<tr>
<td>FA139/140</td>
<td>0.96</td>
<td>2.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>FA133/134</td>
<td>0.80</td>
<td>3.00</td>
<td>0.33</td>
<td>0.04</td>
<td>0.29</td>
</tr>
<tr>
<td>FA141/142</td>
<td>0.78</td>
<td>2.00</td>
<td>0.35</td>
<td>0.44</td>
<td>0.29</td>
</tr>
<tr>
<td>FA149/142</td>
<td>0.93</td>
<td>2.00</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>FA155/156</td>
<td>0.69</td>
<td>2.00</td>
<td>0.43</td>
<td>0.63</td>
<td>0.34</td>
</tr>
<tr>
<td>FA157/158</td>
<td>0.91</td>
<td>2.00</td>
<td>0.17</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>FA159/158</td>
<td>0.69</td>
<td>2.00</td>
<td>0.43</td>
<td>0.63</td>
<td>0.34</td>
</tr>
<tr>
<td>FA151/154</td>
<td>0.39</td>
<td>3.00</td>
<td>0.66</td>
<td>0.56</td>
<td>0.59</td>
</tr>
<tr>
<td>FA97/92</td>
<td>0.59</td>
<td>2.00</td>
<td>0.48</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>FA143/148</td>
<td>0.85</td>
<td>2.00</td>
<td>0.25</td>
<td>0.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Mean</td>
<td>0.68</td>
<td>3.81</td>
<td>0.43</td>
<td>0.23</td>
<td>0.38</td>
</tr>
</tbody>
</table>

PIC: Polymorphic information content

4.1.7.1 Cluster analysis based on SSR markers

The cluster analysis of the strains of *Striga gesnerioides* used in this study using 54 polymorphic SSR markers (Figure 4.5) showed two main clusters for *Striga* strains: cluster A and B at a coefficient of similarity 0.60. At a coefficient of similarity 0.71, cluster A, sub clustered into cluster A1, which consisted of the strain: 1; and sub cluster A2 which consisted of the strains: 3, 6 and 5. Cluster B sub clustered into B1 and B2 at a 0.73 similarity coefficient. Cluster B1 sub clustered into two: one consisting of only strain 2 and the other strains: 10, 16, 26 and 27. Cluster B2 also sub clustered into two: one cluster consisted of the strains: 4, 7, 8 and 14; with the other consisting of the rest of the strains. Strain 17 could be observed to cluster on its own.
Figure 4: Cluster analysis of Striga gesnerioides strains based on 54 SSR markers. Strains 1,2,3,5,6,8,9,24 are from the Northern region of Ghana, strains 4,7,14,15,16,17,18,19,20,21,23,27 are from the Upper East region and the strains 10,11,12,13,24,25 are from the Upper West region of Ghana. * shows white flowered Striga strains.

Considering regional clustering of the Striga strains in this work as depicted by Principal Component Analysis (PCA) (Figure 4.6), the strains from the upper east and west happened to cluster together (I) with majority of the strains from the northern region also clustering together (II). Strain 17 was separated from the rest (III). This created three strain clusters.

Flower colour differences showed no distinct clustering patterns, as the two flower colours observed clustered together. Strain 27, which was collected from the weed Ipomoea
tribola, showed no distinct clustering pattern, as it also clustered with the other *Striga* strains.

Figure 4.6 Clustering *Striga gesnerioides* strains depicted by PCA
4.1.8 Deducing the race of *S. gesnerioides*

The race(s) of *S. gesnerioides* can be inferred from the response study and the molecular data. The response study revealed three groupings for the *Striga gesnerioides* populations (Figure 4:3). This grouping indicates the probable presence of at least three different races in Ghana. *Striga* populations N2 and N3 are similar from the clustering, considering the response of differential cultivars N2 and N3 can be inferred to be race 3 since majority of the differential cultivar resistant to SG3 were resistant to these two population. Populations N4 and N5 shows the possibility of races 2 and 5 from careful examination of the differential cultivars. Populations 1, 6, 7 and 8 also show a mixture of races 2, 3 and 5 as these populations could not be inferred as a single race but several (Table 4:3). Since these populations covered a wide geographical area the observed mixture might be as a result of mixed populations.

The molecular data also reveals similar inference, populations from the northern region clustered together forming a distinct strain on their own. Populations from the Upper East region form three groupings of only Upper East strains and the Upper West region formed two clusters of only Upper West strain. The remaining clustered together consisting of population from two regions and all three regions (Figure 4:3). The existence of multiple races is therefore evident from the molecular and response study.
Table 4:3 Differential cowpea cultivars and their responses to different *Striga* populations

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>S. gesnerioides populations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
</tr>
<tr>
<td>IT99K-494-6 (3)</td>
<td>0</td>
</tr>
<tr>
<td>IT00K-1263 (3)</td>
<td>1</td>
</tr>
<tr>
<td>IT99K-7-21-2-2 (3)</td>
<td>0</td>
</tr>
<tr>
<td>SUVITA2 (1,2,4,5,6)</td>
<td>0</td>
</tr>
<tr>
<td>IT81D-994 (1,2,5)</td>
<td>1</td>
</tr>
<tr>
<td>UAM09-1046-6-1 (3)</td>
<td>0</td>
</tr>
<tr>
<td>IT03K-338-1 (3)</td>
<td>1</td>
</tr>
</tbody>
</table>
CHAPTER FIVE

5.1 DISCUSSION

5.2 Striga Hot spots in Ghana

Ghana has neighbors Togo and Benin to the east and Burkina Faso and Nigeria to the north. Most of the countries bordering Ghana have serious problems with the parasitic weed, *Striga gesnerioides*. Different races of *Striga gesnerioides* are found within these surrounding countries. The tiny seed size of the parasitic weed enhances dispersal; hence the seeds are most likely to have spread across west African countries. This is evident in the mixed races across affected countries. Ghana will not be an exception in the presence of mixed races.

The *Striga* hot spots recorded in this study though not exhaustive, shows a denser distribution from the Upper East region and Upper West regions and sparsely in the Northern region. The continuous cropping of farmers in these areas with little inputs depletes soil nutrients and this enhances *Striga gesnerioides* colonization thereby increasing its population and spread. According to Spallek *et al.* (2013), the spread of parasitic weed is agricultural in nature and under environmental influences. The soils in these three regions are also very low in nutrients with poor rainfall pattern (Ministry of Food and Agriculture Ghana, 2010). This favours *Striga* growth and colonization. Researches have reported on high *Striga* infestation in areas of poor soils and rainfall (Estep *et al.*, 2011, 2012; Lendzemo *et al.*, 2009). A similar situation was observed in this study.
5.3 Morphological variation and host range of *Striga gesnerioides*

Morphological variations are the earliest form of noticeable variations that are observed in every species that exhibits different morphotypes. These variations have been reported to exist in the genus *Striga*, with variations occurring in flower colour between species and within species. According to Musselman (1980), flower colour in the genus *Striga* varies from red, purple to white. Spallek *et al.* (2013), also reported on variation in flower colour in *Striga asiatica*. The findings of this study confirm results of previous research. In this study two morphotypes were found to exist for *Striga gesnerioides* on cowpea, the white flower and purple flower *Striga gesnerioides* (Plate 4:1). No research has linked the difference in flower colour and virulence within a species of *Striga*. From personal communication with farmers the purple flowered *Striga gesnerioides*, is more virulent because it was said to attack much earlier and growth is more vigorous. The ratio of purple to white flowered observed was 3:1, which shows that purple is predominant over white in the areas covered by this study. This accounts for the reason why most of the *Striga gesnerioides* samples across the three northern regions were purple flowered (Figure 4:1). Thus, the purple flowered *S. gesnerioides* can be said to be more adapted than the white flowered ones and probably more virulent.

According to Westwood *et al.* (2012) and Spallek *et al.* (2013), *Striga gesnerioides* parasitizes a range of crops including cowpea, tobacco and other leguminous weeds. Parker & Riches (1994) and Parker (2012) reported on *Striga gesnerioides* parasitizing the leguminous weed *Tephrosia pedicellata*. This was also earlier reported by Musselman (1980). This assertion was supported by this study, as *Striga gesnerioides* was found
parasitising the leguminous weed *Tephrosia pedicellata* (Plate 4:2), but the parasite was green on some and purple on others.

Striga gesnerioides was also found in this study to parasitize the weed *Ipomoea tribola* (Plate 4:3), which is not a leguminous weed. Musselman (1980), reported on sweet potato (*Ipomoea batatas*) as a host to *Striga gesnerioides* but no report on a weed as a host to *Striga gesnerioides* within the genus *Ipomoea*. This study makes a first report of the weed *Ipomoea tribola* as a host to this parasite. Since the parasite uses these weeds as alternative hosts, it makes its eradication very difficult as the parasite in the presence of resistant varieties survive on these alternative hosts to evolve more virulent strains to parasitize the primary host (cowpea). Hence resistance breeding must also target diversity between the parasite on the weed and that on the cowpea for relatedness.

5.4 Response of cowpea cultivars on different populations of *Striga gesnerioides*

The response of cowpea genotypes used in this study confirms the differential virulence of *Striga gesnerioides*. The genotypes were grouped into three; resistant to all strains, susceptible to all strains and those with differential responses. Genotypes resistant to all strains might have resistance genes for all the strains used in this study and those susceptible to all have none. However, of importance in determining if there exist different strains of the parasitic weed in Ghana or not are those with differential responses. This confirms the existence of different races in Ghana. Two or more strains of *Striga gesnerioides* have been reported in some countries in west Africa. Race 4 and 4z in Benin (Timko *et al.*, 2007), there has also been reports of races 5 and 2 in Burkina Faso and two races in Mali (Ouédraogo *et al.*, 2001), Nigeria harbours race 3, 2 and 5 (Timko, 2016).
From the response study, the probable races in Ghana are 3, 2 and 5, however, these needs to be confirmed. For breeding activities for improvement of cowpea to *Striga* resistance, those cultivars resistant to all strains of *Striga* used will be of great importance.

5.5 Genetic diversity in *Striga gesnerioides*

This study recorded a high allelic polymorphism of 74% among the populations using the 74 SSR primers. This reflects the informative nature of the designed primers and is indicative of the germane use of these primers in diversity studies. The genetic dissimilarity generated by the polymorphic SSR markers ranged from 0.65 – 1.00. This indicates a moderate genetic variation among the populations, which is congruent with reports by Musselman (1980).

The genetic diversity observed in this study was in relation to geographical distribution, such that *Striga* populations from the Northern region clustered together whilst those from the Upper East and West regions also clustered together. Within the cluster for the upper east and west were some sub clusters for Upper East and Upper West separately. This makes a grouping of at least three clusters. This indicates that at least three strains of *Striga* on cowpea probably exist in Ghana, probably races 3, 2 and 5. This needs to be confirmed through further studies. This also confirms results obtained from the response studies pointing to existence of multiple strains in Ghana. The parasite can be said to adapt to a location through mutations and changes in climatic and environmental condition prevailing in that location might cause a change in the parasite independent of what the others are exposed to at different locations.
The observed morphological variation in flower colour did not correlate with the genetic diversity as the two flower colour did not cluster separately. Flower colour thus cannot be used to differentiate between the different strains of *Striga gesnerioides* within a location.
CHAPTER SIX

6.1 CONCLUSION AND RECOMMENDATION

6.1.1 CONCLUSION

From this study the following conclusions can be drawn:

- *Striga gesnerioides* is widely distributed in the three Northern (Northern, Upper East and Upper West) regions of Ghana.

- The major form of *Striga gesnerioides* in Ghana is the purple flowered type.

- *Striga gesnerioides* parasitizes the weeds *Ipomoea tribola* and *Tephrosia pedicellata*.

- Multiple strains of *Striga gesnerioides* exist in Ghana, most likely races 3, 2 and 5.

- Cowpea varieties resistant to all strains across regions were also identified.
6.1.2 RECOMMENDATION

To confirm the races of *Striga gesnerioides* in Ghana, further work needs to be done using the molecular markers from this study. Different races of *Striga* known in West Africa can be used together with strains from Ghana to confirm how these races clusters with the different races.

Researchers should consider cowpea lines that were resistant to all strains of *Striga* used in this work in developing *Striga* resistant cowpea varieties in Ghana.

Improved cowpea lines should be tested in the *Striga gesnerioides* endemic zones as there is a possibility of different strains of the parasite at these zones.

The number per location sampled for this work, thus. 35 in total for the three regions is not representative enough to represent an accurate distribution of *Striga gesnerioides* in Ghana. Hence, more cowpea growing areas should be surveyed in future research to give an accurate distribution of the parasite in Ghana.
REFERENCES

Raj, D. R. M. (1949). Advances in owpea Research Edited by, II.

in symbiotic and pathogenic plant-fungus interactions. Molecules, 12(7), 1290–1306.

APPENDIX A

A1: List of cowpea genotypes used in this studies.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Genotype</th>
<th>Race Responds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IT84S-2049</td>
<td>susceptible check</td>
</tr>
<tr>
<td>2</td>
<td>B524</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>IT97K-461-4</td>
<td>susceptible check</td>
</tr>
<tr>
<td>4</td>
<td>IT98K-409-4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>IT93K-693-2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>IT98K-205-10</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>IT82D-849</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>8</td>
<td>IT99K-494-6</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>IT98K-1092-1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>IT00K-1263</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>IT97K-819-118</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>IT99K-7-21-2-2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>IT98K-615-6-1</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>IT99K-573-2-1</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>SUVITA2</td>
<td>1, 2, 4, 4z, 5, 6</td>
</tr>
<tr>
<td>16</td>
<td>UAM09-1051-1</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>IT81D-994</td>
<td>1, 2, 5</td>
</tr>
<tr>
<td>18</td>
<td>IT97K-1042-3</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>IT93K-452-1</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>UAM09-1046-6-1</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>IT97K-499-35</td>
<td>Resistant check</td>
</tr>
<tr>
<td>22</td>
<td>IT00K-1217</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>UAM09-1046-6-2</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>IT98K-216-44</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>IT03K-338-1</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>UAM09-1055-6</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>IT99K-573-1-1</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>IT90K-205-8</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>TVX 3236</td>
<td>Susceptible check</td>
</tr>
</tbody>
</table>
A2: *Striga gesnerioides* endemic zones in Ghana

<table>
<thead>
<tr>
<th>Region</th>
<th>Endemic Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper East</td>
<td>Manga</td>
</tr>
<tr>
<td></td>
<td>Googo</td>
</tr>
<tr>
<td></td>
<td>Garu</td>
</tr>
<tr>
<td>Upper West</td>
<td>Lawra</td>
</tr>
<tr>
<td></td>
<td>Babilla</td>
</tr>
<tr>
<td>Northern</td>
<td>Gushiegu</td>
</tr>
<tr>
<td></td>
<td>Walewale</td>
</tr>
<tr>
<td></td>
<td>Gambaga</td>
</tr>
</tbody>
</table>

A3: Drum method of soil sterilisation
A4: List of locations for *Striga gesnerioides* sample collection

<table>
<thead>
<tr>
<th>ID</th>
<th>Name of location</th>
<th>District</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Buguya-kura</td>
<td>West Mamprisi</td>
<td>Northern</td>
</tr>
<tr>
<td>2</td>
<td>Norilogubi</td>
<td>East Mamprisi</td>
<td>Northern</td>
</tr>
<tr>
<td>3</td>
<td>Yankazia</td>
<td>East Mamprisi</td>
<td>Northern</td>
</tr>
<tr>
<td>4</td>
<td>Barinya</td>
<td>East Mamprisi</td>
<td>Northern</td>
</tr>
<tr>
<td>5</td>
<td>Misiga</td>
<td>Bawku Municipal</td>
<td>Upper East</td>
</tr>
<tr>
<td>6</td>
<td>Yaro yire</td>
<td>East Mamprisi</td>
<td>Northern</td>
</tr>
<tr>
<td>7</td>
<td>Jagbani</td>
<td>West Mamprisi</td>
<td>Northern</td>
</tr>
<tr>
<td>8</td>
<td>Tabier</td>
<td>Laura</td>
<td>Upper West</td>
</tr>
<tr>
<td>9</td>
<td>Babile</td>
<td>Laura</td>
<td>Upper West</td>
</tr>
<tr>
<td>10</td>
<td>Nahadague</td>
<td>Sisala East</td>
<td>Upper West</td>
</tr>
<tr>
<td>11</td>
<td>Manga</td>
<td>Binduri</td>
<td>Upper East</td>
</tr>
<tr>
<td>12</td>
<td>Googo</td>
<td>Bawku West</td>
<td>Upper East</td>
</tr>
<tr>
<td>13</td>
<td>Boko</td>
<td>Binduri</td>
<td>Upper East</td>
</tr>
<tr>
<td>14</td>
<td>Zuabuliga</td>
<td>Pusiga</td>
<td>Upper East</td>
</tr>
<tr>
<td>15</td>
<td>Nankpawei</td>
<td>Sisala East</td>
<td>Upper West</td>
</tr>
<tr>
<td>16</td>
<td>Dimajian</td>
<td>Sisala East</td>
<td>Upper West</td>
</tr>
<tr>
<td>17</td>
<td>Nyankpala-UDS</td>
<td>Tolon kunbumgu</td>
<td>Northern</td>
</tr>
<tr>
<td>18</td>
<td>Weed (Ipomoea tribola)</td>
<td>Binduri</td>
<td>Upper East</td>
</tr>
</tbody>
</table>
A5: Gene sequences used for the primer design and their corresponding GenBank ID

<table>
<thead>
<tr>
<th>ID</th>
<th>GenBank ID</th>
<th>Sequence Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EU140575</td>
<td>Striga gesnerioides isolate Striga02 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence</td>
</tr>
<tr>
<td>2</td>
<td>AF489963.1</td>
<td>Striga gesnerioides matruse K (matK) gene, partial cds; chloroplast gene for chloroplast product</td>
</tr>
<tr>
<td>3</td>
<td>EU140574</td>
<td>Striga gesnerioides isolate Striga01 ribosomal protein subunit 2 gene, partial cds; chloroplast</td>
</tr>
<tr>
<td>4</td>
<td>AF026839.1</td>
<td>Striga gesnerioides ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene, partial cds</td>
</tr>
<tr>
<td>5</td>
<td>JX091339.1</td>
<td>Striga gesnerioides matruse K (matK) pseudogene, complete sequence; chloroplast</td>
</tr>
<tr>
<td>6</td>
<td>KC480440</td>
<td>Striga gesnerioides voucher Steiner s.n. (NBG) ribosomal protein subunit 2 (rps2) gene, partial cds; chloroplast</td>
</tr>
<tr>
<td>7</td>
<td>KC480406.1</td>
<td>Striga gesnerioides voucher Steiner s.n. (NBG) 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 26S ribosomal RNA gene, partial sequence</td>
</tr>
<tr>
<td>8</td>
<td>KC480404.1</td>
<td>Striga gesnerioides voucher Jury 19619 (RNG) 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 26S ribosomal RNA gene, partial sequence</td>
</tr>
<tr>
<td>9</td>
<td>KC542275.1</td>
<td>Striga gesnerioides voucher Jury 19619 (RNG) phytochrome B (phyB) gene, partial cds</td>
</tr>
<tr>
<td>10</td>
<td>U48747.1</td>
<td>Striga gesnerioides ribosomal protein subunit 2 (rps2) gene, chloroplast gene encoding chloroplast protein, partial cds</td>
</tr>
<tr>
<td>11</td>
<td>FR728646.1</td>
<td>Striga gesnerioides chloroplast partial tRNA-Lys gene intron and matK gene for matruse K, isolate LE471</td>
</tr>
<tr>
<td>12</td>
<td>AY911257.1</td>
<td>Striga gesnerioides internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence</td>
</tr>
<tr>
<td>13</td>
<td>AB542056.1</td>
<td>Striga gesnerioides mRNA for hypothetical protein, partial cds</td>
</tr>
<tr>
<td>14</td>
<td>EU259234.1</td>
<td>Striga gesnerioides rpl16 gene, intron; chloroplast</td>
</tr>
<tr>
<td>15</td>
<td>AM234026.1</td>
<td>Striga gesnerioides partial phya gene for phytochrome A, clone 1626_2b_3</td>
</tr>
<tr>
<td>16</td>
<td>EU264195.1</td>
<td>Striga gesnerioides trnT-trnL intergenic spacer and tRNA-Leu (trnL) gene, partial sequence; chloroplast</td>
</tr>
</tbody>
</table>
A6: List of SSR primers

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Forward</th>
<th>Reverse</th>
<th>Expected Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA1/2</td>
<td>GCCGGAACAAAGACTCGATC</td>
<td>TCACCAGCTCCAAGTTGAT</td>
<td>244</td>
</tr>
<tr>
<td>FA3/4</td>
<td>TAGGTTGGAAACTGGGACCAC</td>
<td>TCTGTCAGAGGAGGTCGGA</td>
<td>218</td>
</tr>
<tr>
<td>FA5/6</td>
<td>TGCACCGAGAGGCACCAT</td>
<td>TCACCAGCTCCAAGTTGAT</td>
<td>193</td>
</tr>
<tr>
<td>FA7/8</td>
<td>GACCTCCCAACACCCAC</td>
<td>GTGGTCCAGTTCCAACCTA</td>
<td>231</td>
</tr>
<tr>
<td>FA9/10</td>
<td>TAGGTTGGAAACTGGGACCAC</td>
<td>CTAACCCAGAGACAGCAAC</td>
<td>157</td>
</tr>
<tr>
<td>FA11/12</td>
<td>GCTTCAGCCTGGAAGATCT</td>
<td>CAACGCATAAAATGCGGGA</td>
<td>248</td>
</tr>
<tr>
<td>FA13/14</td>
<td>TAAAACCTTCGGAAGGCCCCG</td>
<td>CAACGCATATAATGCGGGA</td>
<td>207</td>
</tr>
<tr>
<td>FA15/16</td>
<td>CTTCGCGGTGAGATTGATTT</td>
<td>ATTTCCTGCAGTACCACGC</td>
<td>173</td>
</tr>
<tr>
<td>FA17/18</td>
<td>GCTTCACGACGTCGCAGTCT</td>
<td>AAATCAGTCCACGGGAGA</td>
<td>203</td>
</tr>
<tr>
<td>FA19/20</td>
<td>TAAAACCTTCCGAAGGCCCCG</td>
<td>AAATCAGTCCACGGGAGA</td>
<td>162</td>
</tr>
<tr>
<td>FA21/22</td>
<td>CTGGTGCGGCATTTGCTCA</td>
<td>TCCAGGCAAAAGTTCTCAGA</td>
<td>217</td>
</tr>
<tr>
<td>FA23/24</td>
<td>CCTGGTGCGGCATTTGCTCA</td>
<td>CCGAGGCAAAAGTTCTCAGA</td>
<td>216</td>
</tr>
<tr>
<td>FA25/26</td>
<td>TTTCTCTGCTGCTCATTTG</td>
<td>TCCAGGCAAAAGTTCTCAGA</td>
<td>222</td>
</tr>
<tr>
<td>FA27/28</td>
<td>GCACCTCCATATGTAAGGCG</td>
<td>TCCAGGCAAAAGTTCTCAGA</td>
<td>173</td>
</tr>
<tr>
<td>FA29/30</td>
<td>GACATCTTCAGTATGAAACCG</td>
<td>TCCAGGCAAAAGTTCTCAGA</td>
<td>174</td>
</tr>
<tr>
<td>FA31/32</td>
<td>CCTAGTCATGTGCTCAGTCA</td>
<td>CGACGTGAATGGAGAACACC</td>
<td>194</td>
</tr>
<tr>
<td>FA33/34</td>
<td>CCTAGTCATGTGCTCAGTCA</td>
<td>CCGACGTAATGGAGAACACC</td>
<td>195</td>
</tr>
<tr>
<td>FA35/36</td>
<td>GAGTGTGCGGTTCAGAGACT</td>
<td>CCAACCCACAGTGAGC</td>
<td>242</td>
</tr>
<tr>
<td>FA37/38</td>
<td>GCACCTACAGTCTGACAGA</td>
<td>ATCCCACAGGTCAGGTCAT</td>
<td>167</td>
</tr>
<tr>
<td>FA39/40</td>
<td>TTAGGGGATGCCTTCTGGA</td>
<td>CGGAGGCAAAAGTTCTCAGA</td>
<td>189</td>
</tr>
<tr>
<td>FA41/45</td>
<td>CCTAGTCATGTGCTCAGTCA</td>
<td>CGACGTGAATGGAGAACACC</td>
<td>194</td>
</tr>
<tr>
<td>FA43/44</td>
<td>CCTAGTCATGTGCTCAGTCA</td>
<td>CCGACGTAATGGAGAACACC</td>
<td>195</td>
</tr>
<tr>
<td>FA45/46</td>
<td>TTAGGGGATGCCTTCTGGA</td>
<td>CGGAGGCAAAAGTTCTCAGA</td>
<td>189</td>
</tr>
<tr>
<td>FA47/48</td>
<td>ACTTTCGAGCCTGTTAAGCCT</td>
<td>ATCCCACAGGTCAGGTCAT</td>
<td>212</td>
</tr>
<tr>
<td>FA49/50</td>
<td>TTAGGGGATGCCTTCTGGA</td>
<td>CGGAGGCAAAAGTTCTCAGA</td>
<td>210</td>
</tr>
<tr>
<td>FA51/52</td>
<td>CATGCGCCAAGGAAAAACAGA</td>
<td>GATGTTTCACGGGATCTGC</td>
<td>184</td>
</tr>
<tr>
<td>FA53/54</td>
<td>GCAGATCCTCGTGAACATTC</td>
<td>GGTGCTCCTGTAATTTGATT</td>
<td>194</td>
</tr>
<tr>
<td>FA55/56</td>
<td>CATGCGCCAAGGAAAAACAGA</td>
<td>ACTCGATTTGTCACGGGAT</td>
<td>188</td>
</tr>
<tr>
<td>FA57/58</td>
<td>AATCCCGTGAACATCGGAGTT</td>
<td>GGTGCTCCTGTAATTTGATT</td>
<td>190</td>
</tr>
<tr>
<td>FA59/60</td>
<td>ATGCACGACGAGAAAAACAGAT</td>
<td>GATGTTTCACGGAATTCTGC</td>
<td>183</td>
</tr>
<tr>
<td>FA61/62</td>
<td>CGGCTGTGGTCTGGAAGACAA</td>
<td>AATCTGCAAGGTCAGGTCAT</td>
<td>192</td>
</tr>
<tr>
<td>FA63/64</td>
<td>CGGCGGATGTTAAGCAGATT</td>
<td>CGGCCCCAGATAATTGATCC</td>
<td>159</td>
</tr>
<tr>
<td>FA65/66</td>
<td>ACAAAGGGCGGGAAGACTAA</td>
<td>AATCTGCAAGGTCAGGTCAT</td>
<td>233</td>
</tr>
<tr>
<td>FA67/68</td>
<td>AACAAGGGCGGGAAGACTAA</td>
<td>AATCTGCAAGGTCAGGTCAT</td>
<td>234</td>
</tr>
<tr>
<td>FA69/70</td>
<td>CGCGCCGATGTTAAGCAGATT</td>
<td>CGACGCGCCTCTATATTCTT</td>
<td>231</td>
</tr>
<tr>
<td>FA71/72</td>
<td>CGCAAGGAAAAACCGGATT</td>
<td>GATGTTTCACGGGAATTCTGC</td>
<td>180</td>
</tr>
<tr>
<td>FA73/74</td>
<td>CGCAAGGAAAAACCGGATT</td>
<td>GATGTTTCACGGGAATTCTGC</td>
<td>184</td>
</tr>
<tr>
<td>FA75/76</td>
<td>CGCAAGGAAAAACCGGATT</td>
<td>TCGATGGTTTCACGGGAATTCT</td>
<td>182</td>
</tr>
<tr>
<td>FA77/78</td>
<td>AGGAAAACGGATAGGACGT</td>
<td>GATGGTTCACGGGATTTCTGC</td>
<td>175</td>
</tr>
<tr>
<td>FA79/80</td>
<td>AGGAAAACGGATAGGACGT</td>
<td>ACTCGATGGTTCACGGGATT</td>
<td>179</td>
</tr>
<tr>
<td>FA81/82</td>
<td>GTGGTGGGAACGATGAAACC</td>
<td>CGGGCGAATATTACTTTGCA</td>
<td>171</td>
</tr>
<tr>
<td>FA83/84</td>
<td>GGTGGGAACGATGAAACC</td>
<td>CGGGCGAATATTACTTTGCA</td>
<td>169</td>
</tr>
<tr>
<td>FA85/86</td>
<td>TGGTGGGAACGATGAAACC</td>
<td>CGGGCGAATATTACTTTGCA</td>
<td>170</td>
</tr>
<tr>
<td>FA87/88</td>
<td>GTGGTGGGAACGATGAAACC</td>
<td>TGCAATCTCTATTTCACGGC</td>
<td>153</td>
</tr>
<tr>
<td>FA89/90</td>
<td>GGTGGGAACGATGAAACC</td>
<td>TGCAATCTCTATTTCACGGC</td>
<td>151</td>
</tr>
<tr>
<td>FA91/92</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>216</td>
</tr>
<tr>
<td>FA93/94</td>
<td>CTCTTGCGTGGGAAAATGGTA</td>
<td>GGATTACTATCGCGAAAAGGGG</td>
<td>163</td>
</tr>
<tr>
<td>FA95/96</td>
<td>GTGGTGGGAACGATGAAACC</td>
<td>TGCAATCTCTATTTCACGGC</td>
<td>216</td>
</tr>
<tr>
<td>FA97/98</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>221</td>
</tr>
<tr>
<td>FA99/100</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>216</td>
</tr>
<tr>
<td>FA101/102</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>216</td>
</tr>
<tr>
<td>FA103/104</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>216</td>
</tr>
<tr>
<td>FA105/106</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>216</td>
</tr>
<tr>
<td>FA107/108</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>216</td>
</tr>
<tr>
<td>FA109/110</td>
<td>TGGATTCACACCCCTTACACT</td>
<td>ACATACCATTTTCCCACGCA</td>
<td>216</td>
</tr>
<tr>
<td>FA111/112</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>172</td>
</tr>
<tr>
<td>FA113/114</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>173</td>
</tr>
<tr>
<td>FA115/116</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>174</td>
</tr>
<tr>
<td>FA117/118</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>175</td>
</tr>
<tr>
<td>FA119/120</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>176</td>
</tr>
<tr>
<td>FA121/122</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>177</td>
</tr>
<tr>
<td>FA123/124</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>178</td>
</tr>
<tr>
<td>FA125/126</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>179</td>
</tr>
<tr>
<td>FA127/128</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>180</td>
</tr>
<tr>
<td>FA129/130</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>181</td>
</tr>
<tr>
<td>FA131/132</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>182</td>
</tr>
<tr>
<td>FA133/134</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>183</td>
</tr>
<tr>
<td>FA135/136</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>184</td>
</tr>
<tr>
<td>FA137/138</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>185</td>
</tr>
<tr>
<td>FA139/140</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>186</td>
</tr>
<tr>
<td>FA141/142</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>187</td>
</tr>
<tr>
<td>FA143/144</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>188</td>
</tr>
<tr>
<td>FA145/146</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>189</td>
</tr>
<tr>
<td>FA147/148</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>190</td>
</tr>
<tr>
<td>FA149/150</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>191</td>
</tr>
<tr>
<td>FA151/152</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>192</td>
</tr>
<tr>
<td>FA153/154</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>193</td>
</tr>
<tr>
<td>FA155/156</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>194</td>
</tr>
<tr>
<td>FA157/158</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>195</td>
</tr>
<tr>
<td>FA159/160</td>
<td>TGATTTCCCAGATCTCCCGG</td>
<td>GTGCCTGCAGTTTTCATTGC</td>
<td>196</td>
</tr>
</tbody>
</table>
APPENDIX B

B1: Map showing *Striga gesnerioides* hot spots in Ghana
B2: Flower colour variation of *Striga gesnerioides* in Ghana

B3: *Striga gesnerioides* on *Tephrosia pedicellata*
B4: *Striga gesnerioides* on *Ipomoea tribola*
B5: Response of selected cowpea genotypes on different population of *Striga* in Ghana.

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>Strains of Striga gesnerioides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
</tr>
<tr>
<td>IT84S-2049</td>
<td>1</td>
</tr>
<tr>
<td>B524</td>
<td>1</td>
</tr>
<tr>
<td>IT97K-461-4</td>
<td>1</td>
</tr>
<tr>
<td>IT98K-409-4</td>
<td>1</td>
</tr>
<tr>
<td>IT93K-693-2</td>
<td>1</td>
</tr>
<tr>
<td>IT82D-849</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-494-6</td>
<td>0</td>
</tr>
<tr>
<td>IT98K-1092-1</td>
<td>0</td>
</tr>
<tr>
<td>IT00K-1263</td>
<td>1</td>
</tr>
<tr>
<td>IT97K-819-118</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-7-21-2-2</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-573-2-1</td>
<td>0</td>
</tr>
<tr>
<td>SUVITTA2</td>
<td>0</td>
</tr>
<tr>
<td>UAM09-1051-1</td>
<td>0</td>
</tr>
<tr>
<td>IT81D-994</td>
<td>1</td>
</tr>
<tr>
<td>IT97K-1042-3</td>
<td>1</td>
</tr>
<tr>
<td>IT93K-452-1</td>
<td>1</td>
</tr>
<tr>
<td>UAM09-1046-6-1</td>
<td>0</td>
</tr>
<tr>
<td>IT97K-499-35</td>
<td>0</td>
</tr>
<tr>
<td>IT00K-1217</td>
<td>0</td>
</tr>
<tr>
<td>UAM09-1046-6-2</td>
<td>0</td>
</tr>
<tr>
<td>IT98K-216-44</td>
<td>1</td>
</tr>
<tr>
<td>IT03K-338-1</td>
<td>1</td>
</tr>
<tr>
<td>UAM09-1055-6</td>
<td>0</td>
</tr>
<tr>
<td>IT99K-573-1-1</td>
<td>0</td>
</tr>
<tr>
<td>IT90K-205-8</td>
<td>0</td>
</tr>
<tr>
<td>TVX 3236</td>
<td>1</td>
</tr>
</tbody>
</table>
B6: Cluster analysis of *Striga* population based on virulence
B7: Cluster analysis of cowpea genotypes based on their response
B8: Molecular Cluster analysis of *Striga gesnerioides*, dendogram
B9: Molecular cluster analysis of *Striga gesnerioides*, tree diagram
B9: Banding pattern of some polymorphic markers used.
Genetic Differentiation Parameters of *Striga gesnerioides* Populations

<table>
<thead>
<tr>
<th>Marker</th>
<th>Major Allele Frequency</th>
<th>Allele Number</th>
<th>Gene Diversity</th>
<th>Heterozygosity</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA1/2</td>
<td>0.67</td>
<td>4.00</td>
<td>0.50</td>
<td>0.00</td>
<td>0.45</td>
</tr>
<tr>
<td>FA3/4</td>
<td>0.26</td>
<td>10.00</td>
<td>0.82</td>
<td>0.56</td>
<td>0.79</td>
</tr>
<tr>
<td>FA7/8</td>
<td>0.56</td>
<td>5.00</td>
<td>0.59</td>
<td>0.30</td>
<td>0.53</td>
</tr>
<tr>
<td>FA3/10</td>
<td>0.72</td>
<td>5.00</td>
<td>0.45</td>
<td>0.11</td>
<td>0.42</td>
</tr>
<tr>
<td>FA5/2</td>
<td>0.67</td>
<td>3.00</td>
<td>0.48</td>
<td>0.07</td>
<td>0.42</td>
</tr>
<tr>
<td>FA13/12</td>
<td>0.61</td>
<td>8.00</td>
<td>0.58</td>
<td>0.22</td>
<td>0.55</td>
</tr>
<tr>
<td>FA15/16</td>
<td>0.39</td>
<td>6.00</td>
<td>0.70</td>
<td>0.85</td>
<td>0.64</td>
</tr>
<tr>
<td>FA13/18</td>
<td>0.76</td>
<td>4.00</td>
<td>0.40</td>
<td>0.26</td>
<td>0.38</td>
</tr>
<tr>
<td>FA11/12</td>
<td>0.54</td>
<td>8.00</td>
<td>0.66</td>
<td>0.11</td>
<td>0.63</td>
</tr>
<tr>
<td>FA11/18</td>
<td>0.61</td>
<td>6.00</td>
<td>0.58</td>
<td>0.04</td>
<td>0.54</td>
</tr>
<tr>
<td>FA21/22</td>
<td>0.93</td>
<td>3.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.14</td>
</tr>
<tr>
<td>FA21/24</td>
<td>0.81</td>
<td>2.00</td>
<td>0.30</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>FA27/22</td>
<td>0.63</td>
<td>4.00</td>
<td>0.55</td>
<td>0.37</td>
<td>0.51</td>
</tr>
<tr>
<td>FA31/32</td>
<td>0.83</td>
<td>7.00</td>
<td>0.30</td>
<td>0.19</td>
<td>0.29</td>
</tr>
<tr>
<td>FA31/34</td>
<td>0.91</td>
<td>3.00</td>
<td>0.17</td>
<td>0.11</td>
<td>0.16</td>
</tr>
<tr>
<td>FA47/38</td>
<td>0.85</td>
<td>4.00</td>
<td>0.27</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>FA35/36</td>
<td>0.83</td>
<td>4.00</td>
<td>0.29</td>
<td>0.11</td>
<td>0.27</td>
</tr>
<tr>
<td>FA37/38</td>
<td>0.35</td>
<td>10.00</td>
<td>0.78</td>
<td>0.07</td>
<td>0.75</td>
</tr>
<tr>
<td>FA39/40</td>
<td>0.35</td>
<td>6.00</td>
<td>0.75</td>
<td>0.11</td>
<td>0.71</td>
</tr>
<tr>
<td>FA49/48</td>
<td>0.46</td>
<td>3.00</td>
<td>0.63</td>
<td>0.70</td>
<td>0.55</td>
</tr>
<tr>
<td>FA51/52</td>
<td>0.76</td>
<td>5.00</td>
<td>0.40</td>
<td>0.11</td>
<td>0.37</td>
</tr>
<tr>
<td>FA51/56</td>
<td>0.30</td>
<td>5.00</td>
<td>0.75</td>
<td>0.33</td>
<td>0.70</td>
</tr>
<tr>
<td>FA57/54</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>FA59/52</td>
<td>0.85</td>
<td>3.00</td>
<td>0.26</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>FA51/62</td>
<td>0.48</td>
<td>4.00</td>
<td>0.55</td>
<td>0.96</td>
<td>0.45</td>
</tr>
<tr>
<td>FA63/64</td>
<td>0.52</td>
<td>4.00</td>
<td>0.62</td>
<td>0.93</td>
<td>0.56</td>
</tr>
<tr>
<td>FA65/62</td>
<td>0.50</td>
<td>4.00</td>
<td>0.55</td>
<td>1.00</td>
<td>0.45</td>
</tr>
<tr>
<td>FA67/62</td>
<td>0.44</td>
<td>4.00</td>
<td>0.62</td>
<td>0.89</td>
<td>0.55</td>
</tr>
<tr>
<td>FA81/76</td>
<td>0.52</td>
<td>3.00</td>
<td>0.60</td>
<td>0.00</td>
<td>0.52</td>
</tr>
<tr>
<td>Code</td>
<td>1st Value</td>
<td>2nd Value</td>
<td>3rd Value</td>
<td>4th Value</td>
<td>5th Value</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>FA79/74</td>
<td>0.74</td>
<td>2.00</td>
<td>0.38</td>
<td>0.00</td>
<td>0.31</td>
</tr>
<tr>
<td>FA91/92</td>
<td>0.67</td>
<td>3.00</td>
<td>0.48</td>
<td>0.15</td>
<td>0.42</td>
</tr>
<tr>
<td>FA83/76</td>
<td>0.63</td>
<td>3.00</td>
<td>0.53</td>
<td>0.00</td>
<td>0.47</td>
</tr>
<tr>
<td>FA101/102</td>
<td>0.59</td>
<td>3.00</td>
<td>0.51</td>
<td>0.00</td>
<td>0.41</td>
</tr>
<tr>
<td>FA93/94</td>
<td>0.63</td>
<td>5.00</td>
<td>0.53</td>
<td>0.04</td>
<td>0.47</td>
</tr>
<tr>
<td>FA105/116</td>
<td>0.94</td>
<td>2.00</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>FA101/104</td>
<td>0.56</td>
<td>2.00</td>
<td>0.49</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>FA107/106</td>
<td>0.96</td>
<td>2.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>FA131/132</td>
<td>0.94</td>
<td>3.00</td>
<td>0.11</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>FA121/122</td>
<td>0.91</td>
<td>3.00</td>
<td>0.17</td>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>FA125/126</td>
<td>0.48</td>
<td>3.00</td>
<td>0.58</td>
<td>0.04</td>
<td>0.49</td>
</tr>
<tr>
<td>FA127/128</td>
<td>0.87</td>
<td>3.00</td>
<td>0.23</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>FA129/128</td>
<td>0.89</td>
<td>3.00</td>
<td>0.20</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>FA131/138</td>
<td>0.74</td>
<td>3.00</td>
<td>0.40</td>
<td>0.44</td>
<td>0.34</td>
</tr>
<tr>
<td>FA123/122</td>
<td>0.28</td>
<td>6.00</td>
<td>0.78</td>
<td>0.52</td>
<td>0.75</td>
</tr>
<tr>
<td>FA139/140</td>
<td>0.96</td>
<td>2.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>FA133/134</td>
<td>0.80</td>
<td>3.00</td>
<td>0.33</td>
<td>0.04</td>
<td>0.29</td>
</tr>
<tr>
<td>FA141/142</td>
<td>0.78</td>
<td>2.00</td>
<td>0.35</td>
<td>0.44</td>
<td>0.29</td>
</tr>
<tr>
<td>FA149/142</td>
<td>0.93</td>
<td>2.00</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>FA155/156</td>
<td>0.69</td>
<td>2.00</td>
<td>0.43</td>
<td>0.63</td>
<td>0.34</td>
</tr>
<tr>
<td>FA157/158</td>
<td>0.91</td>
<td>2.00</td>
<td>0.17</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>FA159/158</td>
<td>0.69</td>
<td>2.00</td>
<td>0.43</td>
<td>0.63</td>
<td>0.34</td>
</tr>
<tr>
<td>FA151/154</td>
<td>0.39</td>
<td>3.00</td>
<td>0.66</td>
<td>0.56</td>
<td>0.59</td>
</tr>
<tr>
<td>FA97/92</td>
<td>0.59</td>
<td>2.00</td>
<td>0.48</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>FA143/148</td>
<td>0.85</td>
<td>2.00</td>
<td>0.25</td>
<td>0.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Mean</td>
<td>0.68</td>
<td>3.81</td>
<td>0.43</td>
<td>0.23</td>
<td>0.38</td>
</tr>
</tbody>
</table>
B13. Randomisation and layout of screen house experiment

RANDOMIZATION AND LAYOUT

========================

EXPERIMENTAL DESIGN = SPLIT-PLOT

REPLICATIONS = 3

TREATMENTS = 29 x 9

**** MAINPLOT ****

VARIETY (V) = 29 levels

VARIETY (1) = V1
VARIETY (2) = V2
VARIETY (3) = V3
VARIETY (4) = V4
VARIETY (5) = V5
VARIETY (6) = V6
VARIETY (7) = V7
VARIETY (8) = V8
VARIETY (9) = V9
VARIETY (10) = V10
VARIETY (11) = V11
VARIETY (12) = V12
VARIETY (13) = V13
VARIETY (14) = V14
VARIETY (15) = V15
VARIETY (16) = V16
VARIETY (17) = V17
VARIETY (18) = V18
VARIETY (19) = V19
VARIETY (20) = V20
VARIETY (21) = V21
VARIETY (22) = V22
VARIETY (23) = V23
VARIETY (24) = V24
VARIETY (25) = V25
VARIETY (26) = V26
VARIETY (27) = V27
VARIETY (28) = V28
VARIETY (29) = V29

**** SUBPLOT ****

STRAIN (ST) = 9 levels
STRAIN (1) = ST1
STRAIN (2) = ST2
STRAIN (3) = ST3
STRAIN (4) = ST4
STRAIN (5) = ST5
STRAIN (6) = ST6
STRAIN (7) = ST7
STRAIN (8) = ST8
STRAIN (9) = ST9
Experimental layout: (SPLIT-PLOT)

The following field layout applies to all replications:

(Note: layout is not drawn to scale)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
</tr>
<tr>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
</tr>
<tr>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
</tr>
<tr>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td>143</td>
</tr>
<tr>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
<td>156</td>
</tr>
<tr>
<td>157</td>
<td>158</td>
<td>159</td>
<td>160</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
<td>165</td>
<td>166</td>
<td>167</td>
<td>168</td>
<td>169</td>
</tr>
<tr>
<td>170</td>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
<td>179</td>
<td>180</td>
<td>181</td>
<td>182</td>
</tr>
<tr>
<td>183</td>
<td>184</td>
<td>185</td>
<td>186</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>190</td>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
</tr>
<tr>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
<td>200</td>
<td>201</td>
<td>202</td>
<td>203</td>
<td>204</td>
<td>205</td>
<td>206</td>
<td>207</td>
<td>208</td>
</tr>
<tr>
<td>209</td>
<td>210</td>
<td>211</td>
<td>212</td>
<td>213</td>
<td>214</td>
<td>215</td>
<td>216</td>
<td>217</td>
<td>218</td>
<td>219</td>
<td>220</td>
<td>221</td>
</tr>
<tr>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
<td>230</td>
<td>231</td>
<td>232</td>
<td>233</td>
<td>234</td>
</tr>
<tr>
<td>235</td>
<td>236</td>
<td>237</td>
<td>238</td>
<td>239</td>
<td>240</td>
<td>241</td>
<td>242</td>
<td>243</td>
<td>244</td>
<td>245</td>
<td>246</td>
<td>247</td>
</tr>
<tr>
<td>248</td>
<td>249</td>
<td>250</td>
<td>251</td>
<td>252</td>
<td>253</td>
<td>254</td>
<td>255</td>
<td>256</td>
<td>257</td>
<td>258</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>PLOT NO.</td>
<td>TREATMENT ID</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>V23 ST6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V23 ST3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V23 ST9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V23 ST1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V23 ST5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>V23 ST8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>V23 ST4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>V23 ST7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>V23 ST2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>V24 ST5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>V24 ST3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>V24 ST4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>V24 ST8</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>V24 ST9</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>V24 ST6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>V24 ST1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>V24 ST2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>V24 ST7</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>V17 ST1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>V17 ST5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>V17 ST6</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>V17 ST7</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>V17 ST3</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>V17 ST4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>V17 ST8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>V17 ST9</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>V17 ST2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>V15 ST7</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>V15 ST6</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>V15 ST1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>V15 ST5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>V15 ST8</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>V15 ST4</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>V15 ST3</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>V15 ST2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>V15 ST9</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>V6 ST1</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>V6 ST7</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>V6 ST8</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>V6 ST3</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>V6 ST5</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>V6 ST6</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>V6 ST2</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>V6 ST4</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>V6 ST9</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>V19 ST2</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>V19 ST8</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>V19 ST9</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>V19 ST4</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>V19 ST5</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>V19 ST7</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>V19 ST6</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>V19 ST3</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>V19 ST1</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>V3 ST1</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>V3 ST6</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>V3 ST5</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>V3 ST2</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>V3 ST4</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>V3 ST9</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>V3 ST7</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>V3 ST3</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>V3 ST8</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>V27 ST1</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>V27 ST7</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>V27 ST3</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>V27 ST9</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>V27 ST6</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>V27 ST8</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>V27 ST5</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>V27 ST2</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>V27 ST4</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>V12 ST9</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>V12 ST4</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>V12 ST6</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>V12 ST3</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>V12 ST5</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>V12 ST7</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>V12 ST1</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>V12 ST8</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>V12 ST2</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>V4 ST2</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>V4 ST7</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>V4 ST6</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>V4 ST5</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>V4 ST4</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>V4 ST9</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>V4 ST3</td>
<td>118</td>
<td>V22 ST8</td>
<td>148</td>
<td>V10 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>V4 ST8</td>
<td>119</td>
<td>V22 ST9</td>
<td>149</td>
<td>V10 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>V4 ST1</td>
<td>120</td>
<td>V22 ST7</td>
<td>150</td>
<td>V10 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>V16 ST9</td>
<td>121</td>
<td>V22 ST6</td>
<td>151</td>
<td>V10 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>V16 ST7</td>
<td>122</td>
<td>V22 ST3</td>
<td>152</td>
<td>V10 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>V16 ST1</td>
<td>123</td>
<td>V22 ST4</td>
<td>153</td>
<td>V10 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>V16 ST2</td>
<td>124</td>
<td>V22 ST1</td>
<td>154</td>
<td>V18 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>V16 ST5</td>
<td>125</td>
<td>V22 ST5</td>
<td>155</td>
<td>V18 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>V16 ST8</td>
<td>126</td>
<td>V22 ST2</td>
<td>156</td>
<td>V18 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>V16 ST6</td>
<td>127</td>
<td>V7 ST5</td>
<td>157</td>
<td>V18 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>V16 ST3</td>
<td>128</td>
<td>V7 ST6</td>
<td>158</td>
<td>V18 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>V16 ST4</td>
<td>129</td>
<td>V7 ST2</td>
<td>159</td>
<td>V18 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>V20 ST9</td>
<td>130</td>
<td>V7 ST7</td>
<td>160</td>
<td>V18 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>V20 ST7</td>
<td>131</td>
<td>V7 ST4</td>
<td>161</td>
<td>V18 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>V20 ST8</td>
<td>132</td>
<td>V7 ST9</td>
<td>162</td>
<td>V18 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>V20 ST5</td>
<td>133</td>
<td>V7 ST3</td>
<td>163</td>
<td>V29 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>V20 ST1</td>
<td>134</td>
<td>V7 ST8</td>
<td>164</td>
<td>V29 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>V20 ST3</td>
<td>135</td>
<td>V7 ST1</td>
<td>165</td>
<td>V29 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>V20 ST4</td>
<td>136</td>
<td>V28 ST6</td>
<td>166</td>
<td>V29 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>V20 ST6</td>
<td>137</td>
<td>V28 ST7</td>
<td>167</td>
<td>V29 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>V20 ST2</td>
<td>138</td>
<td>V28 ST1</td>
<td>168</td>
<td>V29 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>V21 ST4</td>
<td>139</td>
<td>V28 ST2</td>
<td>169</td>
<td>V29 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>V21 ST6</td>
<td>140</td>
<td>V28 ST3</td>
<td>170</td>
<td>V29 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>V21 ST7</td>
<td>141</td>
<td>V28 ST4</td>
<td>171</td>
<td>V29 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>V21 ST9</td>
<td>142</td>
<td>V28 ST5</td>
<td>172</td>
<td>V25 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>V21 ST2</td>
<td>143</td>
<td>V28 ST8</td>
<td>173</td>
<td>V25 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>V21 ST1</td>
<td>144</td>
<td>V28 ST9</td>
<td>174</td>
<td>V25 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>V21 ST5</td>
<td>145</td>
<td>V10 ST7</td>
<td>175</td>
<td>V25 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>V21 ST8</td>
<td>146</td>
<td>V10 ST1</td>
<td>176</td>
<td>V25 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>V21 ST3</td>
<td>147</td>
<td>V10 ST5</td>
<td>177</td>
<td>V25 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>----</td>
<td>----------</td>
<td>----</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>V25 ST8</td>
<td>208</td>
<td>V5 ST8</td>
<td>238</td>
<td>V26 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>V25 ST9</td>
<td>209</td>
<td>V5 ST3</td>
<td>239</td>
<td>V26 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>V25 ST1</td>
<td>210</td>
<td>V5 ST4</td>
<td>240</td>
<td>V26 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>V1 ST2</td>
<td>211</td>
<td>V5 ST9</td>
<td>241</td>
<td>V26 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>V1 ST5</td>
<td>212</td>
<td>V5 ST1</td>
<td>242</td>
<td>V26 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>V1 ST7</td>
<td>213</td>
<td>V5 ST7</td>
<td>243</td>
<td>V26 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>V1 ST4</td>
<td>214</td>
<td>V5 ST6</td>
<td>244</td>
<td>V14 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>V1 ST1</td>
<td>215</td>
<td>V5 ST2</td>
<td>245</td>
<td>V14 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>V1 ST3</td>
<td>216</td>
<td>V5 ST5</td>
<td>246</td>
<td>V14 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>V1 ST8</td>
<td>217</td>
<td>V8 ST4</td>
<td>247</td>
<td>V14 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>V1 ST6</td>
<td>218</td>
<td>V8 ST1</td>
<td>248</td>
<td>V14 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>V1 ST9</td>
<td>219</td>
<td>V8 ST3</td>
<td>249</td>
<td>V14 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>V2 ST5</td>
<td>220</td>
<td>V8 ST6</td>
<td>250</td>
<td>V14 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>V2 ST2</td>
<td>221</td>
<td>V8 ST9</td>
<td>251</td>
<td>V14 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>V2 ST8</td>
<td>222</td>
<td>V8 ST2</td>
<td>252</td>
<td>V14 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>V2 ST7</td>
<td>223</td>
<td>V8 ST8</td>
<td>253</td>
<td>V11 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>V2 ST9</td>
<td>224</td>
<td>V8 ST5</td>
<td>254</td>
<td>V11 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>V2 ST4</td>
<td>225</td>
<td>V8 ST7</td>
<td>255</td>
<td>V11 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>V2 ST3</td>
<td>226</td>
<td>V13 ST1</td>
<td>256</td>
<td>V11 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>V2 ST1</td>
<td>227</td>
<td>V13 ST9</td>
<td>257</td>
<td>V11 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>V2 ST6</td>
<td>228</td>
<td>V13 ST4</td>
<td>258</td>
<td>V11 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>V9 ST9</td>
<td>229</td>
<td>V13 ST6</td>
<td>259</td>
<td>V11 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>V9 ST7</td>
<td>230</td>
<td>V13 ST7</td>
<td>260</td>
<td>V11 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>V9 ST2</td>
<td>231</td>
<td>V13 ST8</td>
<td>261</td>
<td>V11 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>V9 ST3</td>
<td>232</td>
<td>V13 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>V9 ST8</td>
<td>233</td>
<td>V13 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>V9 ST5</td>
<td>234</td>
<td>V13 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>V9 ST6</td>
<td>235</td>
<td>V26 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>V9 ST1</td>
<td>236</td>
<td>V26 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>V9 ST4</td>
<td>237</td>
<td>V26 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLOT NO.</td>
<td>TREATMENT ID</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>V25 ST6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V25 ST8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V25 ST7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V25 ST3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V25 ST9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>V25 ST4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>V25 ST5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>V25 ST1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>V25 ST2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>V19 ST1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>V19 ST4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>V19 ST8</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>V19 ST2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>V19 ST7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>V19 ST6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>V19 ST9</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>V19 ST5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>V19 ST3</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>V5 ST7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>V5 ST8</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>V5 ST6</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>V5 ST3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>V5 ST1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>V5 ST9</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>V5 ST4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>V5 ST5</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>V5 ST2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>V6 ST4</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>V6 ST7</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>V6 ST1</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>V6 ST5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>V6 ST8</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>V6 ST3</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>V6 ST2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>V6 ST9</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>V6 ST6</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>V13 ST2</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>V13 ST5</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>V13 ST3</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>V13 ST8</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>V13 ST9</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>V13 ST6</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>V13 ST7</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>V13 ST4</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>V13 ST1</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>V21 ST9</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>V21 ST4</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>V21 ST6</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>V21 ST1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>V21 ST3</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>V21 ST2</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>V21 ST5</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>V21 ST7</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>V21 ST8</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>V23 ST6</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>V23 ST3</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>V23 ST9</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>V23 ST1</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>V23 ST7</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>V23 ST4</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>V23 ST8</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>V23 ST2</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>V23 ST5</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>V7 ST2</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>V7 ST6</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>V7 ST5</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>V7 ST3</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>V7 ST1</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>V7 ST7</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>V7 ST8</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>V7 ST4</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>V7 ST9</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>V12 ST7</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>V12 ST4</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>V12 ST1</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>V12 ST8</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>V12 ST5</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>V12 ST2</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>V12 ST3</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>V12 ST6</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>V12 ST9</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>V24 ST8</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>V24 ST3</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>V24 ST5</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>V24 ST6</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>V24 ST9</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>V24 ST1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>V24 ST4</td>
<td>118</td>
<td>V20 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>V24 ST7</td>
<td>119</td>
<td>V20 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>V24 ST2</td>
<td>120</td>
<td>V20 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>V3 ST3</td>
<td>121</td>
<td>V20 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>V3 ST4</td>
<td>122</td>
<td>V20 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>V3 ST8</td>
<td>123</td>
<td>V20 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>V3 ST2</td>
<td>124</td>
<td>V20 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>V3 ST5</td>
<td>125</td>
<td>V20 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>V3 ST7</td>
<td>126</td>
<td>V20 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>V3 ST6</td>
<td>127</td>
<td>V8 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>V3 ST9</td>
<td>128</td>
<td>V8 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>V3 ST1</td>
<td>129</td>
<td>V8 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>V11 ST8</td>
<td>130</td>
<td>V8 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>V11 ST4</td>
<td>131</td>
<td>V8 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>V11 ST1</td>
<td>132</td>
<td>V8 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>V11 ST9</td>
<td>133</td>
<td>V8 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>V11 ST7</td>
<td>134</td>
<td>V8 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>V11 ST3</td>
<td>135</td>
<td>V8 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>V11 ST2</td>
<td>136</td>
<td>V14 ST2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>V11 ST5</td>
<td>137</td>
<td>V14 ST7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>V11 ST6</td>
<td>138</td>
<td>V14 ST3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>V18 ST2</td>
<td>139</td>
<td>V14 ST1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>V18 ST1</td>
<td>140</td>
<td>V14 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>V18 ST4</td>
<td>141</td>
<td>V14 ST8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>V18 ST7</td>
<td>142</td>
<td>V14 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>V18 ST6</td>
<td>143</td>
<td>V14 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>V18 ST5</td>
<td>144</td>
<td>V14 ST9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>V18 ST8</td>
<td>145</td>
<td>V26 ST4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>V18 ST3</td>
<td>146</td>
<td>V26 ST6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>V18 ST9</td>
<td>147</td>
<td>V26 ST5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

102
<p>| 178 | V1 ST5 | 208 | V2 ST1 | 238 | V27 ST6 |
| 179 | V1 ST3 | 209 | V2 ST4 | 239 | V27 ST4 |
| 180 | V1 ST2 | 210 | V2 ST5 | 240 | V27 ST1 |
| 181 | V17 ST5 | 211 | V2 ST9 | 241 | V27 ST2 |
| 182 | V17 ST4 | 212 | V2 ST2 | 242 | V27 ST7 |
| 183 | V17 ST9 | 213 | V2 ST7 | 243 | V27 ST9 |
| 184 | V17 ST6 | 214 | V2 ST8 | 244 | V29 ST6 |
| 185 | V17 ST3 | 215 | V2 ST3 | 245 | V29 ST1 |
| 186 | V17 ST1 | 216 | V2 ST6 | 246 | V29 ST3 |
| 187 | V17 ST8 | 217 | V16 ST6 | 247 | V29 ST7 |
| 188 | V17 ST2 | 218 | V16 ST4 | 248 | V29 ST4 |
| 189 | V17 ST7 | 219 | V16 ST7 | 249 | V29 ST2 |
| 190 | V15 ST5 | 220 | V16 ST9 | 250 | V29 ST5 |
| 191 | V15 ST3 | 221 | V16 ST8 | 251 | V29 ST9 |
| 192 | V15 ST1 | 222 | V16 ST3 | 252 | V29 ST8 |
| 193 | V15 ST2 | 223 | V16 ST5 | 253 | V9 ST4 |
| 194 | V15 ST6 | 224 | V16 ST1 | 254 | V9 ST8 |
| 195 | V15 ST8 | 225 | V16 ST2 | 255 | V9 ST1 |
| 196 | V15 ST7 | 226 | V28 ST9 | 256 | V9 ST9 |
| 197 | V15 ST9 | 227 | V28 ST4 | 257 | V9 ST7 |
| 198 | V15 ST4 | 228 | V28 ST2 | 258 | V9 ST3 |
| 199 | V4 ST4 | 229 | V28 ST7 | 259 | V9 ST2 |
| 200 | V4 ST3 | 230 | V28 ST5 | 260 | V9 ST5 |
| 201 | V4 ST2 | 231 | V28 ST8 | 261 | V9 ST6 |
| 202 | V4 ST5 | 232 | V28 ST1 | 262 | V28 ST9 |
| 203 | V4 ST6 | 233 | V28 ST3 |
| 204 | V4 ST8 | 234 | V28 ST6 |
| 205 | V4 ST9 | 235 | V27 ST3 |
| 206 | V4 ST7 | 236 | V27 ST5 |
| 207 | V4 ST1 | 237 | V27 ST8 |</p>
<table>
<thead>
<tr>
<th>PLOT NO.</th>
<th>TREATMENT ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V26 ST8</td>
</tr>
<tr>
<td>2</td>
<td>V26 ST6</td>
</tr>
<tr>
<td>3</td>
<td>V26 ST9</td>
</tr>
<tr>
<td>4</td>
<td>V26 ST2</td>
</tr>
<tr>
<td>5</td>
<td>V26 ST1</td>
</tr>
<tr>
<td>6</td>
<td>V26 ST7</td>
</tr>
<tr>
<td>7</td>
<td>V26 ST4</td>
</tr>
<tr>
<td>8</td>
<td>V26 ST3</td>
</tr>
<tr>
<td>9</td>
<td>V26 ST5</td>
</tr>
<tr>
<td>10</td>
<td>V22 ST8</td>
</tr>
<tr>
<td>11</td>
<td>V22 ST2</td>
</tr>
<tr>
<td>12</td>
<td>V22 ST3</td>
</tr>
<tr>
<td>13</td>
<td>V22 ST7</td>
</tr>
<tr>
<td>14</td>
<td>V22 ST9</td>
</tr>
<tr>
<td>15</td>
<td>V22 ST1</td>
</tr>
<tr>
<td>16</td>
<td>V22 ST4</td>
</tr>
<tr>
<td>17</td>
<td>V22 ST5</td>
</tr>
<tr>
<td>18</td>
<td>V22 ST6</td>
</tr>
<tr>
<td>19</td>
<td>V11 ST5</td>
</tr>
<tr>
<td>20</td>
<td>V11 ST2</td>
</tr>
<tr>
<td>21</td>
<td>V11 ST6</td>
</tr>
<tr>
<td>22</td>
<td>V11 ST7</td>
</tr>
<tr>
<td>23</td>
<td>V11 ST3</td>
</tr>
<tr>
<td>24</td>
<td>V11 ST4</td>
</tr>
<tr>
<td>25</td>
<td>V11 ST8</td>
</tr>
<tr>
<td>26</td>
<td>V11 ST1</td>
</tr>
<tr>
<td>27</td>
<td>V11 ST9</td>
</tr>
<tr>
<td>28</td>
<td>V18 ST2</td>
</tr>
<tr>
<td>29</td>
<td>V18 ST4</td>
</tr>
<tr>
<td>30</td>
<td>V18 ST1</td>
</tr>
<tr>
<td>31</td>
<td>V18 ST5</td>
</tr>
<tr>
<td>32</td>
<td>V18 ST3</td>
</tr>
<tr>
<td>33</td>
<td>V18 ST9</td>
</tr>
<tr>
<td>34</td>
<td>V18 ST6</td>
</tr>
<tr>
<td>35</td>
<td>V18 ST8</td>
</tr>
<tr>
<td>36</td>
<td>V18 ST7</td>
</tr>
<tr>
<td>37</td>
<td>V10 ST3</td>
</tr>
<tr>
<td>38</td>
<td>V10 ST4</td>
</tr>
<tr>
<td>39</td>
<td>V10 ST8</td>
</tr>
<tr>
<td>40</td>
<td>V10 ST2</td>
</tr>
<tr>
<td>41</td>
<td>V10 ST1</td>
</tr>
<tr>
<td>42</td>
<td>V10 ST7</td>
</tr>
<tr>
<td>43</td>
<td>V10 ST6</td>
</tr>
<tr>
<td>44</td>
<td>V10 ST9</td>
</tr>
<tr>
<td>45</td>
<td>V10 ST5</td>
</tr>
<tr>
<td>46</td>
<td>V7 ST8</td>
</tr>
<tr>
<td>47</td>
<td>V7 ST4</td>
</tr>
<tr>
<td>48</td>
<td>V7 ST7</td>
</tr>
<tr>
<td>49</td>
<td>V7 ST1</td>
</tr>
<tr>
<td>50</td>
<td>V7 ST6</td>
</tr>
<tr>
<td>51</td>
<td>V7 ST3</td>
</tr>
<tr>
<td>52</td>
<td>V7 ST5</td>
</tr>
<tr>
<td>53</td>
<td>V7 ST9</td>
</tr>
<tr>
<td>54</td>
<td>V7 ST2</td>
</tr>
<tr>
<td>55</td>
<td>V9 ST3</td>
</tr>
<tr>
<td>56</td>
<td>V9 ST7</td>
</tr>
<tr>
<td>57</td>
<td>V9 ST8</td>
</tr>
<tr>
<td>58</td>
<td>V9 ST2</td>
</tr>
<tr>
<td>59</td>
<td>V9 ST9</td>
</tr>
<tr>
<td>60</td>
<td>V9 ST4</td>
</tr>
<tr>
<td>61</td>
<td>V9 ST1</td>
</tr>
<tr>
<td>62</td>
<td>V9 ST5</td>
</tr>
<tr>
<td>63</td>
<td>V9 ST6</td>
</tr>
<tr>
<td>64</td>
<td>V15 ST4</td>
</tr>
<tr>
<td>65</td>
<td>V15 ST2</td>
</tr>
<tr>
<td>66</td>
<td>V15 ST1</td>
</tr>
<tr>
<td>67</td>
<td>V15 ST3</td>
</tr>
<tr>
<td>68</td>
<td>V15 ST5</td>
</tr>
<tr>
<td>69</td>
<td>V15 ST9</td>
</tr>
<tr>
<td>70</td>
<td>V15 ST7</td>
</tr>
<tr>
<td>71</td>
<td>V15 ST6</td>
</tr>
<tr>
<td>72</td>
<td>V15 ST8</td>
</tr>
<tr>
<td>73</td>
<td>V25 ST5</td>
</tr>
<tr>
<td>74</td>
<td>V25 ST3</td>
</tr>
<tr>
<td>75</td>
<td>V25 ST9</td>
</tr>
<tr>
<td>76</td>
<td>V25 ST1</td>
</tr>
<tr>
<td>77</td>
<td>V25 ST6</td>
</tr>
<tr>
<td>78</td>
<td>V25 ST7</td>
</tr>
<tr>
<td>79</td>
<td>V25 ST8</td>
</tr>
<tr>
<td>80</td>
<td>V25 ST2</td>
</tr>
<tr>
<td>81</td>
<td>V25 ST4</td>
</tr>
<tr>
<td>82</td>
<td>V28 ST5</td>
</tr>
<tr>
<td>83</td>
<td>V28 ST1</td>
</tr>
<tr>
<td>84</td>
<td>V28 ST7</td>
</tr>
<tr>
<td>85</td>
<td>V28 ST8</td>
</tr>
<tr>
<td>86</td>
<td>V28 ST3</td>
</tr>
<tr>
<td>87</td>
<td>V28 ST2</td>
</tr>
<tr>
<td>178</td>
<td>V21 ST3</td>
</tr>
<tr>
<td>179</td>
<td>V21 ST8</td>
</tr>
<tr>
<td>180</td>
<td>V21 ST1</td>
</tr>
<tr>
<td>181</td>
<td>V23 ST7</td>
</tr>
<tr>
<td>182</td>
<td>V23 ST8</td>
</tr>
<tr>
<td>183</td>
<td>V23 ST6</td>
</tr>
<tr>
<td>184</td>
<td>V23 ST2</td>
</tr>
<tr>
<td>185</td>
<td>V23 ST1</td>
</tr>
<tr>
<td>186</td>
<td>V23 ST3</td>
</tr>
<tr>
<td>187</td>
<td>V23 ST9</td>
</tr>
<tr>
<td>188</td>
<td>V23 ST5</td>
</tr>
<tr>
<td>189</td>
<td>V23 ST4</td>
</tr>
<tr>
<td>190</td>
<td>V24 ST6</td>
</tr>
<tr>
<td>191</td>
<td>V24 ST7</td>
</tr>
<tr>
<td>192</td>
<td>V24 ST3</td>
</tr>
<tr>
<td>193</td>
<td>V24 ST4</td>
</tr>
<tr>
<td>194</td>
<td>V24 ST2</td>
</tr>
<tr>
<td>195</td>
<td>V24 ST1</td>
</tr>
<tr>
<td>196</td>
<td>V24 ST5</td>
</tr>
<tr>
<td>197</td>
<td>V24 ST9</td>
</tr>
<tr>
<td>198</td>
<td>V24 ST8</td>
</tr>
<tr>
<td>199</td>
<td>V27 ST5</td>
</tr>
<tr>
<td>200</td>
<td>V27 ST8</td>
</tr>
<tr>
<td>201</td>
<td>V27 ST7</td>
</tr>
<tr>
<td>202</td>
<td>V27 ST6</td>
</tr>
<tr>
<td>203</td>
<td>V27 ST2</td>
</tr>
<tr>
<td>204</td>
<td>V27 ST9</td>
</tr>
<tr>
<td>205</td>
<td>V27 ST4</td>
</tr>
<tr>
<td>206</td>
<td>V27 ST1</td>
</tr>
<tr>
<td>207</td>
<td>V27 ST3</td>
</tr>
</tbody>
</table>